1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
|
/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "audio/audiostream.h"
#include "audio/rate.h"
#include "audio/decoders/raw.h"
#include "common/substream.h"
#include "common/util.h"
#include "sci/sci.h"
#include "sci/engine/features.h"
#include "sci/sound/decoders/sol.h"
#include "sci/resource/resource.h"
namespace Sci {
// Note that the 16-bit version is also used in coktelvideo.cpp
static const uint16 tableDPCM16[128] = {
0x0000, 0x0008, 0x0010, 0x0020, 0x0030, 0x0040, 0x0050, 0x0060, 0x0070, 0x0080,
0x0090, 0x00A0, 0x00B0, 0x00C0, 0x00D0, 0x00E0, 0x00F0, 0x0100, 0x0110, 0x0120,
0x0130, 0x0140, 0x0150, 0x0160, 0x0170, 0x0180, 0x0190, 0x01A0, 0x01B0, 0x01C0,
0x01D0, 0x01E0, 0x01F0, 0x0200, 0x0208, 0x0210, 0x0218, 0x0220, 0x0228, 0x0230,
0x0238, 0x0240, 0x0248, 0x0250, 0x0258, 0x0260, 0x0268, 0x0270, 0x0278, 0x0280,
0x0288, 0x0290, 0x0298, 0x02A0, 0x02A8, 0x02B0, 0x02B8, 0x02C0, 0x02C8, 0x02D0,
0x02D8, 0x02E0, 0x02E8, 0x02F0, 0x02F8, 0x0300, 0x0308, 0x0310, 0x0318, 0x0320,
0x0328, 0x0330, 0x0338, 0x0340, 0x0348, 0x0350, 0x0358, 0x0360, 0x0368, 0x0370,
0x0378, 0x0380, 0x0388, 0x0390, 0x0398, 0x03A0, 0x03A8, 0x03B0, 0x03B8, 0x03C0,
0x03C8, 0x03D0, 0x03D8, 0x03E0, 0x03E8, 0x03F0, 0x03F8, 0x0400, 0x0440, 0x0480,
0x04C0, 0x0500, 0x0540, 0x0580, 0x05C0, 0x0600, 0x0640, 0x0680, 0x06C0, 0x0700,
0x0740, 0x0780, 0x07C0, 0x0800, 0x0900, 0x0A00, 0x0B00, 0x0C00, 0x0D00, 0x0E00,
0x0F00, 0x1000, 0x1400, 0x1800, 0x1C00, 0x2000, 0x3000, 0x4000
};
// Each 4-bit nibble indexes into this table to refer to one of the 16 delta values.
// deDPCM8Nibble() currently uses the first 8 values, with logic to order the negative
// deltas differently depending on the exact encoding used.
// deDPCM8NibbleWithRepair() uses the whole table, since it matches the order of "old"
// encoding as-is. This saves a tiny bit of computation in the more complex function.
static const int8 tableDPCM8[16] = {
0, 1, 2, 3, 6, 10, 15, 21, -21, -15, -10, -6, -3, -2, -1, -0
};
/**
* Decompresses one channel of 16-bit DPCM compressed audio.
*/
static void deDPCM16Channel(int16 *out, int16 &sample, uint8 delta) {
int32 nextSample = sample;
if (delta & 0x80) {
nextSample -= tableDPCM16[delta & 0x7f];
} else {
nextSample += tableDPCM16[delta];
}
// Emulating x86 16-bit signed register overflow
if (nextSample > 32767) {
nextSample -= 65536;
} else if (nextSample < -32768) {
nextSample += 65536;
}
*out = sample = nextSample;
}
/**
* Decompresses 16-bit DPCM compressed audio. Each byte read
* outputs one sample into the decompression buffer.
*/
static void deDPCM16Mono(int16 *out, Common::ReadStream &audioStream, const uint32 numBytes, int16 &sample) {
for (uint32 i = 0; i < numBytes; ++i) {
const uint8 delta = audioStream.readByte();
deDPCM16Channel(out++, sample, delta);
}
}
// Used by Robot
void deDPCM16Mono(int16 *out, const byte *in, const uint32 numBytes, int16 &sample) {
for (uint32 i = 0; i < numBytes; ++i) {
const uint8 delta = *in++;
deDPCM16Channel(out++, sample, delta);
}
}
static void deDPCM16Stereo(int16 *out, Common::ReadStream &audioStream, const uint32 numBytes, int16 &sampleL, int16 &sampleR) {
assert((numBytes % 2) == 0);
for (uint32 i = 0; i < numBytes / 2; ++i) {
deDPCM16Channel(out++, sampleL, audioStream.readByte());
deDPCM16Channel(out++, sampleR, audioStream.readByte());
}
}
/**
* Decompresses one half of an 8-bit DPCM compressed audio
* byte.
*/
template <bool OLD>
static void deDPCM8Nibble(int16 *out, uint8 &sample, uint8 delta) {
const uint8 lastSample = sample;
if (delta & 8) {
sample -= tableDPCM8[OLD ? (7 - (delta & 7)) : (delta & 7)];
} else {
sample += tableDPCM8[delta & 7];
}
*out = ((lastSample + sample) << 7) ^ 0x8000;
}
/**
* Decompresses one half of an 8-bit DPCM compressed audio
* byte. Attempts to repair overflows on the fly.
*/
static void deDPCM8NibbleWithRepair(int16 *const out, uint8 &sample, const uint8 delta,
uint8 &repairState, uint8 &preRepairSample) {
const uint8 lastSample = sample;
// In Gabriel Knight: Sins of the Fathers CD, the DPCM8-encoded speech contains overflows.
// Overflows wrap from positive to negative, or negative to positive. This continues
// until the wave settles at a new (wrapped) zero DC offset.
// We can't look ahead to see where the wave "reconnects" to valid data, so we
// decay the wave on an artificial slope until it does. This seems to take on average
// around 9-10 samples. The slope value below was chosen through analysing spectrographs
// of the decoded/repaired wave data to find the slope which removed the pops most
// cleanly across a test selection of game speech.
#define REPAIR_SLOPE 12
switch (repairState) {
case 0: {
const int16 newSampleOverflow = (int16)sample + tableDPCM8[delta & 15];
if (newSampleOverflow > 255) {
// Positive overflow has occurred; begin artificial negative slope.
repairState = 1;
sample = lastSample - REPAIR_SLOPE;
// We also begin tracking the un-repaired waveform, so we can tell when to stop.
preRepairSample = (uint8)newSampleOverflow;
debugC(1, kDebugLevelSound, "DPCM8 OVERFLOW (+)");
} else if (newSampleOverflow < 0) {
// Negative overflow has occurred; begin artificial positive slope.
repairState = 2;
sample = lastSample + REPAIR_SLOPE;
// We also begin tracking the un-repaired waveform, so we can tell when to stop.
preRepairSample = (uint8)newSampleOverflow;
debugC(1, kDebugLevelSound, "DPCM8 OVERFLOW (-)");
} else {
sample = (uint8)newSampleOverflow;
}
} break;
case 1: {
// Check for a slope wrap. This circumstance should never happen in reality;
// the unrepaired wave would somehow need to be stuck near minimum
// value over the entire course of the slope.
if (lastSample < REPAIR_SLOPE)
warning("Negative slope wrap!");
const uint8 slopeSample = lastSample - REPAIR_SLOPE;
preRepairSample += tableDPCM8[delta & 15];
// Stop the repair if the artificial slope has intersected with real data.
if (preRepairSample >= slopeSample) {
// Return to real data.
repairState = 0;
sample = preRepairSample;
} else {
sample = slopeSample;
}
} break;
case 2: {
// Check for a slope wrap. This circumstance should never happen in reality;
// the unrepaired wave would somehow need to be stuck near maximum
// value over the entire course of the slope.
if (lastSample > (255 - REPAIR_SLOPE))
warning("Positive slope wrap!");
const uint8 slopeSample = lastSample + REPAIR_SLOPE;
preRepairSample += tableDPCM8[delta & 15];
// Stop the repair if the artificial slope has intersected with real data.
if (preRepairSample <= slopeSample) {
// Return to real data.
repairState = 0;
sample = preRepairSample;
} else {
sample = slopeSample;
}
} break;
default:
warning("Invalid repair state!");
repairState = 0;
break;
}
*out = ((lastSample + sample) << 7) ^ 0x8000;
}
/**
* Decompresses 8-bit DPCM compressed audio. Each byte read
* outputs two samples into the decompression buffer.
*/
template <bool OLD>
static void deDPCM8Mono(int16 *out, Common::ReadStream &audioStream, const uint32 numBytes, uint8 &sample,
const bool popfixEnabled, uint8 &repairState, uint8 &preRepairSample) {
if (popfixEnabled) {
for (uint32 i = 0; i < numBytes; ++i) {
const uint8 delta = audioStream.readByte();
deDPCM8NibbleWithRepair(out++, sample, delta >> 4, repairState, preRepairSample);
deDPCM8NibbleWithRepair(out++, sample, delta & 0xf, repairState, preRepairSample);
}
} else {
for (uint32 i = 0; i < numBytes; ++i) {
const uint8 delta = audioStream.readByte();
deDPCM8Nibble<OLD>(out++, sample, delta >> 4);
deDPCM8Nibble<OLD>(out++, sample, delta & 0xf);
}
}
}
static void deDPCM8Stereo(int16 *out, Common::ReadStream &audioStream, uint32 numBytes, uint8 &sampleL, uint8 &sampleR) {
for (uint32 i = 0; i < numBytes; ++i) {
const uint8 delta = audioStream.readByte();
deDPCM8Nibble<false>(out++, sampleL, delta >> 4);
deDPCM8Nibble<false>(out++, sampleR, delta & 0xf);
}
}
# pragma mark -
template<bool STEREO, bool S16BIT, bool OLDDPCM8>
SOLStream<STEREO, S16BIT, OLDDPCM8>::SOLStream(Common::SeekableReadStream *stream, const DisposeAfterUse::Flag disposeAfterUse, const uint16 sampleRate, const int32 rawDataSize) :
_stream(stream, disposeAfterUse),
_sampleRate(sampleRate),
// SSCI aligns the size of SOL data to 32 bits
_rawDataSize(rawDataSize & ~3),
// The pop fix is only verified with (relevant to?) "old" DPCM8, so we enforce that here.
_popfixDPCM8(g_sci->_features->useAudioPopfix() && OLDDPCM8) {
if (S16BIT) {
_dpcmCarry16.l = _dpcmCarry16.r = 0;
} else {
_dpcmCarry8.l = _dpcmCarry8.r = 0x80;
}
const uint8 compressionRatio = 2;
const uint8 numChannels = STEREO ? 2 : 1;
const uint8 bytesPerSample = S16BIT ? 2 : 1;
_length = ((uint64)_rawDataSize * compressionRatio * 1000) / (_sampleRate * numChannels * bytesPerSample);
}
template <bool STEREO, bool S16BIT, bool OLDDPCM8>
bool SOLStream<STEREO, S16BIT, OLDDPCM8>::seek(const Audio::Timestamp &where) {
if (where != 0) {
// In order to seek in compressed SOL files, all previous bytes must be
// known since it uses differential compression. Therefore, only seeking
// to the beginning is supported now (SSCI does not offer seeking
// anyway)
return false;
}
if (S16BIT) {
_dpcmCarry16.l = _dpcmCarry16.r = 0;
} else {
_dpcmCarry8.l = _dpcmCarry8.r = 0x80;
}
return _stream->seek(0, SEEK_SET);
}
template <bool STEREO, bool S16BIT, bool OLDDPCM8>
Audio::Timestamp SOLStream<STEREO, S16BIT, OLDDPCM8>::getLength() const {
return _length;
}
template <bool STEREO, bool S16BIT, bool OLDDPCM8>
int SOLStream<STEREO, S16BIT, OLDDPCM8>::readBuffer(int16 *buffer, const int numSamples) {
// Reading an odd number of 8-bit samples will result in a loss of samples
// since one byte represents two samples and we do not store the second
// nibble in this case; it should never happen in reality
assert(S16BIT || (numSamples % 2) == 0);
const int samplesPerByte = S16BIT ? 1 : 2;
int32 bytesToRead = numSamples / samplesPerByte;
if (_stream->pos() + bytesToRead > _rawDataSize) {
bytesToRead = _rawDataSize - _stream->pos();
}
if (S16BIT) {
if (STEREO) {
deDPCM16Stereo(buffer, *_stream, bytesToRead, _dpcmCarry16.l, _dpcmCarry16.r);
} else {
deDPCM16Mono(buffer, *_stream, bytesToRead, _dpcmCarry16.l);
}
} else {
if (STEREO) {
deDPCM8Stereo(buffer, *_stream, bytesToRead, _dpcmCarry8.l, _dpcmCarry8.r);
} else {
deDPCM8Mono<OLDDPCM8>(buffer, *_stream, bytesToRead, _dpcmCarry8.l,
_popfixDPCM8.enabled, _popfixDPCM8.state, _popfixDPCM8.preRepairSample);
}
}
const int samplesRead = bytesToRead * samplesPerByte;
return samplesRead;
}
template <bool STEREO, bool S16BIT, bool OLDDPCM8>
bool SOLStream<STEREO, S16BIT, OLDDPCM8>::isStereo() const {
return STEREO;
}
template <bool STEREO, bool S16BIT, bool OLDDPCM8>
int SOLStream<STEREO, S16BIT, OLDDPCM8>::getRate() const {
return _sampleRate;
}
template <bool STEREO, bool S16BIT, bool OLDDPCM8>
bool SOLStream<STEREO, S16BIT, OLDDPCM8>::endOfData() const {
return _stream->eos() || _stream->pos() >= _rawDataSize;
}
template <bool STEREO, bool S16BIT, bool OLDDPCM8>
bool SOLStream<STEREO, S16BIT, OLDDPCM8>::rewind() {
return seek(0);
}
Audio::SeekableAudioStream *makeSOLStream(Common::SeekableReadStream *stream, DisposeAfterUse::Flag disposeAfterUse) {
int32 initialPosition = stream->pos();
byte header[6];
if (stream->read(header, sizeof(header)) != sizeof(header)) {
stream->seek(initialPosition, SEEK_SET);
return nullptr;
}
if ((header[0] & 0x7f) != kResourceTypeAudio || READ_BE_UINT32(header + 2) != MKTAG('S', 'O', 'L', 0)) {
stream->seek(initialPosition, SEEK_SET);
return nullptr;
}
const uint8 headerSize = header[1] + kResourceHeaderSize;
const uint16 sampleRate = stream->readUint16LE();
const byte flags = stream->readByte();
const uint32 dataSize = stream->readUint32LE();
initialPosition += headerSize;
if (flags & kCompressed) {
if (flags & kStereo && flags & k16Bit) {
return new SOLStream<true, true, false>(new Common::SeekableSubReadStream(stream, initialPosition, initialPosition + dataSize, disposeAfterUse), DisposeAfterUse::YES, sampleRate, dataSize);
} else if (flags & kStereo) {
if (getSciVersion() < SCI_VERSION_2_1_EARLY) {
error("SCI2 and earlier did not support stereo SOL audio");
}
return new SOLStream<true, false, false>(new Common::SeekableSubReadStream(stream, initialPosition, initialPosition + dataSize, disposeAfterUse), DisposeAfterUse::YES, sampleRate, dataSize);
} else if (flags & k16Bit) {
return new SOLStream<false, true, false>(new Common::SeekableSubReadStream(stream, initialPosition, initialPosition + dataSize, disposeAfterUse), DisposeAfterUse::YES, sampleRate, dataSize);
} else {
if (getSciVersion() < SCI_VERSION_2_1_EARLY) {
return new SOLStream<false, false, true>(new Common::SeekableSubReadStream(stream, initialPosition, initialPosition + dataSize, disposeAfterUse), DisposeAfterUse::YES, sampleRate, dataSize);
} else {
return new SOLStream<false, false, false>(new Common::SeekableSubReadStream(stream, initialPosition, initialPosition + dataSize, disposeAfterUse), DisposeAfterUse::YES, sampleRate, dataSize);
}
}
}
byte rawFlags = Audio::FLAG_LITTLE_ENDIAN;
if (flags & k16Bit) {
rawFlags |= Audio::FLAG_16BITS;
} else {
rawFlags |= Audio::FLAG_UNSIGNED;
}
if (flags & kStereo) {
rawFlags |= Audio::FLAG_STEREO;
}
return Audio::makeRawStream(new Common::SeekableSubReadStream(stream, initialPosition, initialPosition + dataSize, disposeAfterUse), sampleRate, rawFlags, disposeAfterUse);
}
}
|