File: stark_prop.vertex

package info (click to toggle)
scummvm 2.9.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 450,580 kB
  • sloc: cpp: 4,299,825; asm: 28,322; python: 12,901; sh: 11,302; java: 9,289; xml: 7,895; perl: 2,639; ansic: 2,465; yacc: 1,670; javascript: 1,020; makefile: 933; lex: 578; awk: 275; objc: 82; sed: 11; php: 1
file content (92 lines) | stat: -rw-r--r-- 2,766 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
in vec3 position;
in vec3 normal;
in vec3 texcoord;

out vec2 Texcoord;
out vec3 Color;

struct Light {
	vec4 position;
	vec3 direction;
	vec3 color;
	vec4 params;
};

const int lightTypePoint       = 1;
const int lightTypeDirectional = 2;
const int lightTypeSpot        = 4;

const int maxLights = 10;

uniform mat4 modelViewMatrix;
uniform mat4 projectionMatrix;
uniform mat3 normalMatrix;
uniform UBOOL doubleSided;
uniform vec3 ambientColor;
uniform Light lights[maxLights];

vec4 eyePosition;
vec3 eyeNormal;

vec3 pointLight(vec3 position, vec3 color, float falloffNear, float falloffFar) {
	vec3 vertexToLight = position - eyePosition.xyz;

	float dist = length(vertexToLight);
	float attn = clamp((falloffFar - dist) / max(0.001, falloffFar - falloffNear), 0.0, 1.0);

	vertexToLight = normalize(vertexToLight);
	float incidence = max(0.0, dot(eyeNormal, vertexToLight));

	return color * attn * incidence;
}

vec3 directionalLight(vec3 direction, vec3 color) {
	float incidence = max(0.0, dot(eyeNormal, -direction));

	return color * incidence;
}

vec3 spotLight(vec3 position, vec3 color, float falloffNear, float falloffFar, vec3 direction, float cosInnerAngle, float cosOuterAngle) {
	vec3 vertexToLight = position - eyePosition.xyz;

	float dist = length(vertexToLight);
	float attn = clamp((falloffFar - dist) / max(0.001, falloffFar - falloffNear), 0.0, 1.0);

	vertexToLight = normalize(vertexToLight);
	float incidence = max(0.0, dot(eyeNormal, vertexToLight));

	float cosAngle = max(0.0, dot(vertexToLight, -direction));
	float cone = clamp((cosAngle - cosInnerAngle) / max(0.001, cosOuterAngle - cosInnerAngle), 0.0, 1.0);

	return color * attn * incidence * cone;
}

void main() {
	if (UBOOL_TEST(doubleSided)) {
		Texcoord = vec2(texcoord.x, 1.0 - texcoord.y);
	} else {
		Texcoord = vec2(1.0 - texcoord.x, 1.0 - texcoord.y);
	}

	// Compute the vertex position in screen-space
	eyePosition = modelViewMatrix * vec4(position.xyz, 1.0);
	eyeNormal = normalMatrix * normal;
	eyeNormal = normalize(eyeNormal);
	gl_Position = projectionMatrix * eyePosition;

	// Shade the vertex color according to the lights
	vec3 lightColor = ambientColor;
	for (int i = 0; i < maxLights; i++) {
		int type = int(lights[i].position.w);
		if (type == lightTypePoint) {
			lightColor += pointLight(lights[i].position.xyz, lights[i].color, lights[i].params.x, lights[i].params.y);
		} else if (type == lightTypeDirectional) {
			lightColor += directionalLight(lights[i].direction, lights[i].color);
		} else if (type == lightTypeSpot) {
			lightColor += spotLight(lights[i].position.xyz, lights[i].color, lights[i].params.x, lights[i].params.y,
									lights[i].direction, lights[i].params.z, lights[i].params.w);
		}
	}

	Color = clamp(lightColor, 0.0, 1.0);
}