File: matrix4.h

package info (click to toggle)
scummvm 2.9.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 450,580 kB
  • sloc: cpp: 4,299,825; asm: 28,322; python: 12,901; sh: 11,302; java: 9,289; xml: 7,895; perl: 2,639; ansic: 2,465; yacc: 1,670; javascript: 1,020; makefile: 933; lex: 578; awk: 275; objc: 82; sed: 11; php: 1
file content (247 lines) | stat: -rw-r--r-- 7,558 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
/* ScummVM - Graphic Adventure Engine
 *
 * ScummVM is the legal property of its developers, whose names
 * are too numerous to list here. Please refer to the COPYRIGHT
 * file distributed with this source distribution.
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 */

#ifndef MATH_MATRIX4_H
#define MATH_MATRIX4_H

#include "math/rotation3d.h"
#include "math/squarematrix.h"
#include "math/vector3d.h"
#include "math/vector4d.h"
#include "math/matrix3.h"

namespace Math {

// matrix 4 is a rotation matrix + position
template<>
class Matrix<4, 4> : public MatrixType<4, 4>, public Rotation3D<Matrix<4, 4> > {
public:
	Matrix();
	Matrix(const MatrixBase<4, 4> &m);
	Matrix(const Angle &first, const Angle &second, const Angle &third, EulerOrder order) { buildFromEuler(first, second, third, order); }

	void transform(Vector3d *v, bool translate) const;

	Vector3d getPosition() const;
	void setPosition(const Vector3d &v);

	Matrix3 getRotation() const;
	void setRotation(const Matrix3 &m);

	void translate(const Vector3d &v);

	/**
	 * Builds a matrix that maps the given local space forward direction vector to point towards the given
	 * target direction, and the given local up direction towards the given target world up direction.
	 *
	 * @param modelForward The forward direction in the local space of the object.
	 * @param targetDirection The desired world space direction the object should look at.
	 * @param modelUp The up direction in the local space of the object. This vector must be
	 *                perpendicular to the vector localForward.
	 * @param worldUp The global up direction of the scene in world space. The worldUp and targetDirection
	 *                vectors cannot be collinear, but they do not need to be perpendicular either.
	 * All the parameters MUST be normalized.
	 */
	void buildFromTargetDir(const Math::Vector3d &modelForward, const Math::Vector3d &targetDirection,
	                        const Math::Vector3d &modelUp, const Math::Vector3d &worldUp);

	/**
	* Inverts a matrix in place.
	* This function avoid having to do generic Gaussian elimination on the matrix
	* by assuming that the top-left 3x3 part of the matrix is orthonormal
	* (columns and rows 0, 1 and 2 orthogonal and unit length).
	* See e.g. Eric Lengyel's Mathematics for 3D Game Programming and Computer Graphics, p. 82.
	*/
	void invertAffineOrthonormal();

	void transpose();

	inline Matrix<4, 4> operator*(const Matrix<4, 4> &m2) const {
		Matrix<4, 4> result;
		const float *d1 = getData();
		const float *d2 = m2.getData();
		float *r = result.getData();

		for (int i = 0; i < 16; i += 4) {
			for (int j = 0; j < 4; ++j) {
				r[i + j] = (d1[i + 0] * d2[j + 0]) +
				           (d1[i + 1] * d2[j + 4]) +
				           (d1[i + 2] * d2[j + 8]) +
				           (d1[i + 3] * d2[j + 12]);
			}
		}

		return result;
	}

	inline Vector4d transform(const Vector4d &v) const {
		Vector4d result;
		const float *d1 = getData();
		const float *d2 = v.getData();
		float *r = result.getData();

		for (int i = 0; i < 4; i++) {
			r[i] = d2[0] * d1[0 * 4 + i] +
			       d2[1] * d1[1 * 4 + i] +
			       d2[2] * d1[2 * 4 + i] +
			       d2[3] * d1[3 * 4 + i];
		}

		return result;
	}

	inline bool inverse() {
		Matrix<4, 4> invMatrix;
		float *inv = invMatrix.getData();
		float *m = getData();

		inv[0] = m[5]  * m[10] * m[15] -
		         m[5]  * m[11] * m[14] -
		         m[9]  * m[6]  * m[15] +
		         m[9]  * m[7]  * m[14] +
		         m[13] * m[6]  * m[11] -
		         m[13] * m[7]  * m[10];

		inv[4] = -m[4]  * m[10] * m[15] +
		          m[4]  * m[11] * m[14] +
		          m[8]  * m[6]  * m[15] -
		          m[8]  * m[7]  * m[14] -
		          m[12] * m[6]  * m[11] +
		          m[12] * m[7]  * m[10];

		inv[8] = m[4]  * m[9]  * m[15] -
		         m[4]  * m[11] * m[13] -
		         m[8]  * m[5]  * m[15] +
		         m[8]  * m[7]  * m[13] +
		         m[12] * m[5]  * m[11] -
		         m[12] * m[7]  * m[9];

		inv[12] = -m[4]  * m[9]  * m[14] +
		           m[4]  * m[10] * m[13] +
		           m[8]  * m[5]  * m[14] -
		           m[8]  * m[6]  * m[13] -
		           m[12] * m[5]  * m[10] +
		           m[12] * m[6]  * m[9];

		inv[1] = -m[1]  * m[10] * m[15] +
		          m[1]  * m[11] * m[14] +
		          m[9]  * m[2]  * m[15] -
		          m[9]  * m[3]  * m[14] -
		          m[13] * m[2]  * m[11] +
		          m[13] * m[3]  * m[10];

		inv[5] = m[0]  * m[10] * m[15] -
		         m[0]  * m[11] * m[14] -
		         m[8]  * m[2]  * m[15] +
		         m[8]  * m[3]  * m[14] +
		         m[12] * m[2]  * m[11] -
		         m[12] * m[3]  * m[10];

		inv[9] = -m[0]  * m[9]  * m[15] +
		          m[0]  * m[11] * m[13] +
		          m[8]  * m[1]  * m[15] -
		          m[8]  * m[3]  * m[13] -
		          m[12] * m[1]  * m[11] +
		          m[12] * m[3]  * m[9];

		inv[13] = m[0]  * m[9]  * m[14] -
		          m[0]  * m[10] * m[13] -
		          m[8]  * m[1]  * m[14] +
		          m[8]  * m[2]  * m[13] +
		          m[12] * m[1]  * m[10] -
		          m[12] * m[2]  * m[9];

		inv[2] = m[1]  * m[6] * m[15] -
		         m[1]  * m[7] * m[14] -
		         m[5]  * m[2] * m[15] +
		         m[5]  * m[3] * m[14] +
		         m[13] * m[2] * m[7] -
		         m[13] * m[3] * m[6];

		inv[6] = -m[0]  * m[6] * m[15] +
		          m[0]  * m[7] * m[14] +
		          m[4]  * m[2] * m[15] -
		          m[4]  * m[3] * m[14] -
		          m[12] * m[2] * m[7] +
		          m[12] * m[3] * m[6];

		inv[10] = m[0]  * m[5] * m[15] -
		          m[0]  * m[7] * m[13] -
		          m[4]  * m[1] * m[15] +
		          m[4]  * m[3] * m[13] +
		          m[12] * m[1] * m[7] -
		          m[12] * m[3] * m[5];

		inv[14] = -m[0]  * m[5] * m[14] +
		           m[0]  * m[6] * m[13] +
		           m[4]  * m[1] * m[14] -
		           m[4]  * m[2] * m[13] -
		           m[12] * m[1] * m[6] +
		           m[12] * m[2] * m[5];

		inv[3] = -m[1] * m[6] * m[11] +
		          m[1] * m[7] * m[10] +
		          m[5] * m[2] * m[11] -
		          m[5] * m[3] * m[10] -
		          m[9] * m[2] * m[7] +
		          m[9] * m[3] * m[6];

		inv[7] = m[0] * m[6] * m[11] -
		         m[0] * m[7] * m[10] -
		         m[4] * m[2] * m[11] +
		         m[4] * m[3] * m[10] +
		         m[8] * m[2] * m[7] -
		         m[8] * m[3] * m[6];

		inv[11] = -m[0] * m[5] * m[11] +
		           m[0] * m[7] * m[9] +
		           m[4] * m[1] * m[11] -
		           m[4] * m[3] * m[9] -
		           m[8] * m[1] * m[7] +
		           m[8] * m[3] * m[5];

		inv[15] = m[0] * m[5] * m[10] -
		          m[0] * m[6] * m[9] -
		          m[4] * m[1] * m[10] +
		          m[4] * m[2] * m[9] +
		          m[8] * m[1] * m[6] -
		          m[8] * m[2] * m[5];

		float det = m[0] * inv[0] + m[1] * inv[4] + m[2] * inv[8] + m[3] * inv[12];

		if (det == 0)
			return false;

		det = 1.0 / det;

		for (int i = 0; i < 16; i++) {
			m[i] = inv[i] * det;
		}

		return true;
	}
};

typedef Matrix<4, 4> Matrix4;

} // end of namespace Math

#endif