File: inst_r2k.cc

package info (click to toggle)
sdcc 3.8.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 99,212 kB
  • sloc: ansic: 918,594; cpp: 69,526; makefile: 56,790; sh: 29,616; asm: 12,364; perl: 12,136; yacc: 7,179; lisp: 1,672; python: 812; lex: 773; awk: 495; sed: 89
file content (606 lines) | stat: -rw-r--r-- 14,400 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
/* This file is part of microcontroller simulator: ucsim.

UCSIM is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

UCSIM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with UCSIM; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
/*@1@*/

#include "ddconfig.h"

// local
#include "r2kcl.h"
#include "z80mac.h"


unsigned   word_parity( u16_t  x ) {
  // bitcount(x) performed by shift-and-add
  u16_t  tmp = (x & 0x5555) + ((x & 0xAAAA) >> 1);
  tmp = (tmp & 0x3333) + ((tmp & 0xCCCC) >> 2);
  tmp = (tmp & 0x0F0F) + ((tmp & 0xF0F0) >> 4);
  tmp = (tmp & 0x000F) + ((tmp & 0x0F00) >> 8);
  
  // parity determined by count being odd or even
  return  0x01 ^ (tmp & 1);
}

/******** rabbit 2000 memory access helper functions *****************/
u32_t  rabbit_mmu::logical_addr_to_phys( u16_t logical_addr ) {
  u32_t  phys_addr = logical_addr;
  unsigned     segnib = logical_addr >> 12;
  
  if (segnib >= 0xE000)
  {
    phys_addr += ((u32_t)xpc) << 12;
  }
  else if (segnib >= ((segsize >> 4) & 0x0F))
  {
    phys_addr += ((u32_t)stackseg) << 12;    
  }
  else if (segnib >= (segsize & 0x0F))
  {
    phys_addr += ((u32_t)dataseg) << 12;    
  }
  
  return phys_addr;
}

void cl_r2k::store1( u16_t addr, t_mem val ) {
  u32_t  phys_addr;
  
  if (mmu.io_flag == IOI) {
    if ((mmu.mmidr ^ 0x80) & 0x80)
      /* bit 7 = 0 --> use only 8-bits for internal I/O addresses */
      addr = addr & 0x0ff;
    
    if (addr == MMIDR) {
      mmu.mmidr = val;
      return;
    }
    
    if (addr == SADR) {
      /* serial A (console when using the rabbit programming cable) */
      putchar(val);
      fflush(stdout);
    }
    return;
  }
  if (mmu.io_flag == IOE) {
    /* I/O operation for external device (such as an ethernet controller) */
    return;
  }
  
  phys_addr = mmu.logical_addr_to_phys( addr );
  ram->write(phys_addr, val);
}

void cl_r2k::store2( u16_t addr, u16_t val ) {
  u32_t  phys_addr;
  
  if (mmu.io_flag == IOI) {
    /* I/O operation for on-chip device (serial ports, timers, etc) */
    return;
  }
  
  if (mmu.io_flag == IOE) {
    /* I/O operation for external device (such as an ethernet controller) */
    return;
  }
  
  phys_addr = mmu.logical_addr_to_phys( addr );
  
  ram->write(phys_addr,   val & 0xff);
  ram->write(phys_addr+1, (val >> 8) & 0xff);
}

u8_t  cl_r2k::get1( u16_t addr ) {
  u32_t  phys_addr = mmu.logical_addr_to_phys( addr );
  
  if (mmu.io_flag == IOI) {
    /* stub for on-chip device I/O */
    return 0;
  }
  if (mmu.io_flag == IOE) {
    /* stub for external device I/O */
    return 0;
  }
  
  return ram->read(phys_addr);
}

u16_t  cl_r2k::get2( u16_t addr ) {
  u32_t phys_addr = mmu.logical_addr_to_phys( addr );
  u16_t  l, h;
  
  if (mmu.io_flag == IOI) {
    /* stub for on-chip device I/O */
    return 0;
  }
  if (mmu.io_flag == IOE) {
    /* stub for external device I/O */
    return 0;
  }
  
  l = ram->read(phys_addr  );
  h = ram->read(phys_addr+1);
  
  return (h << 8) | l;
}

t_mem       cl_r2k::fetch1( void ) {
  return fetch( );
}

u16_t  cl_r2k::fetch2( void ) {
  u16_t  c1, c2;
  
  c1 = fetch( );
  c2 = fetch( );
  return (c2 << 8) | c1;
}

t_mem cl_r2k::fetch(void) {
  /*
   * Fetch without checking for breakpoint hit
   *
   * Used by bool cl_uc::fetch(t_mem *code) in sim.src/uc.cc
   * which does check for a breakpoint hit
   */
  
  u32_t phys_addr = mmu.logical_addr_to_phys( PC );
  ulong code;
  
  if (!rom)
    return(0);
  
  code= rom->read(phys_addr);
  PC = (PC + 1) & 0xffffUL;
  vc.fetch++;
  return(code);
}

/******** start rabbit 2000 specific codes *****************/
int cl_r2k::inst_add_sp_d(t_mem code) {
  u16_t  d = fetch( );
  /* sign-extend d from 8-bits to 16-bits */
  d |= (d>>7)*0xFF00;
  regs.SP = (regs.SP + d) & 0xffff;
  return(resGO);
}

int cl_r2k::inst_altd(t_mem code) {
  // stub
  return(resGO);
}

int
cl_r2k::inst_r2k_ld(t_mem code)
{
  /* 0xC4  ld hl,(sp+n)
   * 0xD4  ld (sp+n),hl
   * 0xE4  ld hl,(ix+d)
   *   DD E4 = ld hl,(hl+d)   [note: (hl+d) breaks the normal prefix pattern]
   *   FD E4 = ld hl,(iy+d)
   * 0xF4  ld (ix+d),hl
   *   DD F4 = ld (hl+d),hl
   *   FD F4 = ld (iy+d),hl
   */
  switch(code) {
  case 0xC4:  regs.HL = get2( add_u16_disp(regs.SP, fetch()) ); vc.rd+= 2; break;
  case 0xD4:  store2( add_u16_disp(regs.SP, fetch()), regs.HL ); vc.wr+= 2; break;
  case 0xE4:  regs.HL = get2( add_u16_disp(regs.IX, fetch()) ); vc.rd+= 2; break;
  case 0xF4:  store2( add_u16_disp(regs.IX, fetch()), regs.HL ); vc.wr+= 2; break;
  default:
    return(resINV_INST);
  }
  
  return(resGO);
}

int cl_r2k::inst_r2k_ex (t_mem code) {
  u16_t tempw;
  
  switch(code) {
  case 0xE3:
    // EX DE', HL  on rabbit processors
    tempw = regs.aDE;
    regs.aDE = regs.HL;
    regs.HL = tempw;
    return(resGO);
    
  default:
    return(resINV_INST);
  }
}

int cl_r2k::inst_ljp(t_mem code) {
  u16_t  mn;
  
  mn = fetch2();  /* don't clobber PC before the fetch for xmem page */
  mmu.xpc = fetch1();
  PC = mn;
  
  return(resGO);
}

int cl_r2k::inst_lcall(t_mem code) {
  u16_t  mn;
  
  push1(mmu.xpc);
  push2(PC+2);
  vc.wr+= 2;
  
  mn = fetch2();  /* don't clobber PC before the fetch for xmem page */
  mmu.xpc = fetch1();
  PC = mn;
  
  return(resGO);
}

int cl_r2k::inst_bool(t_mem code) {
  regs.raf.F &= ~BIT_ALL;
  if (regs.HL)
    regs.HL = 1;
  else
    regs.raf.F |= BIT_Z;
  return(resGO);
}

int cl_r2k::inst_r2k_and(t_mem code) {  // AND HL,DE
  regs.HL &= regs.DE;
  
  regs.raf.F &= ~BIT_ALL;
  if (regs.DE & 0x8000)
    regs.raf.F |= BIT_S;
  if (regs.DE == 0)
    regs.raf.F |= BIT_Z;
  if (word_parity(regs.DE))
    regs.raf.F |= BIT_P;
  return(resGO);
}

int cl_r2k::inst_r2k_or (t_mem code) {  // OR  HL,DE
  regs.HL |= regs.DE;
  
  regs.raf.F &= ~BIT_ALL;
  if (regs.DE & 0x8000)
    regs.raf.F |= BIT_S;
  if (regs.DE == 0)
    regs.raf.F |= BIT_Z;
  if (word_parity(regs.DE))
    regs.raf.F |= BIT_P;
  return(resGO);
}

int cl_r2k::inst_mul(t_mem code) {
  long m;
  long m1 = (long)(regs.BC & 0x7fff);
  long m2 = (long)(regs.DE & 0x7fff);
  if (regs.BC & 0x8000)
    m1 -= (1 << 15);
  if (regs.DE & 0x8000)
    m2 -= (1 << 15);
  m = m1 * m2;
  regs.BC = ((unsigned long)(m) & 0xffff);
  regs.HL = ((unsigned long)(m) >> 16) & 0xffff;
  return(resGO);
}

int cl_r2k::inst_rl_de(t_mem code) {
  unsigned int oldcarry = (regs.raf.F & BIT_C);
  
  regs.raf.F &= ~BIT_ALL;
  regs.raf.F |= (((regs.DE >> 15) & 1U) << BITPOS_C);
  regs.DE = (regs.DE << 1) | (oldcarry >> BITPOS_C);
  
  if (regs.DE & 0x8000)
    regs.raf.F |= BIT_S;
  if (regs.DE == 0)
    regs.raf.F |= BIT_Z;
  if (word_parity(regs.DE))
    regs.raf.F |= BIT_P;
  return(resGO);
}

int cl_r2k::inst_rr_de(t_mem code) {
  unsigned int oldcarry = (regs.raf.F & BIT_C);

  regs.raf.F &= ~BIT_ALL;
  regs.raf.F |= ((regs.DE & 1) << BITPOS_C);
  regs.DE = (regs.DE >> 1) | (oldcarry << (15 - BITPOS_C));
  
  if (regs.DE & 0x8000)
    regs.raf.F |= BIT_S;
  if (regs.DE == 0)
    regs.raf.F |= BIT_Z;
  if (word_parity(regs.DE))
    regs.raf.F |= BIT_P;
  return(resGO);
}

int cl_r2k::inst_rr_hl(t_mem code)    // RR HL
{
  unsigned int oldcarry = (regs.raf.F & BIT_C);
  
  regs.raf.F &= ~BIT_ALL;
  regs.raf.F |= ((regs.HL & 1) << BITPOS_C);
  regs.HL = (regs.HL >> 1) | (oldcarry << (15 - BITPOS_C));
  
  if (regs.HL & 0x8000)
    regs.raf.F |= BIT_S;
  if (regs.HL == 0)
    regs.raf.F |= BIT_Z;
  if (word_parity(regs.HL))
    regs.raf.F |= BIT_P;
  return(resGO);
}


int
cl_r2k::inst_rst(t_mem code)
{
  switch(code) {
    case 0xC7: // RST 0
      push2(PC+2);
      PC = 0x0;
      vc.wr+= 2;
    break;
    case 0xCF: // RST 8
      return(resINV_INST);
    
    case 0xD7: // RST 10H
      push2(PC+2);
      PC = 0x10;
      vc.wr+= 2;
    break;
    case 0xDF: // RST 18H
      push2(PC+2);
      PC = 0x18;
      vc.wr+= 2;
    break;
    case 0xE7: // RST 20H
      push2(PC+2);
      PC = 0x20;
      vc.wr+= 2;
    break;
    case 0xEF: // RST 28H
      //PC = 0x28;
      switch (regs.raf.A) {
        case 0:
          return(resBREAKPOINT);
//          ::exit(0);
        break;

        case 1:
          //printf("PUTCHAR-----> %xH\n", regs.hl.l);
          putchar(regs.hl.l);
          fflush(stdout);
        break;
      }
    break;
    case 0xF7: // RST 30H
      return(resINV_INST);  // opcode is used for MUL on rabbit 2000+
    break;
    case 0xFF: // RST 38H
      push2(PC+2);
      PC = 0x38;
      vc.wr+= 2;
    break;
    default:
      return(resINV_INST);
    break;
  }
  return(resGO);
}

int cl_r2k::inst_xd(t_mem prefix)
{
  u16_t  *regs_IX_OR_IY = (prefix==0xdd)?(&regs.IX):(&regs.IY);
  t_mem code;
  
  if (fetch(&code))
    return(resBREAKPOINT);

  switch (code) {
    
    // 0x06 LD A,(IX+A) is r4k+ instruction
  case 0x21: // LD IX,nnnn
  case 0x22: // LD (nnnn),IX
    
  case 0x2A: // LD IX,(nnnn)
  case 0x2E: // LD LX,nn
  case 0x36: // LD (IX+dd),nn
  case 0x46: // LD B,(IX+dd)
  case 0x4E: // LD C,(IX+dd)
  case 0x56: // LD D,(IX+dd)
  case 0x5E: // LD E,(IX+dd)
  case 0x66: // LD H,(IX+dd)
  case 0x6E: // LD L,(IX+dd)
    
  case 0x70: // LD (IX+dd),B
  case 0x71: // LD (IX+dd),C
  case 0x72: // LD (IX+dd),D
  case 0x73: // LD (IX+dd),E
  case 0x74: // LD (IX+dd),H
  case 0x75: // LD (IX+dd),L
  case 0x77: // LD (IX+dd),A
  case 0x7E: // LD A,(IX+dd)
  case 0xF9: // LD SP,IX
    if (prefix == 0xdd)
      return(inst_dd_ld(code));
    else
      return(inst_fd_ld(code));
    
  case 0x7C: // LD HL,IX
    regs.HL = *regs_IX_OR_IY;  // LD HL, IX|IY for rabbit processors
    return(resGO);
  case 0x7D: // LD IX,HL
    *regs_IX_OR_IY = regs.HL;   // LD IX|IY,HL for rabbit processors
    return(resGO);
    
  case 0x23: // INC IX
  case 0x34: // INC (IX+dd)
    if (prefix == 0xdd)
      return(inst_dd_inc(code));
    else
      return(inst_fd_inc(code));
    
  case 0x09: // ADD IX,BC
  case 0x19: // ADD IX,DE
  case 0x29: // ADD IX,IX
  case 0x39: // ADD IX,SP
  case 0x86: // ADD A,(IX)
    if (prefix == 0xdd)
      return(inst_dd_add(code));
    else
      return(inst_fd_add(code));
    
  case 0x2B: // DEC IX
  case 0x35: // DEC (IX+dd)
    if (prefix == 0xdd)
      return(inst_dd_dec(code));
    else
      return(inst_fd_dec(code));
    
    // 0x4C  TEST IX is r4k+

  case 0x8E: // ADC A,(IX)
  case 0x96: // SUB (IX+dd)
  case 0x9E: // SBC A,(IX+dd)
  case 0xA6: // AND (IX+dd)
  case 0xAE: // XOR (IX+dd)
  case 0xB6: // OR (IX+dd)
  case 0xBE: // CP (IX+dd)
    if (prefix == 0xdd)
      return(inst_dd_misc(code));
    else
      return(inst_fd_misc(code));
    
  case 0xC4: // LD IX,(SP+n)
    *regs_IX_OR_IY = get2( add_u16_disp(regs.SP, fetch()) );
    vc.rd+= 2;
    return(resGO);
    
  case 0xCB: // escape, IX prefix to CB commands
    // fixme: limit the opcodes passed through to those officially
    // documented as present on the rabbit processors
    if (prefix == 0xdd)
      return(inst_ddcb()); /* see inst_ddcb.cc */
    else
      return(inst_fdcb()); /* see inst_fdcb.cc */
    
  case 0xCC: // BOOL IX|IY
    if (*regs_IX_OR_IY)
      *regs_IX_OR_IY = 1;
    
    // update flags
    regs.raf.F &= ~BIT_ALL;
    // bit 15 will never be set, so S<=0
    if (*regs_IX_OR_IY == 0)
      regs.raf.F |= BIT_Z;
    // L/V and C are always cleared
    return(resGO);
    
  case 0xD4: // LD (SP+n),IX|IY
    store2( add_u16_disp(regs.SP, fetch()), *regs_IX_OR_IY );
    vc.wr+= 2;
    return(resGO);
    
  case 0xE1: // POP IX
    *regs_IX_OR_IY = get2(regs.SP);
    regs.SP+=2;
    vc.rd+= 2;
    return(resGO);
    
  case 0xE3: // EX (SP),IX
  {
    u16_t tempw;
    
    tempw = *regs_IX_OR_IY;
    *regs_IX_OR_IY = get2(regs.SP);
    store2(regs.SP, tempw);
    vc.rd+= 2;
    vc.wr+= 2;
  }
  return(resGO);
  
  case 0xE4:
    if (prefix == 0xDD)
      regs.HL = get2( add_u16_disp(regs.HL, fetch()) );
    else
      regs.HL = get2( add_u16_disp(regs.IY, fetch()) );
    vc.rd+= 2;
    return(resGO);
    
  case 0xE5: // PUSH IX
    push2(*regs_IX_OR_IY);
    vc.wr+= 2;
    return(resGO);
    
  case 0xE9: // JP (IX)
    PC = *regs_IX_OR_IY;
    return(resGO);
    
  case 0xEA:
    push2(PC);
    PC = *regs_IX_OR_IY;
    vc.wr+= 2;
    return(resGO);
    
  case 0xDC: // AND IX|IY,DE  for rabbit processors
  case 0xEC: // OR  IX|IY,DE  for rabbit processors
    if (code == 0xDC)
      *regs_IX_OR_IY &= regs.DE;
    else
      *regs_IX_OR_IY |= regs.DE;
    
    // update flags
    regs.raf.F &= ~BIT_ALL;
    if (*regs_IX_OR_IY & 0x8000)
      regs.raf.F |= BIT_S;
    if (regs_IX_OR_IY == 0)
      regs.raf.F |= BIT_Z;
    if (word_parity(*regs_IX_OR_IY))
      regs.raf.F |= BIT_P;
    return(resGO);
    
  case 0xF4: // LD (HL|IY+d),HL
    if (prefix == 0xDD)
      store2( add_u16_disp(regs.HL, fetch()), regs.HL );
    else
      store2( add_u16_disp(regs.IY, fetch()), regs.HL );
    vc.wr+= 2;
    return(resGO);
    
  case 0xFC: // RR IX|IY
  {
    u16_t  tmp = (regs.raf.F & BIT_C) << (15 - BITPOS_C);
    tmp |= (*regs_IX_OR_IY >> 1);
    
    regs.raf.F = (regs.raf.F & ~BIT_C) | ((*regs_IX_OR_IY & 1) << BITPOS_C);
    
    if (*regs_IX_OR_IY & 0x8000)
      regs.raf.F |= BIT_S;
    if (*regs_IX_OR_IY == 0)
      regs.raf.F |= BIT_Z;
    if (word_parity(*regs_IX_OR_IY))
      regs.raf.F |= BIT_P;
    return(resGO);
  }
  
  default:
    return(resINV_INST);
  }
  
  return(resINV_INST);
}