1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
|
/*
writer : Opera Wang
E-Mail : wangvisual AT sohu DOT com
License: GPL
*/
/* filename: distance.cc */
/*
http://www.merriampark.com/ld.htm
What is Levenshtein Distance?
Levenshtein distance (LD) is a measure of the similarity between two strings,
which we will refer to as the source string (s) and the target string (t).
The distance is the number of deletions, insertions, or substitutions required
to transform s into t. For example,
* If s is "test" and t is "test", then LD(s,t) = 0, because no transformations are needed.
The strings are already identical.
* If s is "test" and t is "tent", then LD(s,t) = 1, because one substitution
(change "s" to "n") is sufficient to transform s into t.
The greater the Levenshtein distance, the more different the strings are.
Levenshtein distance is named after the Russian scientist Vladimir Levenshtein,
who devised the algorithm in 1965. If you can't spell or pronounce Levenshtein,
the metric is also sometimes called edit distance.
The Levenshtein distance algorithm has been used in:
* Spell checking
* Speech recognition
* DNA analysis
* Plagiarism detection
*/
#include <stdlib.h>
#include <string.h>
//#include <stdio.h>
#include "distance.h"
#define OPTIMIZE_ED
/*
Cover transposition, in addition to deletion,
insertion and substitution. This step is taken from:
Berghel, Hal ; Roach, David : "An Extension of Ukkonen's
Enhanced Dynamic Programming ASM Algorithm"
(http://www.acm.org/~hlb/publications/asm/asm.html)
*/
#define COVER_TRANSPOSITION
/****************************************/
/*Implementation of Levenshtein distance*/
/****************************************/
EditDistance::EditDistance()
{
currentelements = 2500; // It's enough for most conditions :-)
d = (int*)malloc(sizeof(int)*currentelements);
}
EditDistance::~EditDistance()
{
// printf("size:%d\n",currentelements);
if (d) free(d);
}
#ifdef OPTIMIZE_ED
int EditDistance::CalEditDistance(const gunichar *s,const gunichar *t,const int limit)
/*Compute levenshtein distance between s and t, this is using QUICK algorithm*/
{
int n=0,m=0,iLenDif,k,i,j,cost;
// Remove leftmost matching portion of strings
while ( *s && (*s==*t) )
{
s++;
t++;
}
while (s[n])
{
n++;
}
while (t[m])
{
m++;
}
// Remove rightmost matching portion of strings by decrement n and m.
while ( n && m && (*(s+n-1)==*(t+m-1)) )
{
n--;m--;
}
if ( m==0 || n==0 || d==(int*)0 )
return (m+n);
if ( m < n )
{
const gunichar * temp = s;
int itemp = n;
s = t;
t = temp;
n = m;
m = itemp;
}
iLenDif = m - n;
if ( iLenDif >= limit )
return iLenDif;
// step 1
n++;m++;
// d=(int*)malloc(sizeof(int)*m*n);
if ( m*n > currentelements )
{
currentelements = m*n*2; // double the request
d = (int*)realloc(d,sizeof(int)*currentelements);
if ( (int*)0 == d )
return (m+n);
}
// step 2, init matrix
for (k=0;k<n;k++)
d[k] = k;
for (k=1;k<m;k++)
d[k*n] = k;
// step 3
for (i=1;i<n;i++)
{
// first calculate column, d(i,j)
for ( j=1;j<iLenDif+i;j++ )
{
cost = s[i-1]==t[j-1]?0:1;
d[j*n+i] = minimum(d[(j-1)*n+i]+1,d[j*n+i-1]+1,d[(j-1)*n+i-1]+cost);
#ifdef COVER_TRANSPOSITION
if ( i>=2 && j>=2 && (d[j*n+i]-d[(j-2)*n+i-2]==2)
&& (s[i-2]==t[j-1]) && (s[i-1]==t[j-2]) )
d[j*n+i]--;
#endif
}
// second calculate row, d(k,j)
// now j==iLenDif+i;
for ( k=1;k<=i;k++ )
{
cost = s[k-1]==t[j-1]?0:1;
d[j*n+k] = minimum(d[(j-1)*n+k]+1,d[j*n+k-1]+1,d[(j-1)*n+k-1]+cost);
#ifdef COVER_TRANSPOSITION
if ( k>=2 && j>=2 && (d[j*n+k]-d[(j-2)*n+k-2]==2)
&& (s[k-2]==t[j-1]) && (s[k-1]==t[j-2]) )
d[j*n+k]--;
#endif
}
// test if d(i,j) limit gets equal or exceed
if ( d[j*n+i] >= limit )
{
return d[j*n+i];
}
}
// d(n-1,m-1)
return d[n*m-1];
}
#else
int EditDistance::CalEditDistance(const char *s,const char *t,const int limit)
{
//Step 1
int k,i,j,n,m,cost;
n=strlen(s);
m=strlen(t);
if( n!=0 && m!=0 && d!=(int*)0 )
{
m++;n++;
if ( m*n > currentelements )
{
currentelements = m*n*2;
d = (int*)realloc(d,sizeof(int)*currentelements);
if ( (int*)0 == d )
return (m+n);
}
//Step 2
for(k=0;k<n;k++)
d[k]=k;
for(k=0;k<m;k++)
d[k*n]=k;
//Step 3 and 4
for(i=1;i<n;i++)
for(j=1;j<m;j++)
{
//Step 5
if(s[i-1]==t[j-1])
cost=0;
else
cost=1;
//Step 6
d[j*n+i]=minimum(d[(j-1)*n+i]+1,d[j*n+i-1]+1,d[(j-1)*n+i-1]+cost);
#ifdef COVER_TRANSPOSITION
if ( i>=2 && j>=2 && (d[j*n+i]-d[(j-2)*n+i-2]==2)
&& (s[i-2]==t[j-1]) && (s[i-1]==t[j-2]) )
d[j*n+i]--;
#endif
}
return d[n*m-1];
}
else
return (n+m);
}
#endif
|