1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
|
(* ::Package:: *)
(*Setup*)
prec = 200;
(* A matrix with constant anti-diagonals given by the list bs *)
antiBandMatrix[bs_] := Module[
{n = Ceiling[Length[bs]/2]},
Reverse[Normal[
SparseArray[
Join[
Table[Band[{i, 1}] -> bs[[n - i + 1]], {i, n}],
Table[Band[{1, i}] -> bs[[n + i - 1]], {i, 2, n}]],
{n, n}]]]];
(* DampedRational[c, {p1, p2, ...}, b, x] stands for c b^x / ((x-p1)(x-p2)...) *)
(* It satisfies the following identities *)
DampedRational[const_, poles_, base_, x + a_] :=
DampedRational[base^a const, # - a & /@ poles, base, x];
DampedRational[const_, poles_, base_, a_ /; FreeQ[a, x]] :=
const base^a/Product[a - p, {p, poles}];
DampedRational/:x DampedRational[const_, poles_ /; MemberQ[poles, 0], base_, x] :=
DampedRational[const, DeleteCases[poles, 0], base, x];
DampedRational/:DampedRational[c1_,p1_,b1_,x] DampedRational[c2_,p2_,b2_,x] :=
DampedRational[c1 c2, Join[p1, p2], b1 b2, x];
(* bilinearForm[f, m] = Integral[x^m f[x], {x, 0, Infinity}] *)
(* The special case when f[x] has no poles *)
bilinearForm[DampedRational[const_, {}, base_, x], m_] :=
const Gamma[1+m] (-Log[base])^(-1-m);
(*memoizeGamma[a_,b_]:=memoizeGamma[a,b]=Gamma[a,b];*)
(* The case where f[x] has only single poles *)
(*bilinearForm[DampedRational[const_, poles_, base_, x], m_] :=
const Sum[
((-poles[[i]])^m) ( base^poles[[i]]) Gamma[1 + m] memoizeGamma[-m, poles[[i]] Log[base]]/
Product[poles[[i]] - p, {p, Delete[poles, i]}],
{i, Length[poles]}];*)
(* The case where f[x] can have single or double poles *)
bilinearForm[DampedRational[c_, poles_, b_, x_], m_] := Module[
{
gatheredPoles = Gather[poles],
quotientCoeffs = CoefficientList[PolynomialQuotient[x^m, Product[x-p, {p, poles}], x], x],
integral, p, rest
},
integral[a_,1] := b^a Gamma[0, a Log[b]];
integral[a_,2] := -1/a + b^a Gamma[0, a Log[b]] Log[b];
c (Sum[
p = gatheredPoles[[n,1]];
rest = x^m / Product[x-q, {q, Join@@Delete[gatheredPoles, n]}];
Switch[Length[gatheredPoles[[n]]],
1, integral[p,1] rest /. x->p,
2, integral[p,2] rest + integral[p,1] D[rest, x] /. x->p],
{n, Length[gatheredPoles]}] +
Sum[
quotientCoeffs[[n+1]] Gamma[1+n] (-Log[b])^(-1-n),
{n, 0, Length[quotientCoeffs]-1}])];
(* orthogonalPolynomials[f, n] is a set of polynomials with degree 0
through n which are orthogonal with respect to the measure f[x] dx *)
orthogonalPolynomials[const_ /; FreeQ[const, x], 0] := {1/Sqrt[const]};
orthogonalPolynomials[const_ /; FreeQ[const, x], degree_] :=
error["can't get orthogonal polynomials of nonzero degree for constant measure"];
orthogonalPolynomials[DampedRational[const_, poles_, base_, x], degree_] :=
Table[x^m, {m, 0, degree}] . Inverse[
CholeskyDecomposition[
antiBandMatrix[
Table[bilinearForm[DampedRational[const, Select[poles, # < 0&], base, x], m],
{m, 0, 2 degree}]]]];
(* Preparing SDP for Export *)
rhoCrossing = SetPrecision[3-2 Sqrt[2], prec];
rescaledLaguerreSamplePoints[n_] := Table[
SetPrecision[\[Pi]^2 (-1+4k)^2/(-64n Log[rhoCrossing]), prec],
{k,0,n-1}];
maxIndexBy[l_,f_] := SortBy[
Transpose[{l,Range[Length[l]]}],
-f[First[#]]&][[1,2]];
(* finds v' such that a . v = First[v'] + a' . Rest[v'] when normalization . a == 1, where a' is a vector of length one less than a *)
reshuffleWithNormalization[normalization_, v_] := Module[
{j = maxIndexBy[normalization, Abs], const},
const = v[[j]]/normalization[[j]];
Prepend[Delete[v - normalization*const, j], const]];
(* XML Exporting *)
nf[x_Integer] := x;
nf[x_] := NumberForm[SetPrecision[x,prec],prec,ExponentFunction->(Null&)];
safeCoefficientList[p_, x_] := Module[
{coeffs = CoefficientList[p, x]},
If[Length[coeffs] > 0, coeffs, {0}]];
WriteBootstrapSDP[file_, SDP[objective_, normalization_, positiveMatricesWithPrefactors_]] := Module[
{
stream = OpenWrite[file],
node, real, int, vector, polynomial,
polynomialVector, polynomialVectorMatrix,
affineObjective, polynomialVectorMatrices
},
(* write a single XML node to file. children is a routine that writes child nodes when run. *)
node[name_, children_] := (
WriteString[stream, "<", name, ">"];
children[];
WriteString[stream, "</", name, ">\n"];
);
real[r_][] := WriteString[stream, nf[r]];
int[i_][] := WriteString[stream, i];
vector[v_][] := Do[node["elt", real[c]], {c, v}];
polynomial[p_][] := Do[node["coeff", real[c]], {c, safeCoefficientList[p,x]}];
polynomialVector[v_][] := Do[node["polynomial", polynomial[p]], {p, v}];
polynomialVectorMatrix[PositiveMatrixWithPrefactor[prefactor_, m_]][] := Module[
{degree = Max[Exponent[m, x]], samplePoints, sampleScalings, bilinearBasis},
samplePoints = rescaledLaguerreSamplePoints[degree + 1];
sampleScalings = Table[prefactor /. x -> a, {a, samplePoints}];
bilinearBasis = orthogonalPolynomials[prefactor, Floor[degree/2]];
node["rows", int[Length[m]]];
node["cols", int[Length[First[m]]]];
node["elements", Function[
{},
Do[node[
"polynomialVector",
polynomialVector[reshuffleWithNormalization[normalization,pv]]],
{row, m}, {pv, row}]]];
node["samplePoints", vector[samplePoints]];
node["sampleScalings", vector[sampleScalings]];
node["bilinearBasis", polynomialVector[bilinearBasis]];
];
node["sdp", Function[
{},
node["objective", vector[reshuffleWithNormalization[normalization, objective]]];
node["polynomialVectorMatrices", Function[
{},
Do[node["polynomialVectorMatrix", polynomialVectorMatrix[pvm]], {pvm, positiveMatricesWithPrefactors}];
]];
]];
Close[stream];
];
|