1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
|
import numpy as np
import pandas as pd
import pytest
from numpy.testing import assert_array_equal
from seaborn._core.groupby import GroupBy
@pytest.fixture
def df():
return pd.DataFrame(
columns=["a", "b", "x", "y"],
data=[
["a", "g", 1, .2],
["b", "h", 3, .5],
["a", "f", 2, .8],
["a", "h", 1, .3],
["b", "f", 2, .4],
]
)
def test_init_from_list():
g = GroupBy(["a", "c", "b"])
assert g.order == {"a": None, "c": None, "b": None}
def test_init_from_dict():
order = {"a": [3, 2, 1], "c": None, "b": ["x", "y", "z"]}
g = GroupBy(order)
assert g.order == order
def test_init_requires_order():
with pytest.raises(ValueError, match="GroupBy requires at least one"):
GroupBy([])
def test_at_least_one_grouping_variable_required(df):
with pytest.raises(ValueError, match="No grouping variables are present"):
GroupBy(["z"]).agg(df, x="mean")
def test_agg_one_grouper(df):
res = GroupBy(["a"]).agg(df, {"y": "max"})
assert_array_equal(res.index, [0, 1])
assert_array_equal(res.columns, ["a", "y"])
assert_array_equal(res["a"], ["a", "b"])
assert_array_equal(res["y"], [.8, .5])
def test_agg_two_groupers(df):
res = GroupBy(["a", "x"]).agg(df, {"y": "min"})
assert_array_equal(res.index, [0, 1, 2, 3, 4, 5])
assert_array_equal(res.columns, ["a", "x", "y"])
assert_array_equal(res["a"], ["a", "a", "a", "b", "b", "b"])
assert_array_equal(res["x"], [1, 2, 3, 1, 2, 3])
assert_array_equal(res["y"], [.2, .8, np.nan, np.nan, .4, .5])
def test_agg_two_groupers_ordered(df):
order = {"b": ["h", "g", "f"], "x": [3, 2, 1]}
res = GroupBy(order).agg(df, {"a": "min", "y": lambda x: x.iloc[0]})
assert_array_equal(res.index, [0, 1, 2, 3, 4, 5, 6, 7, 8])
assert_array_equal(res.columns, ["a", "b", "x", "y"])
assert_array_equal(res["b"], ["h", "h", "h", "g", "g", "g", "f", "f", "f"])
assert_array_equal(res["x"], [3, 2, 1, 3, 2, 1, 3, 2, 1])
T, F = True, False
assert_array_equal(res["a"].isna(), [F, T, F, T, T, F, T, F, T])
assert_array_equal(res["a"].dropna(), ["b", "a", "a", "a"])
assert_array_equal(res["y"].dropna(), [.5, .3, .2, .8])
def test_apply_no_grouper(df):
df = df[["x", "y"]]
res = GroupBy(["a"]).apply(df, lambda x: x.sort_values("x"))
assert_array_equal(res.columns, ["x", "y"])
assert_array_equal(res["x"], df["x"].sort_values())
assert_array_equal(res["y"], df.loc[np.argsort(df["x"]), "y"])
def test_apply_one_grouper(df):
res = GroupBy(["a"]).apply(df, lambda x: x.sort_values("x"))
assert_array_equal(res.index, [0, 1, 2, 3, 4])
assert_array_equal(res.columns, ["a", "b", "x", "y"])
assert_array_equal(res["a"], ["a", "a", "a", "b", "b"])
assert_array_equal(res["b"], ["g", "h", "f", "f", "h"])
assert_array_equal(res["x"], [1, 1, 2, 2, 3])
def test_apply_mutate_columns(df):
xx = np.arange(0, 5)
hats = []
def polyfit(df):
fit = np.polyfit(df["x"], df["y"], 1)
hat = np.polyval(fit, xx)
hats.append(hat)
return pd.DataFrame(dict(x=xx, y=hat))
res = GroupBy(["a"]).apply(df, polyfit)
assert_array_equal(res.index, np.arange(xx.size * 2))
assert_array_equal(res.columns, ["a", "x", "y"])
assert_array_equal(res["a"], ["a"] * xx.size + ["b"] * xx.size)
assert_array_equal(res["x"], xx.tolist() + xx.tolist())
assert_array_equal(res["y"], np.concatenate(hats))
def test_apply_replace_columns(df):
def add_sorted_cumsum(df):
x = df["x"].sort_values()
z = df.loc[x.index, "y"].cumsum()
return pd.DataFrame(dict(x=x.values, z=z.values))
res = GroupBy(["a"]).apply(df, add_sorted_cumsum)
assert_array_equal(res.index, df.index)
assert_array_equal(res.columns, ["a", "x", "z"])
assert_array_equal(res["a"], ["a", "a", "a", "b", "b"])
assert_array_equal(res["x"], [1, 1, 2, 2, 3])
assert_array_equal(res["z"], [.2, .5, 1.3, .4, .9])
|