1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
|
import numpy as np
import pandas as pd
import matplotlib as mpl
from matplotlib.colors import same_color, to_rgb, to_rgba
import pytest
from numpy.testing import assert_array_equal
from seaborn.external.version import Version
from seaborn._core.rules import categorical_order
from seaborn._core.scales import Nominal, Continuous, Boolean
from seaborn._core.properties import (
Alpha,
Color,
Coordinate,
EdgeWidth,
Fill,
LineStyle,
LineWidth,
Marker,
PointSize,
)
from seaborn._compat import MarkerStyle, get_colormap
from seaborn.palettes import color_palette
class DataFixtures:
@pytest.fixture
def num_vector(self, long_df):
return long_df["s"]
@pytest.fixture
def num_order(self, num_vector):
return categorical_order(num_vector)
@pytest.fixture
def cat_vector(self, long_df):
return long_df["a"]
@pytest.fixture
def cat_order(self, cat_vector):
return categorical_order(cat_vector)
@pytest.fixture
def dt_num_vector(self, long_df):
return long_df["t"]
@pytest.fixture
def dt_cat_vector(self, long_df):
return long_df["d"]
@pytest.fixture
def bool_vector(self, long_df):
return long_df["x"] > 10
@pytest.fixture
def vectors(self, num_vector, cat_vector, bool_vector):
return {"num": num_vector, "cat": cat_vector, "bool": bool_vector}
class TestCoordinate(DataFixtures):
def test_bad_scale_arg_str(self, num_vector):
err = "Unknown magic arg for x scale: 'xxx'."
with pytest.raises(ValueError, match=err):
Coordinate("x").infer_scale("xxx", num_vector)
def test_bad_scale_arg_type(self, cat_vector):
err = "Magic arg for x scale must be str, not list."
with pytest.raises(TypeError, match=err):
Coordinate("x").infer_scale([1, 2, 3], cat_vector)
class TestColor(DataFixtures):
def assert_same_rgb(self, a, b):
assert_array_equal(a[:, :3], b[:, :3])
def test_nominal_default_palette(self, cat_vector, cat_order):
m = Color().get_mapping(Nominal(), cat_vector)
n = len(cat_order)
actual = m(np.arange(n))
expected = color_palette(None, n)
for have, want in zip(actual, expected):
assert same_color(have, want)
def test_nominal_default_palette_large(self):
vector = pd.Series(list("abcdefghijklmnopqrstuvwxyz"))
m = Color().get_mapping(Nominal(), vector)
actual = m(np.arange(26))
expected = color_palette("husl", 26)
for have, want in zip(actual, expected):
assert same_color(have, want)
def test_nominal_named_palette(self, cat_vector, cat_order):
palette = "Blues"
m = Color().get_mapping(Nominal(palette), cat_vector)
n = len(cat_order)
actual = m(np.arange(n))
expected = color_palette(palette, n)
for have, want in zip(actual, expected):
assert same_color(have, want)
def test_nominal_list_palette(self, cat_vector, cat_order):
palette = color_palette("Reds", len(cat_order))
m = Color().get_mapping(Nominal(palette), cat_vector)
actual = m(np.arange(len(palette)))
expected = palette
for have, want in zip(actual, expected):
assert same_color(have, want)
def test_nominal_dict_palette(self, cat_vector, cat_order):
colors = color_palette("Greens")
palette = dict(zip(cat_order, colors))
m = Color().get_mapping(Nominal(palette), cat_vector)
n = len(cat_order)
actual = m(np.arange(n))
expected = colors
for have, want in zip(actual, expected):
assert same_color(have, want)
def test_nominal_dict_with_missing_keys(self, cat_vector, cat_order):
palette = dict(zip(cat_order[1:], color_palette("Purples")))
with pytest.raises(ValueError, match="No entry in color dict"):
Color("color").get_mapping(Nominal(palette), cat_vector)
def test_nominal_list_too_short(self, cat_vector, cat_order):
n = len(cat_order) - 1
palette = color_palette("Oranges", n)
msg = rf"The edgecolor list has fewer values \({n}\) than needed \({n + 1}\)"
with pytest.warns(UserWarning, match=msg):
Color("edgecolor").get_mapping(Nominal(palette), cat_vector)
def test_nominal_list_too_long(self, cat_vector, cat_order):
n = len(cat_order) + 1
palette = color_palette("Oranges", n)
msg = rf"The edgecolor list has more values \({n}\) than needed \({n - 1}\)"
with pytest.warns(UserWarning, match=msg):
Color("edgecolor").get_mapping(Nominal(palette), cat_vector)
def test_continuous_default_palette(self, num_vector):
cmap = color_palette("ch:", as_cmap=True)
m = Color().get_mapping(Continuous(), num_vector)
self.assert_same_rgb(m(num_vector), cmap(num_vector))
def test_continuous_named_palette(self, num_vector):
pal = "flare"
cmap = color_palette(pal, as_cmap=True)
m = Color().get_mapping(Continuous(pal), num_vector)
self.assert_same_rgb(m(num_vector), cmap(num_vector))
def test_continuous_tuple_palette(self, num_vector):
vals = ("blue", "red")
cmap = color_palette("blend:" + ",".join(vals), as_cmap=True)
m = Color().get_mapping(Continuous(vals), num_vector)
self.assert_same_rgb(m(num_vector), cmap(num_vector))
def test_continuous_callable_palette(self, num_vector):
cmap = get_colormap("viridis")
m = Color().get_mapping(Continuous(cmap), num_vector)
self.assert_same_rgb(m(num_vector), cmap(num_vector))
def test_continuous_missing(self):
x = pd.Series([1, 2, np.nan, 4])
m = Color().get_mapping(Continuous(), x)
assert np.isnan(m(x)[2]).all()
def test_bad_scale_values_continuous(self, num_vector):
with pytest.raises(TypeError, match="Scale values for color with a Continuous"):
Color().get_mapping(Continuous(["r", "g", "b"]), num_vector)
def test_bad_scale_values_nominal(self, cat_vector):
with pytest.raises(TypeError, match="Scale values for color with a Nominal"):
Color().get_mapping(Nominal(get_colormap("viridis")), cat_vector)
def test_bad_inference_arg(self, cat_vector):
with pytest.raises(TypeError, match="A single scale argument for color"):
Color().infer_scale(123, cat_vector)
@pytest.mark.parametrize(
"data_type,scale_class",
[("cat", Nominal), ("num", Continuous), ("bool", Boolean)]
)
def test_default(self, data_type, scale_class, vectors):
scale = Color().default_scale(vectors[data_type])
assert isinstance(scale, scale_class)
def test_default_numeric_data_category_dtype(self, num_vector):
scale = Color().default_scale(num_vector.astype("category"))
assert isinstance(scale, Nominal)
def test_default_binary_data(self):
x = pd.Series([0, 0, 1, 0, 1], dtype=int)
scale = Color().default_scale(x)
assert isinstance(scale, Continuous)
@pytest.mark.parametrize(
"values,data_type,scale_class",
[
("viridis", "cat", Nominal), # Based on variable type
("viridis", "num", Continuous), # Based on variable type
("viridis", "bool", Boolean), # Based on variable type
("muted", "num", Nominal), # Based on qualitative palette
(["r", "g", "b"], "num", Nominal), # Based on list palette
({2: "r", 4: "g", 8: "b"}, "num", Nominal), # Based on dict palette
(("r", "b"), "num", Continuous), # Based on tuple / variable type
(("g", "m"), "cat", Nominal), # Based on tuple / variable type
(("c", "y"), "bool", Boolean), # Based on tuple / variable type
(get_colormap("inferno"), "num", Continuous), # Based on callable
]
)
def test_inference(self, values, data_type, scale_class, vectors):
scale = Color().infer_scale(values, vectors[data_type])
assert isinstance(scale, scale_class)
assert scale.values == values
def test_standardization(self):
f = Color().standardize
assert f("C3") == to_rgb("C3")
assert f("dodgerblue") == to_rgb("dodgerblue")
assert f((.1, .2, .3)) == (.1, .2, .3)
assert f((.1, .2, .3, .4)) == (.1, .2, .3, .4)
assert f("#123456") == to_rgb("#123456")
assert f("#12345678") == to_rgba("#12345678")
if Version(mpl.__version__) >= Version("3.4.0"):
assert f("#123") == to_rgb("#123")
assert f("#1234") == to_rgba("#1234")
class ObjectPropertyBase(DataFixtures):
def assert_equal(self, a, b):
assert self.unpack(a) == self.unpack(b)
def unpack(self, x):
return x
@pytest.mark.parametrize("data_type", ["cat", "num", "bool"])
def test_default(self, data_type, vectors):
scale = self.prop().default_scale(vectors[data_type])
assert isinstance(scale, Boolean if data_type == "bool" else Nominal)
@pytest.mark.parametrize("data_type", ["cat", "num", "bool"])
def test_inference_list(self, data_type, vectors):
scale = self.prop().infer_scale(self.values, vectors[data_type])
assert isinstance(scale, Boolean if data_type == "bool" else Nominal)
assert scale.values == self.values
@pytest.mark.parametrize("data_type", ["cat", "num", "bool"])
def test_inference_dict(self, data_type, vectors):
x = vectors[data_type]
values = dict(zip(categorical_order(x), self.values))
scale = self.prop().infer_scale(values, x)
assert isinstance(scale, Boolean if data_type == "bool" else Nominal)
assert scale.values == values
def test_dict_missing(self, cat_vector):
levels = categorical_order(cat_vector)
values = dict(zip(levels, self.values[:-1]))
scale = Nominal(values)
name = self.prop.__name__.lower()
msg = f"No entry in {name} dictionary for {repr(levels[-1])}"
with pytest.raises(ValueError, match=msg):
self.prop().get_mapping(scale, cat_vector)
@pytest.mark.parametrize("data_type", ["cat", "num"])
def test_mapping_default(self, data_type, vectors):
x = vectors[data_type]
mapping = self.prop().get_mapping(Nominal(), x)
n = x.nunique()
for i, expected in enumerate(self.prop()._default_values(n)):
actual, = mapping([i])
self.assert_equal(actual, expected)
@pytest.mark.parametrize("data_type", ["cat", "num"])
def test_mapping_from_list(self, data_type, vectors):
x = vectors[data_type]
scale = Nominal(self.values)
mapping = self.prop().get_mapping(scale, x)
for i, expected in enumerate(self.standardized_values):
actual, = mapping([i])
self.assert_equal(actual, expected)
@pytest.mark.parametrize("data_type", ["cat", "num"])
def test_mapping_from_dict(self, data_type, vectors):
x = vectors[data_type]
levels = categorical_order(x)
values = dict(zip(levels, self.values[::-1]))
standardized_values = dict(zip(levels, self.standardized_values[::-1]))
scale = Nominal(values)
mapping = self.prop().get_mapping(scale, x)
for i, level in enumerate(levels):
actual, = mapping([i])
expected = standardized_values[level]
self.assert_equal(actual, expected)
def test_mapping_with_null_value(self, cat_vector):
mapping = self.prop().get_mapping(Nominal(self.values), cat_vector)
actual = mapping(np.array([0, np.nan, 2]))
v0, _, v2 = self.standardized_values
expected = [v0, self.prop.null_value, v2]
for a, b in zip(actual, expected):
self.assert_equal(a, b)
def test_unique_default_large_n(self):
n = 24
x = pd.Series(np.arange(n))
mapping = self.prop().get_mapping(Nominal(), x)
assert len({self.unpack(x_i) for x_i in mapping(x)}) == n
def test_bad_scale_values(self, cat_vector):
var_name = self.prop.__name__.lower()
with pytest.raises(TypeError, match=f"Scale values for a {var_name} variable"):
self.prop().get_mapping(Nominal(("o", "s")), cat_vector)
class TestMarker(ObjectPropertyBase):
prop = Marker
values = ["o", (5, 2, 0), MarkerStyle("^")]
standardized_values = [MarkerStyle(x) for x in values]
def unpack(self, x):
return (
x.get_path(),
x.get_joinstyle(),
x.get_transform().to_values(),
x.get_fillstyle(),
)
class TestLineStyle(ObjectPropertyBase):
prop = LineStyle
values = ["solid", "--", (1, .5)]
standardized_values = [LineStyle._get_dash_pattern(x) for x in values]
def test_bad_type(self):
p = LineStyle()
with pytest.raises(TypeError, match="^Linestyle must be .+, not list.$"):
p.standardize([1, 2])
def test_bad_style(self):
p = LineStyle()
with pytest.raises(ValueError, match="^Linestyle string must be .+, not 'o'.$"):
p.standardize("o")
def test_bad_dashes(self):
p = LineStyle()
with pytest.raises(TypeError, match="^Invalid dash pattern"):
p.standardize((1, 2, "x"))
class TestFill(DataFixtures):
@pytest.fixture
def vectors(self):
return {
"cat": pd.Series(["a", "a", "b"]),
"num": pd.Series([1, 1, 2]),
"bool": pd.Series([True, True, False])
}
@pytest.fixture
def cat_vector(self, vectors):
return vectors["cat"]
@pytest.fixture
def num_vector(self, vectors):
return vectors["num"]
@pytest.mark.parametrize("data_type", ["cat", "num", "bool"])
def test_default(self, data_type, vectors):
x = vectors[data_type]
scale = Fill().default_scale(x)
assert isinstance(scale, Boolean if data_type == "bool" else Nominal)
@pytest.mark.parametrize("data_type", ["cat", "num", "bool"])
def test_inference_list(self, data_type, vectors):
x = vectors[data_type]
scale = Fill().infer_scale([True, False], x)
assert isinstance(scale, Boolean if data_type == "bool" else Nominal)
assert scale.values == [True, False]
@pytest.mark.parametrize("data_type", ["cat", "num", "bool"])
def test_inference_dict(self, data_type, vectors):
x = vectors[data_type]
values = dict(zip(x.unique(), [True, False]))
scale = Fill().infer_scale(values, x)
assert isinstance(scale, Boolean if data_type == "bool" else Nominal)
assert scale.values == values
def test_mapping_categorical_data(self, cat_vector):
mapping = Fill().get_mapping(Nominal(), cat_vector)
assert_array_equal(mapping([0, 1, 0]), [True, False, True])
def test_mapping_numeric_data(self, num_vector):
mapping = Fill().get_mapping(Nominal(), num_vector)
assert_array_equal(mapping([0, 1, 0]), [True, False, True])
def test_mapping_list(self, cat_vector):
mapping = Fill().get_mapping(Nominal([False, True]), cat_vector)
assert_array_equal(mapping([0, 1, 0]), [False, True, False])
def test_mapping_truthy_list(self, cat_vector):
mapping = Fill().get_mapping(Nominal([0, 1]), cat_vector)
assert_array_equal(mapping([0, 1, 0]), [False, True, False])
def test_mapping_dict(self, cat_vector):
values = dict(zip(cat_vector.unique(), [False, True]))
mapping = Fill().get_mapping(Nominal(values), cat_vector)
assert_array_equal(mapping([0, 1, 0]), [False, True, False])
def test_cycle_warning(self):
x = pd.Series(["a", "b", "c"])
with pytest.warns(UserWarning, match="The variable assigned to fill"):
Fill().get_mapping(Nominal(), x)
def test_values_error(self):
x = pd.Series(["a", "b"])
with pytest.raises(TypeError, match="Scale values for fill must be"):
Fill().get_mapping(Nominal("bad_values"), x)
class IntervalBase(DataFixtures):
def norm(self, x):
return (x - x.min()) / (x.max() - x.min())
@pytest.mark.parametrize("data_type,scale_class", [
("cat", Nominal),
("num", Continuous),
("bool", Boolean),
])
def test_default(self, data_type, scale_class, vectors):
x = vectors[data_type]
scale = self.prop().default_scale(x)
assert isinstance(scale, scale_class)
@pytest.mark.parametrize("arg,data_type,scale_class", [
((1, 3), "cat", Nominal),
((1, 3), "num", Continuous),
((1, 3), "bool", Boolean),
([1, 2, 3], "cat", Nominal),
([1, 2, 3], "num", Nominal),
([1, 3], "bool", Boolean),
({"a": 1, "b": 3, "c": 2}, "cat", Nominal),
({2: 1, 4: 3, 8: 2}, "num", Nominal),
({True: 4, False: 2}, "bool", Boolean),
])
def test_inference(self, arg, data_type, scale_class, vectors):
x = vectors[data_type]
scale = self.prop().infer_scale(arg, x)
assert isinstance(scale, scale_class)
assert scale.values == arg
def test_mapped_interval_numeric(self, num_vector):
mapping = self.prop().get_mapping(Continuous(), num_vector)
assert_array_equal(mapping([0, 1]), self.prop().default_range)
def test_mapped_interval_categorical(self, cat_vector):
mapping = self.prop().get_mapping(Nominal(), cat_vector)
n = cat_vector.nunique()
assert_array_equal(mapping([n - 1, 0]), self.prop().default_range)
def test_bad_scale_values_numeric_data(self, num_vector):
prop_name = self.prop.__name__.lower()
err_stem = (
f"Values for {prop_name} variables with Continuous scale must be 2-tuple"
)
with pytest.raises(TypeError, match=f"{err_stem}; not <class 'str'>."):
self.prop().get_mapping(Continuous("abc"), num_vector)
with pytest.raises(TypeError, match=f"{err_stem}; not 3-tuple."):
self.prop().get_mapping(Continuous((1, 2, 3)), num_vector)
def test_bad_scale_values_categorical_data(self, cat_vector):
prop_name = self.prop.__name__.lower()
err_text = f"Values for {prop_name} variables with Nominal scale"
with pytest.raises(TypeError, match=err_text):
self.prop().get_mapping(Nominal("abc"), cat_vector)
class TestAlpha(IntervalBase):
prop = Alpha
class TestLineWidth(IntervalBase):
prop = LineWidth
def test_rcparam_default(self):
with mpl.rc_context({"lines.linewidth": 2}):
assert self.prop().default_range == (1, 4)
class TestEdgeWidth(IntervalBase):
prop = EdgeWidth
def test_rcparam_default(self):
with mpl.rc_context({"patch.linewidth": 2}):
assert self.prop().default_range == (1, 4)
class TestPointSize(IntervalBase):
prop = PointSize
def test_areal_scaling_numeric(self, num_vector):
limits = 5, 10
scale = Continuous(limits)
mapping = self.prop().get_mapping(scale, num_vector)
x = np.linspace(0, 1, 6)
expected = np.sqrt(np.linspace(*np.square(limits), num=len(x)))
assert_array_equal(mapping(x), expected)
def test_areal_scaling_categorical(self, cat_vector):
limits = (2, 4)
scale = Nominal(limits)
mapping = self.prop().get_mapping(scale, cat_vector)
assert_array_equal(mapping(np.arange(3)), [4, np.sqrt(10), 2])
|