File: test_base.py

package info (click to toggle)
seaborn 0.12.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 6,148 kB
  • sloc: python: 36,560; makefile: 183; javascript: 45; sh: 15
file content (158 lines) | stat: -rw-r--r-- 4,973 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
from dataclasses import dataclass

import numpy as np
import pandas as pd
import matplotlib as mpl

import pytest
from numpy.testing import assert_array_equal

from seaborn._marks.base import Mark, Mappable, resolve_color


class TestMappable:

    def mark(self, **features):

        @dataclass
        class MockMark(Mark):
            linewidth: float = Mappable(rc="lines.linewidth")
            pointsize: float = Mappable(4)
            color: str = Mappable("C0")
            fillcolor: str = Mappable(depend="color")
            alpha: float = Mappable(1)
            fillalpha: float = Mappable(depend="alpha")

        m = MockMark(**features)
        return m

    def test_repr(self):

        assert str(Mappable(.5)) == "<0.5>"
        assert str(Mappable("CO")) == "<'CO'>"
        assert str(Mappable(rc="lines.linewidth")) == "<rc:lines.linewidth>"
        assert str(Mappable(depend="color")) == "<depend:color>"
        assert str(Mappable(auto=True)) == "<auto>"

    def test_input_checks(self):

        with pytest.raises(AssertionError):
            Mappable(rc="bogus.parameter")
        with pytest.raises(AssertionError):
            Mappable(depend="nonexistent_feature")

    def test_value(self):

        val = 3
        m = self.mark(linewidth=val)
        assert m._resolve({}, "linewidth") == val

        df = pd.DataFrame(index=pd.RangeIndex(10))
        assert_array_equal(m._resolve(df, "linewidth"), np.full(len(df), val))

    def test_default(self):

        val = 3
        m = self.mark(linewidth=Mappable(val))
        assert m._resolve({}, "linewidth") == val

        df = pd.DataFrame(index=pd.RangeIndex(10))
        assert_array_equal(m._resolve(df, "linewidth"), np.full(len(df), val))

    def test_rcparam(self):

        param = "lines.linewidth"
        val = mpl.rcParams[param]

        m = self.mark(linewidth=Mappable(rc=param))
        assert m._resolve({}, "linewidth") == val

        df = pd.DataFrame(index=pd.RangeIndex(10))
        assert_array_equal(m._resolve(df, "linewidth"), np.full(len(df), val))

    def test_depends(self):

        val = 2
        df = pd.DataFrame(index=pd.RangeIndex(10))

        m = self.mark(pointsize=Mappable(val), linewidth=Mappable(depend="pointsize"))
        assert m._resolve({}, "linewidth") == val
        assert_array_equal(m._resolve(df, "linewidth"), np.full(len(df), val))

        m = self.mark(pointsize=val * 2, linewidth=Mappable(depend="pointsize"))
        assert m._resolve({}, "linewidth") == val * 2
        assert_array_equal(m._resolve(df, "linewidth"), np.full(len(df), val * 2))

    def test_mapped(self):

        values = {"a": 1, "b": 2, "c": 3}

        def f(x):
            return np.array([values[x_i] for x_i in x])

        m = self.mark(linewidth=Mappable(2))
        scales = {"linewidth": f}

        assert m._resolve({"linewidth": "c"}, "linewidth", scales) == 3

        df = pd.DataFrame({"linewidth": ["a", "b", "c"]})
        expected = np.array([1, 2, 3], float)
        assert_array_equal(m._resolve(df, "linewidth", scales), expected)

    def test_color(self):

        c, a = "C1", .5
        m = self.mark(color=c, alpha=a)

        assert resolve_color(m, {}) == mpl.colors.to_rgba(c, a)

        df = pd.DataFrame(index=pd.RangeIndex(10))
        cs = [c] * len(df)
        assert_array_equal(resolve_color(m, df), mpl.colors.to_rgba_array(cs, a))

    def test_color_mapped_alpha(self):

        c = "r"
        values = {"a": .2, "b": .5, "c": .8}

        m = self.mark(color=c, alpha=Mappable(1))
        scales = {"alpha": lambda s: np.array([values[s_i] for s_i in s])}

        assert resolve_color(m, {"alpha": "b"}, "", scales) == mpl.colors.to_rgba(c, .5)

        df = pd.DataFrame({"alpha": list(values.keys())})

        # Do this in two steps for mpl 3.2 compat
        expected = mpl.colors.to_rgba_array([c] * len(df))
        expected[:, 3] = list(values.values())

        assert_array_equal(resolve_color(m, df, "", scales), expected)

    def test_color_scaled_as_strings(self):

        colors = ["C1", "dodgerblue", "#445566"]
        m = self.mark()
        scales = {"color": lambda s: colors}

        actual = resolve_color(m, {"color": pd.Series(["a", "b", "c"])}, "", scales)
        expected = mpl.colors.to_rgba_array(colors)
        assert_array_equal(actual, expected)

    def test_fillcolor(self):

        c, a = "green", .8
        fa = .2
        m = self.mark(
            color=c, alpha=a,
            fillcolor=Mappable(depend="color"), fillalpha=Mappable(fa),
        )

        assert resolve_color(m, {}) == mpl.colors.to_rgba(c, a)
        assert resolve_color(m, {}, "fill") == mpl.colors.to_rgba(c, fa)

        df = pd.DataFrame(index=pd.RangeIndex(10))
        cs = [c] * len(df)
        assert_array_equal(resolve_color(m, df), mpl.colors.to_rgba_array(cs, a))
        assert_array_equal(
            resolve_color(m, df, "fill"), mpl.colors.to_rgba_array(cs, fa)
        )