File: conftest.py

package info (click to toggle)
seaborn 0.12.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 6,148 kB
  • sloc: python: 36,560; makefile: 183; javascript: 45; sh: 15
file content (180 lines) | stat: -rw-r--r-- 3,876 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import numpy as np
import pandas as pd

import pytest


@pytest.fixture(autouse=True)
def close_figs():
    yield
    import matplotlib.pyplot as plt
    plt.close("all")


@pytest.fixture(autouse=True)
def random_seed():
    seed = sum(map(ord, "seaborn random global"))
    np.random.seed(seed)


@pytest.fixture()
def rng():
    seed = sum(map(ord, "seaborn random object"))
    return np.random.RandomState(seed)


@pytest.fixture
def wide_df(rng):

    columns = list("abc")
    index = pd.RangeIndex(10, 50, 2, name="wide_index")
    values = rng.normal(size=(len(index), len(columns)))
    return pd.DataFrame(values, index=index, columns=columns)


@pytest.fixture
def wide_array(wide_df):

    return wide_df.to_numpy()


# TODO s/flat/thin?
@pytest.fixture
def flat_series(rng):

    index = pd.RangeIndex(10, 30, name="t")
    return pd.Series(rng.normal(size=20), index, name="s")


@pytest.fixture
def flat_array(flat_series):

    return flat_series.to_numpy()


@pytest.fixture
def flat_list(flat_series):

    return flat_series.to_list()


@pytest.fixture(params=["series", "array", "list"])
def flat_data(rng, request):

    index = pd.RangeIndex(10, 30, name="t")
    series = pd.Series(rng.normal(size=20), index, name="s")
    if request.param == "series":
        data = series
    elif request.param == "array":
        data = series.to_numpy()
    elif request.param == "list":
        data = series.to_list()
    return data


@pytest.fixture
def wide_list_of_series(rng):

    return [pd.Series(rng.normal(size=20), np.arange(20), name="a"),
            pd.Series(rng.normal(size=10), np.arange(5, 15), name="b")]


@pytest.fixture
def wide_list_of_arrays(wide_list_of_series):

    return [s.to_numpy() for s in wide_list_of_series]


@pytest.fixture
def wide_list_of_lists(wide_list_of_series):

    return [s.to_list() for s in wide_list_of_series]


@pytest.fixture
def wide_dict_of_series(wide_list_of_series):

    return {s.name: s for s in wide_list_of_series}


@pytest.fixture
def wide_dict_of_arrays(wide_list_of_series):

    return {s.name: s.to_numpy() for s in wide_list_of_series}


@pytest.fixture
def wide_dict_of_lists(wide_list_of_series):

    return {s.name: s.to_list() for s in wide_list_of_series}


@pytest.fixture
def long_df(rng):

    n = 100
    df = pd.DataFrame(dict(
        x=rng.uniform(0, 20, n).round().astype("int"),
        y=rng.normal(size=n),
        z=rng.lognormal(size=n),
        a=rng.choice(list("abc"), n),
        b=rng.choice(list("mnop"), n),
        c=rng.choice([0, 1], n, [.3, .7]),
        d=rng.choice(np.arange("2004-07-30", "2007-07-30", dtype="datetime64[Y]"), n),
        t=rng.choice(np.arange("2004-07-30", "2004-07-31", dtype="datetime64[m]"), n),
        s=rng.choice([2, 4, 8], n),
        f=rng.choice([0.2, 0.3], n),
    ))

    a_cat = df["a"].astype("category")
    new_categories = np.roll(a_cat.cat.categories, 1)
    df["a_cat"] = a_cat.cat.reorder_categories(new_categories)

    df["s_cat"] = df["s"].astype("category")
    df["s_str"] = df["s"].astype(str)

    return df


@pytest.fixture
def long_dict(long_df):

    return long_df.to_dict()


@pytest.fixture
def repeated_df(rng):

    n = 100
    return pd.DataFrame(dict(
        x=np.tile(np.arange(n // 2), 2),
        y=rng.normal(size=n),
        a=rng.choice(list("abc"), n),
        u=np.repeat(np.arange(2), n // 2),
    ))


@pytest.fixture
def missing_df(rng, long_df):

    df = long_df.copy()
    for col in df:
        idx = rng.permutation(df.index)[:10]
        df.loc[idx, col] = np.nan
    return df


@pytest.fixture
def object_df(rng, long_df):

    df = long_df.copy()
    # objectify numeric columns
    for col in ["c", "s", "f"]:
        df[col] = df[col].astype(object)
    return df


@pytest.fixture
def null_series(flat_series):

    return pd.Series(index=flat_series.index, dtype='float64')