File: joint_kde.py

package info (click to toggle)
seaborn 0.9.0-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 2,124 kB
  • sloc: python: 18,293; makefile: 171; sh: 2
file content (21 lines) | stat: -rw-r--r-- 523 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
"""
Joint kernel density estimate
=============================

_thumb: .6, .4
"""
import numpy as np
import pandas as pd
import seaborn as sns
sns.set(style="white")

# Generate a random correlated bivariate dataset
rs = np.random.RandomState(5)
mean = [0, 0]
cov = [(1, .5), (.5, 1)]
x1, x2 = rs.multivariate_normal(mean, cov, 500).T
x1 = pd.Series(x1, name="$X_1$")
x2 = pd.Series(x2, name="$X_2$")

# Show the joint distribution using kernel density estimation
g = sns.jointplot(x1, x2, kind="kde", height=7, space=0)