1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
// This file may be redistributed and modified only under the terms of
// the GNU General Public License (See COPYING for details).
// Copyright (C) 2001 - 2004 Simon Goodall, University of Southampton
// $Id: Utility.cpp,v 1.8 2004/06/11 00:53:13 alriddoch Exp $
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "Utility.h"
#include <wfmath/quaternion.h>
#include <stdio.h>
#include <string>
#include <map>
#include <math.h>
#ifdef USE_MMGR
#include "common/mmgr.h"
#endif
#ifdef DEBUG
static const bool debug = true;
#else
static const bool debug = false;
#endif
namespace Sear {
const std::string Tokeniser::delimeters = " ";
void ReduceToUnit(float vector[3]) {
float length;
// Calculate the length of the vector
length = sqrt((vector[0]*vector[0]) + (vector[1]*vector[1]) + (vector[2]*vector[2]));
// Keep the program from blowing up by providing an exceptable
// value for vectors that may calculated too close to zero.
if(length == 0.0f) length = 1.0f;
// Dividing each element by the length will result in a
// unit normal vector.
vector[0] /= length;
vector[1] /= length;
vector[2] /= length;
}
// ---------------------------------------------------------------------
// Points p1, p2, & p3 specified in counter clock-wise order
//
void calcNormal(float v[3][3], float out[3]) {
float v1[3],v2[3];
static const int x = 0;
static const int y = 1;
static const int z = 2;
// Calculate two vectors from the three points
v1[x] = v[0][x] - v[1][x];
v1[y] = v[0][y] - v[1][y];
v1[z] = v[0][z] - v[1][z];
v2[x] = v[1][x] - v[2][x];
v2[y] = v[1][y] - v[2][y];
v2[z] = v[1][z] - v[2][z];
// Take the cross product of the two vectors to get
// the normal vector which will be stored in out
out[x] = v1[y]*v2[z] - v1[z]*v2[y];
out[y] = v1[z]*v2[x] - v1[x]*v2[z];
out[z] = v1[x]*v2[y] - v1[y]*v2[x];
// Normalize the vector (shorten length to one)
ReduceToUnit(out);
}
void QuatToMatrix(const WFMath::Quaternion & quat, float m[4][4]) {
float wx, wy, wz, xx, yy, yz, xy, xz, zz, x2, y2, z2;
// calculate coefficients
x2 = quat.vector().x() + quat.vector().x();
y2 = quat.vector().y() + quat.vector().y();
z2 = quat.vector().z() + quat.vector().z();
xx = quat.vector().x() * x2;
xy = quat.vector().x() * y2;
xz = quat.vector().x() * z2;
yy = quat.vector().y() * y2;
yz = quat.vector().y() * z2;
zz = quat.vector().z() * z2;
wx = quat.scalar() * x2;
wy = quat.scalar() * y2;
wz = quat.scalar() * z2;
m[0][0] = 1.0 - (yy + zz);
m[0][1] = xy - wz;
m[0][2] = xz + wy;
m[0][3] = 0.0;
m[1][0] = xy + wz;
m[1][1] = 1.0 - (xx + zz);
m[1][2] = yz - wx;
m[1][3] = 0.0;
m[2][0] = xz - wy;
m[2][1] = yz + wx;
m[2][2] = 1.0 - (xx + yy);
m[2][3] = 0.0;
m[3][0] = 0;
m[3][1] = 0;
m[3][2] = 0;
m[3][3] = 1;
}
WFMath::AxisBox<3> bboxCheck(WFMath::AxisBox<3> bbox) {
int count = 0;
if (bbox.lowCorner().x() + bbox.lowCorner().y() + bbox.lowCorner().z() + bbox.highCorner().x() + bbox.highCorner().y() + bbox.highCorner().z() == 0.0f) {
// BBOX has no size!! or is equidistant sround origin!!!!!
WFMath::Point<3> lc = WFMath::Point<3>(0.0f, 0.0f, 0.0f);
WFMath::Point<3> hc = WFMath::Point<3>(1.0f, 1.0f, 1.0f);
bbox = WFMath::AxisBox<3>(lc, hc);
}
if (bbox.highCorner().x() > bbox.lowCorner().x()) count++;
if (bbox.highCorner().y() < bbox.lowCorner().y()) count++;
if (bbox.highCorner().z() < bbox.lowCorner().z()) count++;
if (count == 0 || count == 2) return bbox;
else return WFMath::AxisBox<3>(bbox.highCorner(), bbox.lowCorner());
}
void Tokeniser::initTokens(const std::string &tokens) {
token_string = tokens;
last_pos = token_string.find_first_not_of(delimeters, 0);
pos = token_string.find_first_of(delimeters, last_pos);
}
std::string Tokeniser::nextToken() {
if (last_pos == std::string::npos) return "";
std::string token = token_string.substr(last_pos, pos - last_pos);
last_pos = token_string.find_first_not_of(delimeters, pos);
pos = token_string.find_first_of(delimeters, last_pos);
return token;
}
std::string Tokeniser::remainingTokens() {
if (last_pos == std::string::npos) return "";
return token_string.substr(last_pos, token_string.size() - last_pos);
}
unsigned char *xpm_to_image(const char *image[], unsigned int &width, unsigned int &height) {
unsigned int i, row, col;
unsigned int num_colours = 0;
unsigned int unknown = 0;
unsigned int index = 0;
sscanf(&image[0][0], "%u %u %u %u", &width, &height, &num_colours, &unknown);
std::map<char, unsigned int> colour_map;
for (index = 1; index <= num_colours; index++) {
char code = image[index][0];
std::string colour_name = std::string(image[index]).substr(4);
unsigned int colour = 0;
if (colour_name == "None") colour = 0x00000000;
else {
sscanf(colour_name.c_str(), "#%x", &colour);
colour <<= 8;
colour |= 0xFF;
}
colour_map[code] = colour;
}
// unsigned char *data = (unsigned char *)malloc(width * height * 4 * sizeof(char));
unsigned char *data = new unsigned char [width * height * 4];
i = 0;
for ( row=0; row < height; ++row ) {
for ( col=0; col < width; ++col ) {
unsigned int colour = colour_map[image[height - row - 1 + index][col]];
data[i++] = (colour & 0xFF000000) >> 24;
data[i++] = (colour & 0x00FF0000) >> 16;
data[i++] = (colour & 0x0000FF00) >> 8;
data[i++] = (colour & 0x000000FF);
}
}
return data;
}
} /* namespace Sear */
|