File: v3dhf.c

package info (click to toggle)
searchandrescue 0.8.2-10
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 4,656 kB
  • ctags: 6,111
  • sloc: ansic: 89,072; cpp: 7,691; sh: 90; makefile: 80
file content (902 lines) | stat: -rw-r--r-- 22,532 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <math.h>

#include "../include/os.h"

#ifdef __MSW__
# include <windows.h>
#endif
#include <GL/gl.h>

#include "../include/tga.h"

#include "v3dhf.h"

#ifdef MEMWATCH
# include "memwatch.h"
#endif


static void V3DHFNormalByCrossGridVectors(
	float v1i, float v1k,
	float v2j, float v2k
);
static float V3DHFGetZPixelCoeff(
	u_int32_t *ptr,
	int x, int y,
	int width, int height
);
int V3DHFLoadFromFile(
	const char *path,       /* Heightfield image file. */
	double x_len, double y_len, double z_len,       /* Size. */
	int *width_rtn, int *height_rtn,        /* In grids or pixels. */
	double *x_spacing_rtn,  /* Spacing between grids (points). */
	double *y_spacing_rtn,     
	double **data_rtn,	/* Dynamically allocated z points, each of
				 * type double (can be NULL).
				 */
	void *gl_list,          /* GL list (can be NULL). */
	v3d_hf_options_struct *hfopt
);

double V3DHFGetHeightFromWorldPosition(
	double x, double y,	/* The world position. */
	double hf_x, double hf_y, double hf_z,	/* HF's world position. */
	double hf_heading,	/* HF's heading in radians. */
	double hf_len_x, double hf_len_y, double hf_len_z,
	int hf_widthp, int hf_heightp,	/* Size of heightfield in points. */
	double *hf_data		/* Heightfield's data. */
);


#ifndef PI
# define PI     3.14159265359
#endif

#define MAX(a,b)        (((a) > (b)) ? (a) : (b))
#define MIN(a,b)        (((a) < (b)) ? (a) : (b))

#define RADTODEG(r)     ((r) * 180 / PI)


/*
 *	Sets normal given the vectors along the grid (left hand rule).
 *
 *	v1 is the vector running left to right along the grid's
 *	`x axis'.
 *
 *	v2 is the vector running fore to aft along the grid's
 *	`y axis'.
 *
 *	i and j are the value along the 2D grid, and k is the
 *	`height'.
 */
static void V3DHFNormalByCrossGridVectors(
	float v1i, float v1k,
	float v2j, float v2k
)
{
	float r[3];	/* Resultant. */
	float m;	/* Magnitude of resultant. */

	r[0] = (float)(-v1k * v2j);
	r[1] = (float)(-v1i * v2k);
	r[2] = (float)(v1i * v2j);

	m = (float)hypot(hypot(r[0], r[1]), r[2]);
	if(m > 0.0)
	    glNormal3f(
		(r[0] / m),
		(r[2] / m),
		(-r[1] / m)
	    );
}

/*
 *	Returns the z pixel value as a coefficient from 0.0 to 1.0,
 *	taking into account only the first 8 bits of the 32 bit pixel.
 *
 *	The given values are assumed valid.
 */
static float V3DHFGetZPixelCoeff(
	u_int32_t *ptr,
	int x, int y,
	int width, int height
)
{
	return((float)((u_int32_t)(ptr[(y * width) + x]) & 0x000000ff) /
	       (float)0xff
	);
}

/*
 *	Loads a heightfield from an greyscale tga image file specified by
 *	path.
 *
 *	If data_rtn is not NULL then the pointer will be set to
 *	a newly allocated array of z points (each z point is of type double)
 *	and the specified width and height will be updated (in units of
 *	points).
 *
 *	If gl_list is not NULL (not (GLuint)0) then OpenGL operations
 *	to draw the heightfield will be recorded. gl_list should have been
 *	created by the calling function and the calling function is
 *	responsable for ending it.
 *
 *	Center of heightfield will be centered at x_len / 2 and
 *	y_len / 2, and the base of the heightfield will be at z = 0.
 *	and highest point (when a pixel value is 0xff) will be z_len.
 *
 *	Returns non zero on error.
 */
int V3DHFLoadFromFile(
	const char *path,       /* Heightfield image file. */
	double x_len, double y_len, double z_len,       /* Size. */
	int *width_rtn, int *height_rtn,	/* In grids or pixels. */
	double *x_spacing_rtn,	/* Spacing between grids. */
	double *y_spacing_rtn,
	double **data_rtn,	/* Dynamically allocated z points, each of
				 * type double (can be NULL).
				 */
	void *gl_list,          /* GL list (can be NULL). */
	v3d_hf_options_struct *hfopt
)
{
	int winding = V3D_HF_WIND_CCW;
	int set_normal = V3D_HF_SET_NORMAL_AVERAGED;
	int set_texcoord = V3D_HF_SET_TEXCOORD_ALWAYS;
	float tex_offset_x = 0.0, tex_offset_y = 0.0;
	float tex_width = (float)x_len, tex_height = (float)y_len;

	int status, total_z_points;
	float x_len_half, y_len_half;
	double *data_ptr = NULL;	/* Local data pointer. */
	u_int32_t *img_data;
	struct stat stat_buf;
	tga_data_struct td;


	/* Reset return sizes if possable. */
	if(width_rtn != NULL)
	    (*width_rtn) = 0;
	if(height_rtn != NULL)
	    (*height_rtn) = 0;
	if(data_rtn != NULL)
	    (*data_rtn) = NULL;
	if(x_spacing_rtn != NULL)
	    (*x_spacing_rtn) = 0.0;
	if(y_spacing_rtn != NULL)
	    (*y_spacing_rtn) = 0.0;

	/* Update heightfield options. */
	if(hfopt != NULL)
	{
	    unsigned int flags = hfopt->flags;

	    if(flags & V3D_HF_OPT_FLAG_WINDING)
		winding = hfopt->winding;
	    if(flags & V3D_HF_OPT_FLAG_SET_NORMAL)
		set_normal = hfopt->set_normal;
	    if(flags & V3D_HF_OPT_FLAG_SET_TEXCOORD)
		set_texcoord = hfopt->set_texcoord;
	    if(flags & V3D_HF_OPT_FLAG_TEX_OFFSET)
	    {
		tex_offset_x = (float)hfopt->tex_offset_x;
		tex_offset_y = (float)hfopt->tex_offset_y;
	    }
	    if(flags & V3D_HF_OPT_FLAG_TEX_SIZE)
	    {
		tex_width = (float)hfopt->tex_width;
		tex_height = (float)hfopt->tex_height;
	    }
	}


	/* Path to heightfield image file must be valid. */
	if(path == NULL)
	    return(-1);

	/* Span size of heightfield must be positive. */
	if((x_len <= 0.0) || (y_len <= 0.0) || (z_len <= 0.0))
	{
	    fprintf(
		stderr,
 "V3DHFLoadFromFile(): Error: Heightfield span is not positive.\n"
	    );
	    return(-3);
	}

	/* Span of texture must be positive. */
	if((tex_width <= 0.0) || (tex_height <= 0.0))
	{
	    fprintf(
		stderr,
 "V3DHFLoadFromFile(): Error: Heightfield texture span is not positive.\n"
	    );
	    return(-3);
	}

	/* Calculate half sizes for x and y axises. */
	x_len_half = (float)(x_len / 2);
	y_len_half = (float)(y_len / 2);

	/* Heightfield image file exists? */
	if(stat(path, &stat_buf))
	{
	    fprintf(
		stderr,
		"%s: No such file.\n",
		path
	    );
	    return(-1);
	}
#ifdef S_ISDIR
	if(S_ISDIR(stat_buf.st_mode))
	{
	    fprintf(stderr,
		"%s: Is a directory.\n",
		path
	    );
	    return(-1);
	}
#endif	/* S_ISDIR */

	/* Load data from file, read as 32 bits. */
	status = TgaReadFromFile(
	    path,
	    &td,
	    32		/* Read to 32 bits. */
	);
	if(status != TgaSuccess)
	{
	    TgaDestroyData(&td);
	    return(-1);
	}

	/* Check if size of heightfield image is big enough. */
	if(td.width < 2)
	    fprintf(stderr,
 "%s: Warning: Heightfield image size is too small in width.\n",
		path
	    );
	if(td.height < 2)
	    fprintf(stderr,
 "%s: Warning: Heightfield image size is too small in height.\n",
		path
	    );

	/* Record size. */
	if(width_rtn != NULL)  
	    (*width_rtn) = MAX((int)td.width, 0);
	if(height_rtn != NULL)
	    (*height_rtn) = MAX((int)td.height, 0);

	/* Calculate the number of z points to be the number of
	 * pixels in the heightfield image.
	 */
	total_z_points = MAX((int)td.width, 0) * MAX((int)td.height, 0);

	/* Set source image pointer to loaded image data. */
	img_data = (u_int32_t *)td.data;
	if(img_data == NULL)
	{   
	    TgaDestroyData(&td);
	    return(-1);  
	}

	/* Allocate z points array if input data_rtn is not NULL
	 * and there are z points is non-empty.
	 */
	if((data_rtn != NULL) && (total_z_points > 0))
	{
	    data_ptr = (double *)malloc(
		total_z_points * sizeof(double)
	    );
	    (*data_rtn) = data_ptr;

	    if(data_ptr == NULL)
		fprintf(stderr,
 "V3DHFLoadFromFile(): Cannot allocate memory to load `%s' which has %i heightfield points.\n",
		    path, total_z_points
		);
	}


	/* Begin setting z points to the return buffer. */
	if(total_z_points > 0)
	{
	    /* Set z point data return if allocated. */
	    if(data_ptr != NULL)
	    {
		/* X and y number of grids should match pixels on image. */
		double *data_cur_ptr = data_ptr;
		u_int32_t	*img_ptr = img_data,
				*img_ptr_end = img_data + (td.width * td.height);

		while(img_ptr < img_ptr_end)
		    *data_cur_ptr++ = 
			(double)((*img_ptr++) & 0x000000ff) /
			(double)(0x000000ff)
			* z_len
		    ;
	    }
	}

	/* Begin issuing gl draw commands to draw the heightfield if
	 * a GL list is given (which implies a GL list is being recorded.
	 */
	if((total_z_points > 0) && (gl_list != NULL))
	{
	    int cx, cy;         /* Current position in HF pixels (which is
				 * also grid edge).
				 */
	    float x_sp, y_sp;   /* Each grid (pixel) is spaced this many
				 * meters.
				 */
	    int img_w, img_h;   /* Total number of grids on each HF dimension. */
	    GLfloat vz[4];      /* Four corners z values. */


	    /* Get image size. */
	    img_w = (int)td.width;
	    img_h = (int)td.height;

	    /* Calculate spacing. */
	    if(img_w > 0.0)
		x_sp = (float)x_len / (float)img_w;
	    else
		x_sp = 0.0f;

	    if(img_h > 0.0)
		y_sp = (float)y_len / (float)img_h;
	    else
		y_sp = 0.0f;

	    /* Set grid spacing returns if possable. */
	    if(x_spacing_rtn != NULL)
		(*x_spacing_rtn) = x_sp;
	    if(y_spacing_rtn != NULL)
		(*y_spacing_rtn) = y_sp;


	    /* Begin issuing gl commands for recording into the gl list. */

	    glBegin(GL_TRIANGLES);

	    /* Go through each `top edge' grid. */
	    for(cy = 0; cy < img_h; cy++)
	    {
		/* Go through each `left edge' grid. */
		for(cx = 0; cx < img_w; cx++)
		{
		    /* Get z pizel height of each `corner'.
		     * Vertex numbering layout:
		     *
		     *   v1---v2
		     *   | \   |
		     *   |  \  |
		     *   |   \ |
		     *   v3---v4
		     *
		     * Each grid consists of two triangles, an upper
		     * right one and a lower left one.
		     */

		    /* Upper left (vertex #1 always valid). */
		    vz[0] = (float)(V3DHFGetZPixelCoeff(
			img_data, cx, cy, img_w, img_h
		    ) * z_len);

		    /* Upper right (vertex #2). */
		    if((cx + 1) < img_w)
		    {
			vz[1] = (float)(V3DHFGetZPixelCoeff(
			    img_data, cx + 1, cy, img_w, img_h
			) * z_len);
		    }
		    else
		    {
			/* Data for upper right not available, use upper left. */
			vz[1] = vz[0];
		    }

		    /* Lower left (vertex #3). */
		    if((cy + 1) < img_h)
		    {
			vz[2] = (float)(V3DHFGetZPixelCoeff(
			    img_data, cx, cy + 1, img_w, img_h
			) * z_len);
		    }
		    else
		    {
			/* Data for lower left not available, use upper left. */
			vz[2] = vz[0];
		    }

		    /* Lower right (vertex #4). */
		    if(((cx + 1) < img_w) &&
		       ((cy + 1) < img_h)
		    )
		    {
			vz[3] = (float)(V3DHFGetZPixelCoeff(
			    img_data, cx + 1, cy + 1, img_w, img_h
			) * z_len);
		    }
		    /* Lower left valid? */
		    else if((cy + 1) < img_h)
		    {
			vz[3] = vz[2];
		    }
		    /* Upper right valid? */
		    else if((cx + 1) < img_w)
		    {
			vz[3] = vz[1];
		    }
		    /* Upper left and upper right not available, use upper left. */
		    else
		    {
			vz[3] = vz[0];
		    }

		    /* Begin recording GL drawing. */

		    /* Winding counter clockwise? */
		    if(winding == V3D_HF_WIND_CCW)
		    {
			/* Winding counter clockwise. */

			/* Upper right triangle. */
			/* Set normal. */
			if(set_normal != V3D_HF_SET_NORMAL_NEVER)
			    V3DHFNormalByCrossGridVectors(
				x_sp, vz[1] - vz[0],
				y_sp, vz[1] - vz[3]
			    );

			/* Vertex #1. */
			if(set_texcoord != V3D_HF_SET_TEXCOORD_NEVER)
			    glTexCoord2f(
				((cx + 0) * x_sp / tex_width) - tex_offset_x,
				((cy + 0) * y_sp / tex_height) + tex_offset_y
			    );
			glVertex3f(
			    (((cx + 0) * x_sp) - x_len_half),
			    (vz[0]),   
			    (((cy + 0) * y_sp) - y_len_half)
			);

			/* Vertex #4. */
			if(set_texcoord != V3D_HF_SET_TEXCOORD_NEVER)
			    glTexCoord2f(
				((cx + 1) * x_sp / tex_width) - tex_offset_x,
				((cy + 1) * y_sp / tex_height) + tex_offset_y
			    );
			glVertex3f(
			    (((cx + 1) * x_sp) - x_len_half),
			    (vz[3]),
			    (((cy + 1) * y_sp) - y_len_half)
			);

			/* Vertex #2. */
			if(set_texcoord != V3D_HF_SET_TEXCOORD_NEVER)
			    glTexCoord2f(
				((cx + 1) * x_sp / tex_width) - tex_offset_x,
				((cy + 0) * y_sp / tex_height) + tex_offset_y
			    );
			glVertex3f(
			    (((cx + 1) * x_sp) - x_len_half),
			    (vz[1]),
			    (((cy + 0) * y_sp) - y_len_half)
			);


			/* Lower left triangle. */
			/* Set normal. */
			if(set_normal != V3D_HF_SET_NORMAL_NEVER)
			    V3DHFNormalByCrossGridVectors(
				x_sp, vz[3] - vz[2],
				y_sp, vz[0] - vz[2]
			    );

			/* Vertex #1. */
			if(set_texcoord != V3D_HF_SET_TEXCOORD_NEVER)
			    glTexCoord2f(
				((cx + 0) * x_sp / tex_width) - tex_offset_x,
				((cy + 0) * y_sp / tex_height) + tex_offset_y
			    );
			glVertex3f(
			    (((cx + 0) * x_sp) - x_len_half),
			    (vz[0]),
			    (((cy + 0) * y_sp) - y_len_half)
			);

			/* Vertex #3. */
			if(set_texcoord != V3D_HF_SET_TEXCOORD_NEVER)
			    glTexCoord2f(
				((cx + 0) * x_sp / tex_width) - tex_offset_x,
				((cy + 1) * y_sp / tex_height) + tex_offset_y
			    );
			glVertex3f(
			    (((cx + 0) * x_sp) - x_len_half),
			    (vz[2]),   
			    (((cy + 1) * y_sp) - y_len_half)
			);

			/* Vertex #4. */
			if(set_texcoord != V3D_HF_SET_TEXCOORD_NEVER)
			    glTexCoord2f(
				((cx + 1) * x_sp / tex_width) - tex_offset_x,
				((cy + 1) * y_sp / tex_height) + tex_offset_y
			    );
			glVertex3f(
			    (((cx + 1) * x_sp) - x_len_half),
			    (vz[3]),
			    (((cy + 1) * y_sp) - y_len_half)
			);
		    }
		    else
		    {
			/* Winding clockwise. */

			/* Upper right triangle. */
			/* Set normal. */
			if(set_normal != V3D_HF_SET_NORMAL_NEVER)
			    V3DHFNormalByCrossGridVectors(
				x_sp, vz[1] - vz[0],
				y_sp, vz[1] - vz[3]
			    );

			/* Vertex #1. */
			if(set_texcoord != V3D_HF_SET_TEXCOORD_NEVER)
			    glTexCoord2f(
				((cx + 0) * x_sp / tex_width) - tex_offset_x,
				((cy + 0) * y_sp / tex_height) + tex_offset_y
			    );
			glVertex3f(
			    (((cx + 0) * x_sp) - x_len_half),
			    (vz[0]),
			    (((cy + 0) * y_sp) - y_len_half)
			);

			/* Vertex #2. */
			if(set_texcoord != V3D_HF_SET_TEXCOORD_NEVER)
			    glTexCoord2f(
				((cx + 1) * x_sp / tex_width) - tex_offset_x,
				((cy + 0) * y_sp / tex_height) + tex_offset_y
			    );
			glVertex3f(
			    (((cx + 1) * x_sp) - x_len_half),
			    (vz[1]),
			    (((cy + 0) * y_sp) - y_len_half)
			);

			/* Vertex #4. */
			if(set_texcoord != V3D_HF_SET_TEXCOORD_NEVER)
			    glTexCoord2f(
				((cx + 1) * x_sp / tex_width) - tex_offset_x,
				((cy + 1) * y_sp / tex_height) + tex_offset_y
			    );
			glVertex3f(
			    (((cx + 1) * x_sp) - x_len_half),
			    (vz[3]),
			    (((cy + 1) * y_sp) - y_len_half)
			);


			/* Lower left triangle. */
			/* Set normal. */
			if(set_normal != V3D_HF_SET_NORMAL_NEVER)
			    V3DHFNormalByCrossGridVectors(
				x_sp, vz[3] - vz[2],
				y_sp, vz[0] - vz[2]
			    );

			/* Vertex #1. */
			if(set_texcoord != V3D_HF_SET_TEXCOORD_NEVER)
			    glTexCoord2f(
				((cx + 0) * x_sp / tex_width) - tex_offset_x,
				((cy + 0) * y_sp / tex_height) + tex_offset_y
			    );
			glVertex3f(
			    (((cx + 0) * x_sp) - x_len_half),
			    (vz[0]),   
			    (((cy + 0) * y_sp) - y_len_half)
			);

			/* Vertex #4. */
			if(set_texcoord != V3D_HF_SET_TEXCOORD_NEVER)
			    glTexCoord2f(
				((cx + 1) * x_sp / tex_width) - tex_offset_x,
				((cy + 1) * y_sp / tex_height) + tex_offset_y
			    );
			glVertex3f(
			    (((cx + 1) * x_sp) - x_len_half),
			    (vz[3]),
			    (((cy + 1) * y_sp) - y_len_half)
			);

			/* Vertex #3. */
			if(set_texcoord != V3D_HF_SET_TEXCOORD_NEVER)
			    glTexCoord2f(
				((cx + 0) * x_sp / tex_width) - tex_offset_x,
				((cy + 1) * y_sp / tex_height) + tex_offset_y
			    );
			glVertex3f(
			    (((cx + 0) * x_sp) - x_len_half),
			    (vz[2]),
			    (((cy + 1) * y_sp) - y_len_half)
			);

		    }	/* Begin recording GL drawing, check winding. */


		}
	    }

	    glEnd();
	}


	/* Deallocate loaded image data. */
	TgaDestroyData(&td);

	return(0);
}

/*
 *	Returns the z value of the heightfield point + hf_z that the
 *	given x and y position in world coordinates is over.
 *
 *	Can return 0.0 if x and y is out of the heightfield's bounds.
 */
double V3DHFGetHeightFromWorldPosition(
	double x, double y,     /* The world position. */
	double hf_x, double hf_y, double hf_z,  /* HF's world position. */
	double hf_heading,      /* HF's heading in radians. */
	double hf_len_x, double hf_len_y, double hf_len_z,
	int hf_widthp, int hf_heightp,  /* Size of heightfield in points. */
	double *hf_data           /* Heightfield's data. */
)
{
	double cos_theta, sin_theta;
	double dx, dy, drx, dry;
	double	hf_half_x_len = hf_len_x / 2,
		hf_half_y_len = hf_len_y / 2;
	double hf_grid_x_spacing, hf_grid_y_spacing;
	int hf_xi, hf_yi;


	/* HF has no span? */
	if((hf_len_x <= 0.0) || (hf_len_y <= 0.0))
	    return(0.0);

	/* HF data has no span? */
	if((hf_widthp <= 0) || (hf_heightp <= 0))
	    return(0.0);


	/* Calculate HF grid spacing. */
	hf_grid_x_spacing = hf_len_x / (double)hf_widthp;
	hf_grid_y_spacing = hf_len_y / (double)hf_heightp;
	if((hf_grid_x_spacing <= 0.0) || (hf_grid_y_spacing <= 0.0))
	    return(0.0);

	/* Get dx and dy, the delta distance of the position to
	 * the heightfield's center. Note that dy is flipped so that
	 * dx and dy will be `upper left' oriented.
	 */
	dx = x - hf_x;
	dy = hf_y - y;

	/* Now rotate dx and dy position based on heightfield's heading,
	 * remember that dy is top to bottom.
	 */
	cos_theta = cos(-hf_heading);
	sin_theta = sin(-hf_heading);
	drx = (dx * cos_theta) - (dy * sin_theta);
	dry = (dy * cos_theta) + (dx * sin_theta);


	/* Calculate point index, remember heightfield is centered at
	 * its origin, so need to add x and y point half index values
	 * to index.
	 */
	hf_xi = (int)((drx + hf_half_x_len) / hf_grid_x_spacing);
	hf_yi = (int)((dry + hf_half_y_len) / hf_grid_y_spacing);
/*
printf("\r %i %i | %.3f %.3f | %.3f %.3f | %.3f' %.3f %.3f",
 hf_xi, hf_yi, dx, dy, drx, dry, RADTODEG(hf_heading), cos_theta, 
sin_theta);
fflush(stdout);
*/
	/* Clip hf_xi and hf_yi heightfield index position, if it
	 * is outside of the heightfield's point data buffer then
	 * return 0.0.
	 */
	if((hf_xi < 0) || (hf_xi >= hf_widthp) ||
	   (hf_yi < 0) || (hf_yi >= hf_heightp)
	)
	    return(0.0);

	/* Check if heightfield pointer buffer is given. */
	if(hf_data == NULL)
	{
	    /* In heightfield but not data given, just return
	     * the heightfield's base z position.
	     */
	    return(hf_z);
	}
	else
	{
	    /* Got heightfield pointer buffer. */

	    /* The GL version of the heightfield has two triangles per
	     * grid, one on the `upper right' and one on the `lower left'
	     * (see V3DHFLoadFromFile()).
	     *
	     *                  v0 - v1
	     *                  | \   |
	     *                  |  \  |
	     *                  |   \ |
	     *                  v2 - v3
	     */

	    /* Calculate the target position `in the grid' as a coeff. */
	    double in_grid_x_c =
		((drx + hf_half_x_len) - (hf_xi * hf_grid_x_spacing)) /
		(((hf_xi + 1) * hf_grid_x_spacing) - (hf_xi * hf_grid_x_spacing));
	    double in_grid_y_c =
		((dry + hf_half_y_len) - (hf_yi * hf_grid_y_spacing)) /
		(((hf_yi + 1) * hf_grid_y_spacing) - (hf_yi * hf_grid_y_spacing));
	    double z_value[4];		/* ul, ur, ll, lr. */
	    double z_result;		/* Calculated height point in grid. */
/*
printf("\r %i %i %f %f ",
 hf_xi, hf_yi, in_grid_x_c, in_grid_y_c
); fflush(stdout);
 */
	    /* At this point we only need to fetch three values
	     * from the heightfield since we know we're in one
	     * or the other grid's triangle.
	     */
	    if(in_grid_x_c <= in_grid_y_c)
	    {
		/* In lower left triangle:
		 *
		 * Fetch z values for the lower left three vertices.
		 */

		/* Upper left z value. */
		z_value[0] = hf_data[
		    (hf_yi * hf_widthp) + hf_xi
		];

		/* Lower left z value. */
		if((hf_yi + 1) < hf_heightp)
		{
		    z_value[2] = hf_data[
			((hf_yi + 1) * hf_widthp) + hf_xi
		    ];
		}
		else
		{
		    /* No data for lower left, fall back to using upper left. */
		    z_value[2] = z_value[0];
		}

		/* Lower right z value. */
		if(((hf_xi + 1) < hf_widthp) &&
		   ((hf_yi + 1) < hf_heightp)
		)
		{
		    z_value[3] = hf_data[
			((hf_yi + 1) * hf_widthp) + (hf_xi + 1)
		    ];
		}
		/* No data for lower right, try lower left. */
		else if((hf_yi + 1) < hf_heightp)
		{ 
		    z_value[3] = z_value[2];
		}
		/* Try upper right. */
		else if((hf_xi + 1) < hf_widthp)
		{
		    /* Need to calculate upper right, we don't get it for free. */
		    z_value[3] = hf_data[
			(hf_yi * hf_widthp) + (hf_xi + 1)
		    ];
		}
		/* No UR or LL, use z_value[0]. */
		else
		{
		    z_value[3] = z_value[0];
		}

		/* Perform the height interpolation using the
		 * refactored equations. Basically what this does
		 * is only perform the 'differencing' portion
		 * of the interpolation on x and y axis'.
		 */
		{
		    double height_delta_x = z_value[3] - z_value[2];
		    double height_delta_y = z_value[0] - z_value[2];
		    z_result = z_value[2] +
			(height_delta_x * in_grid_x_c) +
			(height_delta_y * (1.0 - in_grid_y_c));
		}
	    }
	    else
	    {
		/* In upper right triangle:
		 *
		 * Fetch z values for the upper right three vertices.
		 */

		/* Upper left z value. */
		z_value[0] = hf_data[
		    (hf_yi * hf_widthp) + hf_xi
		];

		/* Upper right z value. */
		if((hf_xi + 1) < hf_widthp)
		{
		    z_value[1] = hf_data[
			(hf_yi * hf_widthp) + (hf_xi + 1)
		    ];
		}
		else
		{
		    /* No data for upper right, fall back to using upper left. */
		    z_value[1] = z_value[0];
		}

		/* Lower right z value. */
		if(((hf_xi + 1) < hf_widthp) &&
		   ((hf_yi + 1) < hf_heightp)
		)
		{
		    z_value[3] = hf_data[
			((hf_yi + 1) * hf_widthp) + (hf_xi + 1)
		    ];
		}
		/* No lower right data, try lower left? */
		else if((hf_yi + 1) < hf_heightp)
		{
		    /* Need to calculate lower left, we don't get it for free. */
		    z_value[3] = hf_data[
			((hf_yi + 1) * hf_widthp) + hf_xi
		    ];
		}
		/* Try upper right? */
		else if((hf_xi + 1) < hf_widthp)
		{
		    z_value[3] = z_value[1];
		}
		/* No UR or LL, use z_value[0]. */
		else
		{
		    z_value[3] = z_value[0];
		}

		/* Perform the height interpolation using the
		 * refactored equations. (Same idea as above, just
		 * different points involved.)
		 */
		{
		    double height_delta_x = z_value[0] - z_value[1];
		    double height_delta_y = z_value[3] - z_value[1];
		    z_result = z_value[1] +
			(height_delta_x * (1.0 - in_grid_x_c)) +
			(height_delta_y * in_grid_y_c);
		}
	    }

	    /* Calculation of the new interpirated height z_result
	     * is complete. Return the z_result + hf_z.
	     */
	    return(z_result + hf_z);
	}
}