1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
|
/*
* This file is open source software, licensed to you under the terms
* of the Apache License, Version 2.0 (the "License"). See the NOTICE file
* distributed with this work for additional information regarding copyright
* ownership. You may not use this file except in compliance with the License.
*
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*
* Copyright (C) 2015 Cloudius Systems, Ltd.
*/
#include <seastar/core/memory.hh>
#include <seastar/core/shard_id.hh>
#include <seastar/core/smp.hh>
#include <seastar/core/temporary_buffer.hh>
#include <seastar/testing/perf_tests.hh>
#include <seastar/testing/test_case.hh>
#include <seastar/testing/thread_test_case.hh>
#include <seastar/util/log.hh>
#include <seastar/util/memory_diagnostics.hh>
#include <memory>
#include <new>
#include <vector>
#include <future>
#include <iostream>
#include <malloc.h>
using namespace seastar;
SEASTAR_TEST_CASE(alloc_almost_all_and_realloc_it_with_a_smaller_size) {
#ifndef SEASTAR_DEFAULT_ALLOCATOR
auto all = memory::stats().total_memory();
auto reserve = size_t(0.02 * all);
auto to_alloc = all - (reserve + (10 << 20));
auto orig_to_alloc = to_alloc;
auto obj = malloc(to_alloc);
while (!obj) {
to_alloc *= 0.9;
obj = malloc(to_alloc);
}
BOOST_REQUIRE(to_alloc > orig_to_alloc / 4);
BOOST_REQUIRE(obj != nullptr);
auto obj2 = realloc(obj, to_alloc - (1 << 20));
BOOST_REQUIRE(obj == obj2);
free(obj2);
#endif
return make_ready_future<>();
}
SEASTAR_TEST_CASE(malloc_0_and_free_it) {
#ifndef SEASTAR_DEFAULT_ALLOCATOR
auto obj = malloc(0);
BOOST_REQUIRE(obj != nullptr);
free(obj);
#endif
return make_ready_future<>();
}
SEASTAR_TEST_CASE(new_0) {
{
// new must always return a non-null pointer, even for 0 size
auto obj = operator new(0);
BOOST_REQUIRE(obj != nullptr);
operator delete(obj);
}
{
// same test but with a zero length array
auto obj = new char[0];
BOOST_REQUIRE(obj != nullptr);
delete [] obj;
}
return make_ready_future<>();
}
SEASTAR_TEST_CASE(test_live_objects_counter_with_cross_cpu_free) {
return smp::submit_to(1, [] {
auto ret = std::vector<std::unique_ptr<bool>>(1000000);
for (auto& o : ret) {
o = std::make_unique<bool>(false);
}
return ret;
}).then([] (auto&& vec) {
vec.clear(); // cause cross-cpu free
BOOST_REQUIRE(memory::stats().live_objects() < std::numeric_limits<size_t>::max() / 2);
});
}
SEASTAR_TEST_CASE(test_aligned_alloc) {
for (size_t align = sizeof(void*); align <= 65536; align <<= 1) {
for (size_t size = align; size <= align * 2; size <<= 1) {
void *p = aligned_alloc(align, size);
BOOST_REQUIRE(p != nullptr);
BOOST_REQUIRE((reinterpret_cast<uintptr_t>(p) % align) == 0);
::memset(p, 0, size);
free(p);
}
}
return make_ready_future<>();
}
#ifdef __cpp_sized_deallocation
SEASTAR_TEST_CASE(test_sized_delete) {
for (size_t size = 0; size <= 65536; size++) {
void *p0 = operator new(size), *p1 = operator new(size);
BOOST_REQUIRE(p0 != nullptr);
BOOST_REQUIRE(p1 != nullptr);
::memset(p0, 1, size);
::memset(p1, 2, size);
perf_tests::do_not_optimize(p0);
perf_tests::do_not_optimize(p1);
operator delete(p0, size);
operator delete(p1, size);
}
return make_ready_future<>();
}
#endif
SEASTAR_TEST_CASE(test_temporary_buffer_aligned) {
for (size_t align = sizeof(void*); align <= 65536; align <<= 1) {
for (size_t size = align; size <= align * 2; size <<= 1) {
auto buf = temporary_buffer<char>::aligned(align, size);
void *p = buf.get_write();
BOOST_REQUIRE(p != nullptr);
BOOST_REQUIRE((reinterpret_cast<uintptr_t>(p) % align) == 0);
::memset(p, 0, size);
}
}
return make_ready_future<>();
}
SEASTAR_TEST_CASE(test_memory_diagnostics) {
auto report = memory::generate_memory_diagnostics_report();
#ifdef SEASTAR_DEFAULT_ALLOCATOR
BOOST_REQUIRE(report.length() == 0); // empty report with default allocator
#else
// since the output format is unstructured text, not much
// to do except test that we get a non-empty string
BOOST_REQUIRE(report.length() > 0);
// useful while debugging diagnostics
// fmt::print("--------------------\n{}--------------------", report);
#endif
return make_ready_future<>();
}
SEASTAR_THREAD_TEST_CASE(test_cross_thread_realloc) {
// Tests that realloc seems to do the right thing with various sizes of
// buffer, including cases where the initial allocation is on another
// shard.
// Needs at least 2 shards to usefully test the cross-shard aspect but
// still passes when only 1 shard is used.
auto do_xshard_realloc = [](bool cross_shard, size_t initial_size, size_t realloc_size) {
BOOST_TEST_CONTEXT("cross_shard=" << cross_shard << ", initial="
<< initial_size << ", realloc_size=" << realloc_size) {
auto other_shard = (this_shard_id() + cross_shard) % smp::count;
char *p = static_cast<char *>(malloc(initial_size));
// write some sentinels and check them after realloc
// x start of region
// y end of realloc'd region (if it falls within the initial size)
// z end of initial region
if (initial_size > 0) {
p[0] = 'x';
p[initial_size - 1] = 'z';
if (realloc_size > 0 && realloc_size <= initial_size) {
p[realloc_size - 1] = 'y';
}
}
smp::submit_to(other_shard, [=] {
char* p2 = static_cast<char *>(realloc(p, realloc_size));
if (initial_size > 0 && realloc_size > 0) {
BOOST_REQUIRE_EQUAL(p2[0], 'x');
if (realloc_size <= initial_size) {
BOOST_REQUIRE_EQUAL(p2[realloc_size - 1], 'y');
}
if (realloc_size > initial_size) {
BOOST_REQUIRE_EQUAL(p2[initial_size - 1], 'z');
}
}
free(p2);
}).get();
}
};
for (auto& cross_shard : {false, true}) {
do_xshard_realloc(cross_shard, 0, 0);
do_xshard_realloc(cross_shard, 0, 1);
do_xshard_realloc(cross_shard, 1, 0);
do_xshard_realloc(cross_shard, 50, 100);
do_xshard_realloc(cross_shard, 100, 50);
do_xshard_realloc(cross_shard, 100000, 500000);
do_xshard_realloc(cross_shard, 500000, 100000);
}
}
#ifndef SEASTAR_DEFAULT_ALLOCATOR
struct thread_alloc_info {
memory::statistics before;
memory::statistics after;
void *ptr;
};
template <typename Func>
thread_alloc_info run_with_stats(Func&& f) {
return std::async([&f](){
auto before = seastar::memory::stats();
void* ptr = f();
auto after = seastar::memory::stats();
return thread_alloc_info{before, after, ptr};
}).get();
}
template <typename Func>
void test_allocation_function(Func f) {
// alien alloc and free
auto alloc_info = run_with_stats(f);
auto free_info = std::async([p = alloc_info.ptr]() {
auto before = seastar::memory::stats();
free(p);
auto after = seastar::memory::stats();
return thread_alloc_info{before, after, nullptr};
}).get();
// there were mallocs
BOOST_REQUIRE(alloc_info.after.foreign_mallocs() - alloc_info.before.foreign_mallocs() > 0);
// mallocs balanced with frees
BOOST_REQUIRE(alloc_info.after.foreign_mallocs() - alloc_info.before.foreign_mallocs() == free_info.after.foreign_frees() - free_info.before.foreign_frees());
// alien alloc reactor free
auto info = run_with_stats(f);
auto before_cross_frees = memory::stats().foreign_cross_frees();
free(info.ptr);
BOOST_REQUIRE(memory::stats().foreign_cross_frees() - before_cross_frees == 1);
// reactor alloc, alien free
void *p = f();
auto alien_cross_frees = std::async([p]() {
auto frees_before = memory::stats().cross_cpu_frees();
free(p);
return memory::stats().cross_cpu_frees()-frees_before;
}).get();
BOOST_REQUIRE(alien_cross_frees == 1);
}
SEASTAR_TEST_CASE(test_foreign_function_use_glibc_malloc) {
test_allocation_function([]() ->void * { return malloc(1); });
test_allocation_function([]() { return realloc(NULL, 10); });
test_allocation_function([]() {
auto p = malloc(1);
return realloc(p, 1000);
});
test_allocation_function([]() { return aligned_alloc(4, 1024); });
return make_ready_future<>();
}
// So the compiler won't optimize the call to realloc(nullptr, size)
// and call malloc directly.
void* test_nullptr = nullptr;
SEASTAR_TEST_CASE(test_realloc_nullptr) {
auto p0 = realloc(test_nullptr, 8);
BOOST_REQUIRE(p0 != nullptr);
BOOST_REQUIRE_EQUAL(realloc(p0, 0), nullptr);
p0 = realloc(test_nullptr, 0);
BOOST_REQUIRE(p0 != nullptr);
auto p1 = malloc(0);
BOOST_REQUIRE(p1 != nullptr);
free(p0);
free(p1);
return make_ready_future<>();
}
SEASTAR_TEST_CASE(test_enable_abort_on_oom) {
bool original = seastar::memory::is_abort_on_allocation_failure();
seastar::memory::set_abort_on_allocation_failure(false);
BOOST_CHECK(!seastar::memory::is_abort_on_allocation_failure());
seastar::memory::set_abort_on_allocation_failure(true);
BOOST_CHECK(seastar::memory::is_abort_on_allocation_failure());
seastar::memory::set_abort_on_allocation_failure(original);
return make_ready_future<>();
}
void * volatile sink;
SEASTAR_TEST_CASE(test_bad_alloc_throws) {
// test that a large allocation throws bad_alloc
auto stats = seastar::memory::stats();
// this allocation cannot be satisfied (at least when the seastar
// allocator is used, which it is for this test)
size_t size = stats.total_memory() * 2;
auto failed_allocs = [&stats]() {
return seastar::memory::stats().failed_allocations() - stats.failed_allocations();
};
// test that new throws
stats = seastar::memory::stats();
BOOST_REQUIRE_THROW(sink = operator new(size), std::bad_alloc);
BOOST_CHECK_EQUAL(failed_allocs(), 1);
// test that new[] throws
stats = seastar::memory::stats();
BOOST_REQUIRE_THROW(sink = new char[size], std::bad_alloc);
BOOST_CHECK_EQUAL(failed_allocs(), 1);
// test that huge malloc returns null
stats = seastar::memory::stats();
BOOST_REQUIRE_EQUAL(malloc(size), nullptr);
BOOST_CHECK_EQUAL(failed_allocs(), 1);
// test that huge realloc on nullptr returns null
stats = seastar::memory::stats();
BOOST_REQUIRE_EQUAL(realloc(nullptr, size), nullptr);
BOOST_CHECK_EQUAL(failed_allocs(), 1);
// test that huge realloc on an existing ptr returns null
stats = seastar::memory::stats();
void *p = malloc(1);
BOOST_REQUIRE(p);
void *p2 = realloc(p, size);
BOOST_REQUIRE_EQUAL(p2, nullptr);
BOOST_CHECK_EQUAL(failed_allocs(), 1);
free(p2 ?: p);
return make_ready_future<>();
}
SEASTAR_TEST_CASE(test_diagnostics_failures) {
// test that an allocation failure is reflected in the diagnostics
auto stats = seastar::memory::stats();
size_t size = stats.total_memory() * 2; // cannot be satisfied
// we expect that the failure is immediately reflected in the diagnostics
try {
sink = operator new(size);
} catch (const std::bad_alloc&) {}
auto report = memory::generate_memory_diagnostics_report();
// +1 because we caused one additional hard failure from the allocation above
auto expected = fmt::format("Hard failures: {}", stats.failed_allocations() + 1);
if (report.find(expected) == seastar::sstring::npos) {
BOOST_FAIL(fmt::format("Did not find expected message: {} in\n{}\n", expected, report));
}
return seastar::make_ready_future();
}
template <typename Func>
requires requires (Func fn) { fn(); }
void check_function_allocation(const char* name, size_t expected_allocs, Func f) {
auto before = seastar::memory::stats();
f();
auto after = seastar::memory::stats();
BOOST_TEST_INFO("After function: " << name);
BOOST_REQUIRE_EQUAL(expected_allocs, after.mallocs() - before.mallocs());
}
SEASTAR_TEST_CASE(test_diagnostics_allocation) {
check_function_allocation("empty", 0, []{});
check_function_allocation("operator new", 1, []{
// note that many pairs of malloc/free-alikes can just be optimized
// away, but not operator new(size_t), per the standard
void * volatile p = operator new(1);
operator delete(p);
});
// The meat of this test. Dump the diagnostics report to the log and ensure it
// doesn't allocate. Doing it lots is important because it may alloc only occasionally:
// a real example being the optimized timestamp logging which (used to) make an allocation
// only once a second.
check_function_allocation("log_memory_diagnostics_report", 0, [&]{
for (int i = 0; i < 1000; i++) {
seastar::memory::internal::log_memory_diagnostics_report(log_level::info);
}
});
return seastar::make_ready_future();
}
#ifdef SEASTAR_HEAPPROF
// small wrapper to disincentivize gcc from unrolling the loop
[[gnu::noinline]]
char* malloc_wrapper(size_t size) {
auto ret = static_cast<char*>(malloc(size));
*ret = 'c'; // to prevent compiler from considering this a dead allocation and optimizing it out
return ret;
}
namespace seastar::memory {
std::ostream& operator<<(std::ostream& os, const allocation_site& site) {
os << "allocation_site[count: " << site.count << ", size: " << site.size << "]";
return os;
}
}
SEASTAR_TEST_CASE(test_sampled_profile_collection_small)
{
{
auto stats = seastar::memory::sampled_memory_profile();
BOOST_REQUIRE_EQUAL(stats.size(), 0);
}
std::size_t count = 100;
std::vector<volatile char*> ptrs(count);
seastar::memory::set_heap_profiling_sampling_rate(100);
#ifdef __clang__
#pragma nounroll
#endif
for (std::size_t i = 0; i < count / 2; ++i) {
ptrs[i] = malloc_wrapper(10);
}
#ifdef __clang__
#pragma nounroll
#endif
for (std::size_t i = count / 2; i < count; ++i) {
ptrs[i] = malloc_wrapper(10);
}
auto get_samples = []() {
auto stats0 = seastar::memory::sampled_memory_profile();
auto stats1 = seastar::memory::sampled_memory_profile();
// two back-to-back copies of the sample should have the same value
BOOST_CHECK_EQUAL(stats0, stats1);
// check that we get the same value from the raw array iterface
std::vector<seastar::memory::allocation_site> stats2(stats0.size());
auto sz2 = seastar::memory::sampled_memory_profile(stats2.data(), stats2.size());
BOOST_CHECK_EQUAL(stats0.size(), sz2);
BOOST_CHECK_EQUAL(stats0, stats2);
// check with +1 size, we expect to still only get size elements
std::vector<seastar::memory::allocation_site> stats3(stats0.size() + 1);
auto sz3 = seastar::memory::sampled_memory_profile(stats3.data(), stats3.size());
BOOST_CHECK_EQUAL(stats0.size(), sz3);
stats3.resize(sz3);
BOOST_CHECK_EQUAL(stats0, stats3);
return stats0;
};
// NB: the test framework allocates
seastar::memory::set_heap_profiling_sampling_rate(0);
{
auto stats = get_samples();
BOOST_REQUIRE_EQUAL(stats.size(), 2);
BOOST_REQUIRE_EQUAL(stats[0].size, stats[0].count * 100);
}
seastar::memory::set_heap_profiling_sampling_rate(100);
for (auto ptr : ptrs) {
free((void*)ptr);
}
seastar::memory::set_heap_profiling_sampling_rate(0);
{
auto stats = get_samples();
BOOST_REQUIRE_EQUAL(stats.size(), 0);
}
return seastar::make_ready_future();
}
SEASTAR_TEST_CASE(test_sampled_profile_collection_large)
{
{
auto stats = seastar::memory::sampled_memory_profile();
BOOST_REQUIRE_EQUAL(stats.size(), 0);
}
std::size_t count = 100;
std::vector<volatile char*> ptrs(count);
seastar::memory::set_heap_profiling_sampling_rate(1000000);
#ifdef __clang__
#pragma nounroll
#endif
for (std::size_t i = 0; i < count / 2; ++i) {
ptrs[i] = malloc_wrapper(100000);
}
#ifdef __clang__
#pragma nounroll
#endif
for (std::size_t i = count / 2; i < count; ++i) {
ptrs[i] = malloc_wrapper(100000);
}
// NB: the test framework allocate
seastar::memory::set_heap_profiling_sampling_rate(0);
{
auto stats = seastar::memory::sampled_memory_profile();
BOOST_REQUIRE_EQUAL(stats.size(), 2);
BOOST_REQUIRE_EQUAL(stats[0].size, stats[0].count * 1000000);
}
seastar::memory::set_heap_profiling_sampling_rate(1000000);
for (auto ptr : ptrs) {
free((void*)ptr);
}
seastar::memory::set_heap_profiling_sampling_rate(0);
{
auto stats = seastar::memory::sampled_memory_profile();
// NOTE this is because right now the tracking structure doesn't delete call sites ever
BOOST_REQUIRE_EQUAL(stats.size(), 0);
}
return seastar::make_ready_future();
}
SEASTAR_TEST_CASE(test_sampled_profile_collection_max_sites)
{
std::size_t count = 1010;
std::vector<volatile char*> ptrs(count);
seastar::memory::set_heap_profiling_sampling_rate(100);
#pragma GCC unroll 1010
for (std::size_t i = 0; i < count; ++i) {
volatile char* ptr = static_cast<char*>(malloc(1000));
*ptr = 'c'; // to prevent compiler from considering this a dead allocation and optimizing it out
ptrs[i] = ptr;
}
seastar::memory::set_heap_profiling_sampling_rate(0);
{
auto stats = seastar::memory::sampled_memory_profile();
BOOST_REQUIRE_EQUAL(stats.size(), 1000);
}
for (auto ptr : ptrs) {
free((void*)ptr);
}
return seastar::make_ready_future();
}
SEASTAR_TEST_CASE(test_change_sample_rate)
{
{
auto stats = seastar::memory::sampled_memory_profile();
BOOST_REQUIRE_EQUAL(stats.size(), 0);
}
std::size_t sample_rate = 100;
std::size_t count = 10000;
std::vector<volatile char*> ptrs(count);
seastar::memory::set_heap_profiling_sampling_rate(sample_rate);
#ifdef __clang__
#pragma nounroll
#endif
for (std::size_t i = 0; i < count; ++i) {
ptrs[i] = malloc_wrapper(10);
}
// NB: the test framework allocates
seastar::memory::set_heap_profiling_sampling_rate(0);
size_t last_alloc_size = 0;
{
auto stats = seastar::memory::sampled_memory_profile();
BOOST_REQUIRE_EQUAL(stats.size(), 1);
last_alloc_size = stats[0].size;
BOOST_REQUIRE_EQUAL(stats[0].size, stats[0].count * sample_rate);
}
seastar::memory::set_heap_profiling_sampling_rate(sample_rate);
size_t free_iter = 0;
// free some of the allocations to check size changes
for (size_t i = 0; i < count / 4; ++i, ++free_iter) {
free((void*)ptrs[free_iter]);
}
seastar::memory::set_heap_profiling_sampling_rate(0);
{
auto stats = seastar::memory::sampled_memory_profile();
BOOST_REQUIRE_EQUAL(stats.size(), 1);
BOOST_REQUIRE_EQUAL(stats[0].size, stats[0].count * sample_rate);
BOOST_REQUIRE_NE(stats[0].size, last_alloc_size);
BOOST_REQUIRE_GT(stats[0].size, 0);
last_alloc_size = stats[0].size;
}
// now increase the sampling rate with outstanding allocations from the old rate
seastar::memory::set_heap_profiling_sampling_rate(sample_rate * 100);
for (size_t i = 0; i < count / 4; ++i, ++free_iter) {
free((void*)ptrs[free_iter]);
}
seastar::memory::set_heap_profiling_sampling_rate(0);
{
auto stats = seastar::memory::sampled_memory_profile();
BOOST_REQUIRE_EQUAL(stats.size(), 1);
BOOST_REQUIRE_LT(stats[0].size, last_alloc_size); // should not have underflowed
}
seastar::memory::set_heap_profiling_sampling_rate(sample_rate);
// free the rest
for (size_t i = 0; i < count / 2; ++i, ++free_iter) {
free((void*)ptrs[free_iter]);
}
seastar::memory::set_heap_profiling_sampling_rate(0);
{
auto stats = seastar::memory::sampled_memory_profile();
BOOST_REQUIRE_EQUAL(stats.size(), 0);
}
return seastar::make_ready_future();
}
#endif // SEASTAR_HEAPPROF
#endif // #ifndef SEASTAR_DEFAULT_ALLOCATOR
SEASTAR_TEST_CASE(test_large_allocation_warning_off_by_one) {
#ifndef SEASTAR_DEFAULT_ALLOCATOR
constexpr size_t large_alloc_threshold = 1024*1024;
seastar::memory::scoped_large_allocation_warning_threshold mtg(large_alloc_threshold);
BOOST_REQUIRE(seastar::memory::get_large_allocation_warning_threshold() == large_alloc_threshold);
auto old_large_allocs_count = memory::stats().large_allocations();
volatile auto obj = (char*)malloc(large_alloc_threshold);
*obj = 'c'; // to prevent compiler from considering this a dead allocation and optimizing it out
// Verify large allocation was detected by allocator.
BOOST_REQUIRE(memory::stats().large_allocations() == old_large_allocs_count+1);
free(obj);
#endif
return make_ready_future<>();
}
|