File: protocol.c

package info (click to toggle)
seccure 0.5-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, buster, forky, sid, trixie
  • size: 268 kB
  • sloc: ansic: 2,236; xml: 192; makefile: 100
file content (333 lines) | stat: -rw-r--r-- 9,590 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
/*
 *  seccure  -  Copyright 2014 B. Poettering
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU Lesser General Public License
 *  as published by the Free Software Foundation; either version 3 of
 *  the License, or (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public
 *  License along with this program. If not, see
 *  <http://www.gnu.org/licenses/>.
 */

/* 
 *   SECCURE Elliptic Curve Crypto Utility for Reliable Encryption
 *
 *              http://point-at-infinity.org/seccure/
 *
 *
 * seccure implements a selection of asymmetric algorithms based on  
 * elliptic curve cryptography (ECC). See the manpage or the project's  
 * homepage for further details.
 *
 * This code links against the GNU gcrypt library "libgcrypt" (which
 * is part of the GnuPG project). Use the included Makefile to build
 * the binary.
 * 
 * Report bugs to: seccure AT point-at-infinity.org
 *
 */

#define ECDSA_DETERMINISTIC 1

#include <gcrypt.h>
#include <assert.h>

#include "ecc.h"
#include "curves.h"
#include "serialize.h"
#include "aes256ctr.h"
#include "protocol.h"

/******************************************************************************/

gcry_mpi_t buf_to_exponent(const char *buf, size_t buflen,
			   const struct curve_params *cp)
{
  gcry_mpi_t a, b;
  gcry_mpi_scan(&a, GCRYMPI_FMT_USG, buf, buflen, NULL);
  gcry_mpi_set_flag(a, GCRYMPI_FLAG_SECURE);
  b = gcry_mpi_new(0);
  gcry_mpi_sub_ui(b, cp->dp.order, 1);
  gcry_mpi_mod(a, a, b);
  gcry_mpi_add_ui(a, a, 1);
  gcry_mpi_release(b);
  return a;
}

gcry_mpi_t hash_to_exponent(const char *hash, const struct curve_params *cp)
{
  size_t len = cp->order_len_bin;
  struct aes256cprng *cprng;
  gcry_mpi_t a;
  char *buf;
  assert((buf = gcry_malloc_secure(len)));
  assert((cprng = aes256cprng_init(hash)));
  aes256cprng_fillbuf(cprng, buf, len);
  aes256cprng_done(cprng);
  a = buf_to_exponent(buf, len, cp);
  gcry_free(buf);
  return a;
}

gcry_mpi_t get_random_exponent(const struct curve_params *cp)
{
  int bits = gcry_mpi_get_nbits(cp->dp.order);
  gcry_mpi_t a;
  a = gcry_mpi_snew(0);
  do {
    gcry_mpi_randomize(a, bits, GCRY_STRONG_RANDOM);
    gcry_mpi_clear_highbit(a, bits);
  } while (! gcry_mpi_cmp_ui(a, 0) || gcry_mpi_cmp(a, cp->dp.order) >= 0);
  return a;
}

/******************************************************************************/

void compress_to_string(char *buf, enum disp_format df,
			const struct affine_point *P, 
			const struct curve_params *cp)
{
  size_t outlen = (df == DF_COMPACT) ? cp->pk_len_compact : cp->pk_len_bin;
  if (point_compress(P)) {
    gcry_mpi_t x;
    x = gcry_mpi_snew(0);
    gcry_mpi_add(x, P->x, cp->dp.m);
    serialize_mpi(buf, outlen, df, x);
    gcry_mpi_release(x);
  }
  else
    serialize_mpi(buf, outlen, df, P->x);
}

int decompress_from_string(struct affine_point *P, const char *buf,
			   enum disp_format df, const struct curve_params *cp)
{
  gcry_mpi_t x;
  size_t inlen = (df == DF_COMPACT) ? cp->pk_len_compact : cp->pk_len_bin;
  int res;
  assert(! (df == DF_COMPACT && strlen(buf) != inlen));
  if ((res = deserialize_mpi(&x, df, buf, inlen))) {
    int yflag;
    if ((yflag = (gcry_mpi_cmp(x, cp->dp.m) >= 0)))
      gcry_mpi_sub(x, x, cp->dp.m);
    res = gcry_mpi_cmp_ui(x, 0) >= 0 && gcry_mpi_cmp(x, cp->dp.m) < 0 &&
      point_decompress(P, x, yflag, &cp->dp);
    gcry_mpi_release(x);
  }
  return res;
}

/******************************************************************************/

#if ECDSA_DETERMINISTIC

static struct aes256cprng* 
ecdsa_cprng_init(const char *msg, const gcry_mpi_t d,
		 const struct curve_params *cp)
{
  size_t len = cp->order_len_bin;
  struct aes256cprng *cprng;
  gcry_md_hd_t mh;
  char *buf;
  assert((buf = gcry_malloc_secure(len)));
  serialize_mpi(buf, len, DF_BIN, d);
  assert(hmacsha256_init(&mh, buf, len));
  gcry_free(buf);
  gcry_md_write(mh, msg, 64);
  gcry_md_final(mh);
  cprng = aes256cprng_init((const char*)gcry_md_read(mh, 0));
  gcry_md_close(mh);
  return cprng;
}

static gcry_mpi_t 
ecdsa_cprng_get_exponent(struct aes256cprng *cprng,
			 const struct curve_params *cp)
{
  size_t len = cp->order_len_bin;
  gcry_mpi_t a;
  char *buf;
  assert((buf = gcry_malloc_secure(len)));
  aes256cprng_fillbuf(cprng, buf, len);
  a = buf_to_exponent(buf, len, cp);
  gcry_free(buf);
  return a;
}

#define ecdsa_cprng_done aes256cprng_done

#endif

/******************************************************************************/

/* Algorithms 4.29 and 4.30 in the "Guide to Elliptic Curve Cryptography"     */
gcry_mpi_t ECDSA_sign(const char *msg, const gcry_mpi_t d,
		      const struct curve_params *cp)
{
  struct affine_point p1;
  gcry_mpi_t e, k, r, s;

#if ECDSA_DETERMINISTIC
  struct aes256cprng *cprng;
  cprng = ecdsa_cprng_init(msg, d, cp);
#endif
  r = gcry_mpi_snew(0);
  s = gcry_mpi_snew(0);
 Step1:
#if ECDSA_DETERMINISTIC
  k = ecdsa_cprng_get_exponent(cprng, cp);
#else
  k = get_random_exponent(cp);
#endif
  p1 = pointmul(&cp->dp.base, k, &cp->dp);
  gcry_mpi_mod(r, p1.x, cp->dp.order);
  point_release(&p1);
  if (! gcry_mpi_cmp_ui(r, 0)) {
    gcry_mpi_release(k);
    goto Step1;
  }
  gcry_mpi_scan(&e, GCRYMPI_FMT_USG, msg, 64, NULL);
  gcry_mpi_set_flag(e, GCRYMPI_FLAG_SECURE);
  gcry_mpi_mod(e, e, cp->dp.order);
  gcry_mpi_mulm(s, d, r, cp->dp.order);
  gcry_mpi_addm(s, s, e, cp->dp.order);
  gcry_mpi_invm(e, k, cp->dp.order);
  gcry_mpi_mulm(s, s, e, cp->dp.order);
  gcry_mpi_release(e);
  gcry_mpi_release(k);
  if (! gcry_mpi_cmp_ui(s, 0))
    goto Step1;
  gcry_mpi_mul(s, s, cp->dp.order);
  gcry_mpi_add(s, s, r);
  gcry_mpi_release(r);
#if ECDSA_DETERMINISTIC
  ecdsa_cprng_done(cprng);
#endif
  return s;
}

int ECDSA_verify(const char *msg, const struct affine_point *Q,
		 const gcry_mpi_t sig, const struct curve_params *cp)
{
  gcry_mpi_t e, r, s;
  struct affine_point X1, X2;
  int res = 0;
  r = gcry_mpi_new(0);
  s = gcry_mpi_new(0);
  gcry_mpi_div(s, r, sig, cp->dp.order, 0);
  if (gcry_mpi_cmp_ui(s, 0) <= 0 || gcry_mpi_cmp(s, cp->dp.order) >= 0 ||
      gcry_mpi_cmp_ui(r, 0) <= 0 || gcry_mpi_cmp(r, cp->dp.order) >= 0) 
    goto end;
  gcry_mpi_scan(&e, GCRYMPI_FMT_USG, msg, 64, NULL);
  gcry_mpi_mod(e, e, cp->dp.order);
  gcry_mpi_invm(s, s, cp->dp.order);
  gcry_mpi_mulm(e, e, s, cp->dp.order);
  X1 = pointmul(&cp->dp.base, e, &cp->dp);
  gcry_mpi_mulm(e, r, s, cp->dp.order);
  X2 = pointmul(Q, e, &cp->dp);
  point_add(&X1, &X2, &cp->dp);
  gcry_mpi_release(e);
  if (! point_is_zero(&X1)) {
    gcry_mpi_mod(s, X1.x, cp->dp.order);
    res = ! gcry_mpi_cmp(s, r);
  }
  point_release(&X1);
  point_release(&X2);
 end:
  gcry_mpi_release(r);
  gcry_mpi_release(s);
  return res;
}

/******************************************************************************/

/* Algorithms 4.42 and 4.43 in the "Guide to Elliptic Curve Cryptography"     */
static void ECIES_KDF(char *key, const gcry_mpi_t Zx, 
		      const struct affine_point *R, size_t elemlen)
{
  char *buf;
  assert((buf = gcry_malloc_secure(3 * elemlen)));
  serialize_mpi(buf + 0 * elemlen, elemlen, DF_BIN, Zx);
  serialize_mpi(buf + 1 * elemlen, elemlen, DF_BIN, R->x);
  serialize_mpi(buf + 2 * elemlen, elemlen, DF_BIN, R->y);
  gcry_md_hash_buffer(GCRY_MD_SHA512, key, buf, 3 * elemlen);
  gcry_free(buf);
}

struct affine_point ECIES_encapsulation(char *key, const struct affine_point *Q, 
                                        const struct curve_params *cp)
{
  struct affine_point Z, R;
  gcry_mpi_t k;
 Step1:
  k = get_random_exponent(cp);
  R = pointmul(&cp->dp.base, k, &cp->dp);
  gcry_mpi_mul_ui(k, k, cp->dp.cofactor);
  Z = pointmul(Q, k, &cp->dp);
  gcry_mpi_release(k);
  if (point_is_zero(&Z)) {
    point_release(&R);
    point_release(&Z);
    goto Step1;
  }
  ECIES_KDF(key, Z.x, &R, cp->elem_len_bin);
  point_release(&Z);
  return R;
}

int ECIES_decapsulation(char *key, const struct affine_point *R,
                        const gcry_mpi_t d, const struct curve_params *cp)
{
  struct affine_point Z;
  gcry_mpi_t e;
  int res = 0;
  if (! embedded_key_validation(R, &cp->dp))
    return 0;
  e = gcry_mpi_snew(0);
  gcry_mpi_mul_ui(e, d, cp->dp.cofactor);
  Z = pointmul(R, e, &cp->dp);
  gcry_mpi_release(e);
  if ((res = ! point_is_zero(&Z)))
    ECIES_KDF(key, Z.x, R, cp->elem_len_bin);
  point_release(&Z);
  return res;
}

/******************************************************************************/

static void DH_KDF(char *key, const struct affine_point *P, size_t elemlen)
{
  char *buf;
  assert((buf = gcry_malloc_secure(2 * elemlen)));
  serialize_mpi(buf + 0 * elemlen, elemlen, DF_BIN, P->x);
  serialize_mpi(buf + 1 * elemlen, elemlen, DF_BIN, P->y);
  gcry_md_hash_buffer(GCRY_MD_SHA512, key, buf, 2 * elemlen);
  gcry_free(buf);
}

gcry_mpi_t DH_step1(struct affine_point *A, const struct curve_params *cp)
{
  gcry_mpi_t a;
  a = get_random_exponent(cp);
  *A = pointmul(&cp->dp.base, a, &cp->dp);
  return a;
}

int DH_step2(char *key, const struct affine_point *B, const gcry_mpi_t exp, 
	     const struct curve_params *cp)
{
  struct affine_point P;
  if (! full_key_validation(B, &cp->dp))
    return 0;
  P = pointmul(B, exp, &cp->dp);
  DH_KDF(key, &P, cp->elem_len_bin);
  point_release(&P);
  return 1;
}