1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
|
/*
* eax.c: implementation of the EAX authenticated encryption block cipher mode
*/
/*
* This file is Free Software. It was originally written for secnet.
*
* Copyright 2013 Ian Jackson
* Copyright 2013 Mark Wooding
*
* You may redistribute secnet as a whole and/or modify it under the
* terms of the GNU General Public License as published by the Free
* Software Foundation; either version 3, or (at your option) any
* later version.
*
* You may redistribute this file and/or modify it under the terms of
* the GNU General Public License as published by the Free Software
* Foundation; either version 2, or (at your option) any later
* version.
*
* This software is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software; if not, see
* https://www.gnu.org/licenses/gpl.html.
*/
/*
* This file is designed to be #included into another .c file which
* sets up the environment. It will declare or define three
* functions, eax_setup, eax_encrypt and eax_decrypt.
*
* Manifest constants which are expected to be defined:
*
* INFO One or more formal parameter definitions.
* Used in all relevant function declarations. Typically
* the application will use this for its context pointer,
* key schedule structure, etc.
*
* I Corresponding actual parameters for chaining onto
* sub-functions declared to take INFO parameters
*
* EAX_ENTRYPOINT_DECL
* Declarator decoration for the three entry points.
* Typically either "static" or the empty string;
*
* EAX_DECLARATIONS_ONLY
* Tested with #ifdef, so should be #defined to 1, or left
* undefined. If defined, #including eax.c will produces
* only the function prototypes for the three entrypoints.
* Otherwise it will produce the implementation.
*
* BLOCK_SIZE
* Constant expresion of integer type.
*
* void BLOCK_ENCRYPT(uint8_t dst[n], const uint8_t src[n]);
*
* Function to encrypt with the selected key. The block
* cipher's key schedule (ie, the key) to be used is
* implicit; uses of BLOCK_ENCRYPT always occur in a
* context where the parameters defined by INFO are
* available.
*
* So in a real application which wants to use more than
* one key at a time, BLOCK_ENCRYPT must be a macro which
* accesses the block cipher's key schedule via one of the
* INFO parameters.
*
* BLOCK_ENCRYPT must tolerate dst==src.
*
* EAX does not need to use the block cipher's decryption
* function.
*
* uint8_t INFO_B[n], INFO_P[n];
*
* Buffers used by the algorithm; they are written by
* eax_setup and used by eax_encrypt and eax_decrypt.
*
* That is, effectively they are the part of the key
* schedule specific to EAX.
*
* An application which wants to use more than one key at
* a time must define these as macros which refer to
* key-specific variables via one of the INFO parameters.
*
* int consttime_memeq(const void *s1, const void *s2, size_t n);
*
* Like !memcmp(s1,s2,n) but takes the same amount of time
* no matter where the discrepancy is. Result must be
* a canonicalised boolean.
*
* The entrypoints which are then defined are:
*
* void eax_setup(INFO)
*
* Does the EAX-specific part of the key setup. The block
* cipher key schedule must already have been done, as
* eax_setup uses BLOCK_ENCRYPT.
*
* void eax_encrypt(INFO, const uint8_t nonce[nonce_len], size_t nonce_len,
* const uint8_t h[h_len], size_t h_len,
* const uint8_t m[m_len], size_t m_len,
* uint8_t tau,
* uint8_t ct[m_len+tau])
*
* Does a single EAX authenticated encryption, providing
* confidentiality and integrity to the message m[0..m_len-1].
*
* The output message is longer than m by tau bytes and is stored
* in the array ct which must be big enough.
*
* nonce must never be repeated with the same key or the security
* of the system is destroyed, but it does not need to be secret.
* It is OK to transmit the nonce with the message along with the
* ciphertext and have the receiver recover it.
*
* h is the "header" - it is some extra data which should be
* covered by the authentication, but not the encryption. The
* output message does not contain a representation of h: it is
* expected to be transmitted separately (perhaps even in a
* different format). (If h_len==0, h may be a NULL pointer.)
*
* tau is the tag length - that is, the length of the message
* authentication code. It should be chosen for the right
* tradeoff between message expansion and security (resistence to
* forgery). It must be no longer than the block cipher block
* size.
*
* For any particular key. the tag length should be fixed. (The
* tag length should NOT be encoded into the packet along with
* the ciphertext and extracted by the receiver! Rather, the
* receiver must know what tag length to expect.)
*
* It is permissible for ct==m, or for the arrays to be disjoint.
* They must not overlap more subtly.
*
* _Bool eax_decrypt(INFO, const uint8_t nonce[nonce_len], size_t nonce_len,
* const uint8_t h[h_len], size_t h_len,
* const uint8_t ct[ct_len], size_t ct_len,
* uint8_t tau,
* uint8_t m[ct_len-tau])
*
* Does a single EAX authenticated decryption.
*
* On successful return, the plaintext message is written to m
* and eax_decrypt returns true. The length of the plaintext
* message is always ct_len-tau.
*
* If the message did not decrypt correctly, returns false.
* (There is no further indication of the nature of the error.)
* In this case the buffer m may contain arbitrary contents which
* should not be revealed to attackers.
*
* nonce, h, tau are as above.
*
* It is permissible to call eax_decrypt with an input message
* which is too short (i.e. shorter than tau) (notwithstanding
* the notation m[ct_len-tau] in the faux prototype above).
* In this case it will return false without touching m.
*
* As with eax_decrypt, ct==m is permissible.
*/
/***** IMPLEMENTATION *****/
/*
* We use the notation from the EAX paper, mostly.
* (We write xscr for "x in fancy mathsy curly script".)
*
* See:
* Mihir Bellare, Phillip Rogaway, and David Wagner
*
* _The EAX Mode of Operation
* (A Two-Pass Authenticated Encryption Scheme
* Optimized for Simplicity and Efficiency)_
*
* Preliminary version in:
* Fast Software Encryption (FSE) 2004. Lecture Notes in Computer Science,
* vol. ??, pp. ??--??.
*
* Full version at:
* http://www.cs.ucdavis.edu/~rogaway/papers/eax.html
*/
/*
* In general, all functions tolerate their destination arrays being
* the same pointer to their source arrays, or totally distinct.
* (Just like BLOCK_ENCRYPT and the public eax entrypoints.)
* They must not overlap in more subtle ways.
*/
#define n ((size_t)BLOCK_SIZE)
#ifndef EAX_DECLARATIONS_ONLY
static void xor_block(uint8_t *dst, const uint8_t *a, const uint8_t *b,
size_t l)
/* simple block xor */
{
while (l--)
*dst++ = *a++ ^ *b++;
}
static void increment(uint8_t *value)
/* value is a single block; incremented (BE) mod 256^n */
{
uint8_t *p;
for (p=value+n; p>value; )
if ((*--p)++) break;
}
static void alg_ctr(INFO, uint8_t *c, const uint8_t *nscr,
const uint8_t *m, size_t m_len)
{
uint8_t blocknonce[n], cipher[n];
size_t in;
memcpy(blocknonce, nscr, n);
for (in=0; in<m_len; in+=n) {
BLOCK_ENCRYPT(cipher,blocknonce);
increment(blocknonce);
size_t now = m_len-in < n ? m_len-in : n;
xor_block(c+in, m+in, cipher, now);
}
}
static void alg_omac_t_k(INFO, uint8_t *mac_out, uint8_t t,
const uint8_t *m, size_t m_len)
{
/* Initial tweak. */
memset(mac_out, 0, n-1);
mac_out[n-1] = t;
/* All of the whole blocks. */
size_t in=0;
for (; in+n <= m_len; in+=n) {
BLOCK_ENCRYPT(mac_out, mac_out);
xor_block(mac_out, mac_out, m+in, n);
}
/* The last partial block, if there is one. */
assert(in <= m_len);
size_t remain = m_len - in;
if (!remain)
xor_block(mac_out, mac_out, INFO_B, n);
else {
BLOCK_ENCRYPT(mac_out, mac_out);
xor_block(mac_out, mac_out, m+in, remain);
mac_out[remain] ^= 0x80;
xor_block(mac_out, mac_out, INFO_P, n);
}
/* Final block-cipher application. */
BLOCK_ENCRYPT(mac_out, mac_out);
}
/*
* Constant-time multiply-by-x in F = GF(2^128), using the EAX representation
* F = GF(2)[x]/(x^128 + x^7 + x^2 + x + 1).
*
* The input vector V consists of the input polynomial L = a_127 x^127 +
* ... + a_1 x + a_0; specifically, the byte v[15 - i] contains a_{8i+7}
* x^{8i+7} + ... + a_{8i} x^{8i}. The output vector O will contain L x on
* exit, using the same encoding.
*
* It is fine if O = V, or the two vectors are disjoint; Bad Things will
* happen if they overlap in some more complicated way.
*/
static void consttime_curious_multiply(INFO, uint8_t *o, const uint8_t *v)
{
#define POLY 0x87u
unsigned m = ~((v[0] >> 7) - 1u) & POLY;
unsigned i, mm;
for (i = n - 1; i < n; i--) {
mm = (v[i] >> 7) & 1u;
o[i] = (v[i] << 1) ^ m;
m = mm;
}
#undef POLY
}
#endif /* not EAX_DECLARATIONS_ONLY */
EAX_ENTRYPOINT_DECL
void eax_setup(INFO)
#ifndef EAX_DECLARATIONS_ONLY
{
uint8_t work[n];
memset(work,0,n);
BLOCK_ENCRYPT(work,work);
consttime_curious_multiply(I, INFO_B, work);
consttime_curious_multiply(I, INFO_P, INFO_B);
}
#endif /* not EAX_DECLARATIONS_ONLY */
;
EAX_ENTRYPOINT_DECL
void eax_encrypt(INFO,
const uint8_t *nonce, size_t nonce_len,
const uint8_t *h, size_t h_len,
const uint8_t *m, size_t m_len, uint8_t tau, uint8_t *ct)
#ifndef EAX_DECLARATIONS_ONLY
{
assert(tau <= n);
uint8_t nscr[n], hscr[n], cscr[n];
alg_omac_t_k(I, nscr, 0, nonce,nonce_len);
alg_omac_t_k(I, hscr, 1, h,h_len);
alg_ctr(I, ct, nscr, m, m_len);
alg_omac_t_k(I, cscr, 2, ct, m_len);
uint8_t *t = ct + m_len;
xor_block(t, nscr, cscr, tau);
xor_block(t, t, hscr, tau);
}
#endif /* not EAX_DECLARATIONS_ONLY */
;
EAX_ENTRYPOINT_DECL
_Bool eax_decrypt(INFO,
const uint8_t *nonce, size_t nonce_len,
const uint8_t *h, size_t h_len,
const uint8_t *ct, size_t ct_len, uint8_t tau, uint8_t *m)
#ifndef EAX_DECLARATIONS_ONLY
{
assert(tau <= n);
const uint8_t *t;
uint8_t nscr[n], hscr[n], cscr[n], tprime[tau];
if (ct_len < tau) return 0;
size_t m_len = ct_len - tau;
t = ct + m_len;
alg_omac_t_k(I, nscr, 0, nonce,nonce_len);
alg_omac_t_k(I, hscr, 1, h,h_len);
alg_omac_t_k(I, cscr, 2, ct,m_len);
xor_block(tprime, nscr, cscr, tau);
xor_block(tprime, tprime, hscr, tau);
if (!consttime_memeq(tprime, t, tau)) return 0;
alg_ctr(I, m, nscr, ct, m_len);
return 1;
}
#endif /* not EAX_DECLARATIONS_ONLY */
;
#undef n
|