File: bitops.h

package info (click to toggle)
sedutil 1.20.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,744 kB
  • sloc: cpp: 8,386; xml: 1,433; sh: 810; ansic: 721; makefile: 110
file content (273 lines) | stat: -rw-r--r-- 6,893 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
/*
 * cifra - embedded cryptography library
 * Written in 2014 by Joseph Birr-Pixton <jpixton@gmail.com>
 *
 * To the extent possible under law, the author(s) have dedicated all
 * copyright and related and neighboring rights to this software to the
 * public domain worldwide. This software is distributed without any
 * warranty.
 *
 * You should have received a copy of the CC0 Public Domain Dedication
 * along with this software. If not, see
 * <http://creativecommons.org/publicdomain/zero/1.0/>.
 */

#ifndef BITOPS_H
#define BITOPS_H

#include <stdint.h>
#include <stddef.h>

/* Assorted bitwise and common operations used in ciphers. */

/** Circularly rotate right x by n bits.
 *  0 > n > 32. */
static inline uint32_t rotr32(uint32_t x, unsigned n)
{
  return (x >> n) | (x << (32 - n));
}

/** Circularly rotate left x by n bits.
 *  0 > n > 32. */
static inline uint32_t rotl32(uint32_t x, unsigned n)
{
  return (x << n) | (x >> (32 - n));
}

/** Circularly rotate right x by n bits.
 *  0 > n > 64. */
static inline uint64_t rotr64(uint64_t x, unsigned n)
{
  return (x >> n) | (x << (64 - n));
}

/** Circularly rotate left x by n bits.
 *  0 > n > 64. */
static inline uint64_t rotl64(uint64_t x, unsigned n)
{
  return (x << n) | (x >> (64 - n));
}

/** Read 4 bytes from buf, as a 32-bit big endian quantity. */
static inline uint32_t read32_be(const uint8_t buf[4])
{
  return (buf[0] << 24) |
         (buf[1] << 16) |
         (buf[2] << 8) |
         (buf[3]);
}

/** Read 4 bytes from buf, as a 32-bit little endian quantity. */
static inline uint32_t read32_le(const uint8_t buf[4])
{
  return (buf[3] << 24) |
         (buf[2] << 16) |
         (buf[1] << 8) |
         (buf[0]);
}

/** Read 8 bytes from buf, as a 64-bit big endian quantity. */
static inline uint64_t read64_be(const uint8_t buf[8])
{
  uint32_t hi = read32_be(buf),
           lo = read32_be(buf + 4);
  return ((uint64_t)hi) << 32 |
         lo;
}

/** Read 8 bytes from buf, as a 64-bit little endian quantity. */
static inline uint64_t read64_le(const uint8_t buf[8])
{
  uint32_t hi = read32_le(buf + 4),
           lo = read32_le(buf);
  return ((uint64_t)hi) << 32 |
         lo;
}

/** Encode v as a 32-bit big endian quantity into buf. */
static inline void write32_be(uint32_t v, uint8_t buf[4])
{
  *buf++ = (v >> 24) & 0xff;
  *buf++ = (v >> 16) & 0xff;
  *buf++ = (v >> 8) & 0xff;
  *buf   = v & 0xff;
}

/** Encode v as a 32-bit little endian quantity into buf. */
static inline void write32_le(uint32_t v, uint8_t buf[4])
{
  *buf++ = v & 0xff;
  *buf++ = (v >> 8) & 0xff;
  *buf++ = (v >> 16) & 0xff;
  *buf   = (v >> 24) & 0xff;
}

/** Encode v as a 64-bit big endian quantity into buf. */
static inline void write64_be(uint64_t v, uint8_t buf[8])
{
  *buf++ = (v >> 56) & 0xff;
  *buf++ = (v >> 48) & 0xff;
  *buf++ = (v >> 40) & 0xff;
  *buf++ = (v >> 32) & 0xff;
  *buf++ = (v >> 24) & 0xff;
  *buf++ = (v >> 16) & 0xff;
  *buf++ = (v >> 8) & 0xff;
  *buf   = v & 0xff;
}

/** Encode v as a 64-bit little endian quantity into buf. */
static inline void write64_le(uint64_t v, uint8_t buf[8])
{
  *buf++ = v & 0xff;
  *buf++ = (v >> 8) & 0xff;
  *buf++ = (v >> 16) & 0xff;
  *buf++ = (v >> 24) & 0xff;
  *buf++ = (v >> 32) & 0xff;
  *buf++ = (v >> 40) & 0xff;
  *buf++ = (v >> 48) & 0xff;
  *buf   = (v >> 56) & 0xff;
}

/** out = in ^ b8.
 *  out and in may alias. */
static inline void xor_b8(uint8_t *out, const uint8_t *in, uint8_t b8, size_t len)
{
  for (size_t i = 0; i < len; i++)
    out[i] = in[i] ^ b8;
}

/** out = x ^ y.
 *  out, x and y may alias. */
static inline void xor_bb(uint8_t *out, const uint8_t *x, const uint8_t *y, size_t len)
{
  for (size_t i = 0; i < len; i++)
    out[i] = x[i] ^ y[i];
}

/* out ^= x
 * out and x may alias. */
static inline void xor_words(uint32_t *out, const uint32_t *x, size_t nwords)
{
  for (size_t i = 0; i < nwords; i++)
    out[i] ^= x[i];
}

/** Produce 0xffffffff if x == y, zero otherwise, without branching. */
static inline uint32_t mask_u32(uint32_t x, uint32_t y)
{
  uint32_t diff = x ^ y;
  uint32_t diff_is_zero = ~diff & (diff - 1);
  return (diff_is_zero >> 31);
}

/** Product 0xff if x == y, zero otherwise, without branching. */
static inline uint8_t mask_u8(uint32_t x, uint32_t y)
{
  uint32_t diff = x ^ y;
  uint8_t diff_is_zero = (uint8_t) (~diff & (diff - 1));
  return - (diff_is_zero >> 7);
}

/** Select the ith entry from the given table of n values, in a side channel-silent
 *  way. */
static inline uint32_t select_u32(uint32_t i, volatile const uint32_t *tab, uint32_t n)
{
  uint32_t r = 0;

  for (uint32_t ii = 0; ii < n; ii++)
  {
    uint32_t mask = mask_u32(i, ii);
    r = (r & ~mask) | (tab[ii] & mask);
  }

  return r;
}

/** Select the ith entry from the given table of n values, in a side channel-silent
 *  way. */
static inline uint8_t select_u8(uint32_t i, volatile const uint8_t *tab, uint32_t n)
{
  uint8_t r = 0;

  for (uint32_t ii = 0; ii < n; ii++)
  {
    uint8_t mask = mask_u8(i, ii);
    r = (r & ~mask) | (tab[ii] & mask);
  }

  return r;
}

/** Select the ath, bth, cth and dth entries from the given table of n values,
 *  placing the results into a, b, c and d. */
static inline void select_u8x4(uint8_t *a, uint8_t *b, uint8_t *c, uint8_t *d,
                               volatile const uint8_t *tab, uint32_t n)
{
  uint8_t ra = 0,
          rb = 0,
          rc = 0,
          rd = 0;
  uint8_t mask;

  for (uint32_t i = 0; i < n; i++)
  {
    uint8_t item = tab[i];

    mask = mask_u8(*a, i); ra = (ra & ~mask) | (item & mask);
    mask = mask_u8(*b, i); rb = (rb & ~mask) | (item & mask);
    mask = mask_u8(*c, i); rc = (rc & ~mask) | (item & mask);
    mask = mask_u8(*d, i); rd = (rd & ~mask) | (item & mask);
  }

  *a = ra;
  *b = rb;
  *c = rc;
  *d = rd;
}

/** out ^= if0 or if1, depending on the value of bit. */
static inline void select_xor128(uint32_t out[4],
                                 const uint32_t if0[4],
                                 const uint32_t if1[4],
                                 uint8_t bit)
{
  uint32_t mask1 = mask_u32(bit, 1);
  uint32_t mask0 = ~mask1;

  out[0] ^= (if0[0] & mask0) | (if1[0] & mask1);
  out[1] ^= (if0[1] & mask0) | (if1[1] & mask1);
  out[2] ^= (if0[2] & mask0) | (if1[2] & mask1);
  out[3] ^= (if0[3] & mask0) | (if1[3] & mask1);
}

/** Increments the integer stored at v (of non-zero length len)
 *  with the least significant byte first. */
static inline void incr_le(uint8_t *v, size_t len)
{
  size_t i = 0;
  while (1)
  {
    if (++v[i] != 0)
      return;
    i++;
    if (i == len)
      return;
  }
}

/** Increments the integer stored at v (of non-zero length len)
 *  with the most significant byte last. */
static inline void incr_be(uint8_t *v, size_t len)
{
  len--;
  while (1)
  {
    if (++v[len] != 0)
      return;
    if (len == 0)
      return;
    len--;
  }
}

#endif