1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
/*
* cifra - embedded cryptography library
* Written in 2014 by Joseph Birr-Pixton <jpixton@gmail.com>
*
* To the extent possible under law, the author(s) have dedicated all
* copyright and related and neighboring rights to this software to the
* public domain worldwide. This software is distributed without any
* warranty.
*
* You should have received a copy of the CC0 Public Domain Dedication
* along with this software. If not, see
* <http://creativecommons.org/publicdomain/zero/1.0/>.
*/
#include <string.h>
#include "sha1.h"
#include "blockwise.h"
#include "bitops.h"
#include "handy.h"
#include "tassert.h"
void cf_sha1_init(cf_sha1_context *ctx)
{
memset(ctx, 0, sizeof *ctx);
ctx->H[0] = 0x67452301;
ctx->H[1] = 0xefcdab89;
ctx->H[2] = 0x98badcfe;
ctx->H[3] = 0x10325476;
ctx->H[4] = 0xc3d2e1f0;
}
static void sha1_update_block(void *vctx, const uint8_t *inp)
{
cf_sha1_context *ctx = vctx;
/* This is a 16-word window into the whole W array. */
uint32_t W[16];
uint32_t a = ctx->H[0],
b = ctx->H[1],
c = ctx->H[2],
d = ctx->H[3],
e = ctx->H[4],
Wt;
for (size_t t = 0; t < 80; t++)
{
/* For W[0..16] we process the input into W.
* For W[16..79] we compute the next W value:
*
* W[t] = (W[t - 3] ^ W[t - 8] ^ W[t - 14] ^ W[t - 16]) <<< 1
*
* But all W indices are reduced mod 16 into our window.
*/
if (t < 16)
{
W[t] = Wt = read32_be(inp);
inp += 4;
} else {
Wt = W[(t - 3) % 16] ^ W[(t - 8) % 16] ^ W[(t - 14) % 16] ^ W[(t - 16) % 16];
Wt = rotl32(Wt, 1);
W[t % 16] = Wt;
}
uint32_t f, k;
if (t <= 19)
{
f = (b & c) | (~b & d);
k = 0x5a827999;
} else if (t <= 39) {
f = b ^ c ^ d;
k = 0x6ed9eba1;
} else if (t <= 59) {
f = (b & c) | (b & d) | (c & d);
k = 0x8f1bbcdc;
} else {
f = b ^ c ^ d;
k = 0xca62c1d6;
}
uint32_t temp = rotl32(a, 5) + f + e + k + Wt;
e = d;
d = c;
c = rotl32(b, 30);
b = a;
a = temp;
}
ctx->H[0] += a;
ctx->H[1] += b;
ctx->H[2] += c;
ctx->H[3] += d;
ctx->H[4] += e;
ctx->blocks++;
}
void cf_sha1_update(cf_sha1_context *ctx, const void *data, size_t nbytes)
{
cf_blockwise_accumulate(ctx->partial, &ctx->npartial, sizeof ctx->partial,
data, nbytes,
sha1_update_block, ctx);
}
void cf_sha1_digest(const cf_sha1_context *ctx, uint8_t hash[CF_SHA1_HASHSZ])
{
cf_sha1_context ours = *ctx;
cf_sha1_digest_final(&ours, hash);
}
void cf_sha1_digest_final(cf_sha1_context *ctx, uint8_t hash[CF_SHA1_HASHSZ])
{
uint64_t digested_bytes = ctx->blocks;
digested_bytes = digested_bytes * CF_SHA1_BLOCKSZ + ctx->npartial;
uint64_t digested_bits = digested_bytes * 8;
size_t padbytes = CF_SHA1_BLOCKSZ - ((digested_bytes + 8) % CF_SHA1_BLOCKSZ);
/* Hash 0x80 00 ... block first. */
cf_blockwise_acc_pad(ctx->partial, &ctx->npartial, sizeof ctx->partial,
0x80, 0x00, 0x00, padbytes,
sha1_update_block, ctx);
/* Now hash length. */
uint8_t buf[8];
write64_be(digested_bits, buf);
cf_sha1_update(ctx, buf, 8);
/* We ought to have got our padding calculation right! */
assert(ctx->npartial == 0);
write32_be(ctx->H[0], hash + 0);
write32_be(ctx->H[1], hash + 4);
write32_be(ctx->H[2], hash + 8);
write32_be(ctx->H[3], hash + 12);
write32_be(ctx->H[4], hash + 16);
memset(ctx, 0, sizeof *ctx);
}
const cf_chash cf_sha1 = {
.hashsz = CF_SHA1_HASHSZ,
.blocksz = CF_SHA1_BLOCKSZ,
.init = (cf_chash_init) cf_sha1_init,
.update = (cf_chash_update) cf_sha1_update,
.digest = (cf_chash_digest) cf_sha1_digest
};
|