1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
|
#!/usr/bin/env python
#
# This is an example of a wrapper script for the whole seer analysis pipeline,
# based on having a cluster with LSF
#
# imports
import os,sys
from __future__ import print_function
import re
import argparse
import subprocess
# globals
subsampled_list = "kmds_tmp_files.txt"
job_num = re.compile('^Job <(\d+)>')
# subroutines
# Checks, for a list of job numbers, whether they are all done (or failed)
def check_done(jobs):
done = 1
for job in jobs:
bsub_ret = subprocess.check_call("bjobs -a -noheader -o \"stat exit_code delimiter=','\" " + str(job), shell=True)
status = bsub_ret.split(",")
if bsub_ret[1] == "RUN" | bsub_ret[1] == "PEND" | bsub_ret[1] == "WAIT":
done = 0
break
return done
# Command line arguments
parser = argparse.ArgumentParser()
parser.add_argument("infile", help="A file containing a list of dsm output files")
parser.add_argument("pheno", help=".pheno file containing metadata")
parser.add_argument("-o", "--out_prefix", help="Prefix for output files",default="seer")
parser.add_argument("-t", "--threads", help="Threads to use",type=int,default=4)
parser.add_argument("--LSF", help="Submit over LSF",action="store_true",default=False)
parser.add_argument("--pcs", help="Number of principal coordinates to use in population structure",type=int,default=3)
parser.add_argument("--subsample", help="Proportion of total kmers to use in mds calculation",type=float,default=0.001)
parser.add_argument("--maf", help="Minimum minor allele frequency",type=float,default=0.01)
parser.add_argument("--chisq",help="Chi^2 filter cutoff",type=float,default=10e-5)
parser.add_argument("--pval", help="pvalue cutoff",type=float,default=10e-8)
parser.add_argument("--assemble", help="assemble significant kmers, and perform association",action="store_true",default=False)
parser.add_argument("--reference", help="map kmers back to this reference file")
parser.add_argument("--drafts", help="file of annotated draft assemblies to map kmers back to")
args = parser.parse_args()
# Read in dsm files
if not (os.path.isfile(args.infile) & os.path.isfile(args.pheno)):
raise Exception("Mandatory input files do not exist")
with open(args.infile,'r') as f:
dsm_files = f.readlines()
dsm_files = [x.strip('\n') for x in dsm_files]
# Run kmds --no_mds on each file in parallel
# Collect output
print("Filtering " + str(len(dsm_files)) + " files\n")
i = 0
subsampled_output = []
jobs = []
for dsm in dsm_files:
i += 1
length = args.subsample * int(subprocess.check_output("gzip -d -c " + dsm + " | wc -l", shell=True))
try:
kmds_command = ""
if args.LSF:
kmds_command = "bsub -o kmds.step1.%J." + str(i) + ".o -e kmds.step1.%J." + str(i) + ".e "
kmds_command += "kmds -k " + str(dsm) + " -p " + str(args.pheno) + " -o kmds.step1." + str(i) + " --no_mds --maf " + str(args.maf) + " --chisq " + str(args.chi2) + " --size " + str(length)
print(kmds_command)
if args.LSF:
job_return = subprocess.check_output(kmds_command, shell=True)
m = job_num.match(job_return)
jobs.append(m.group())
else:
retcode = subprocess.call(kmds_command, shell=True)
if retcode < 0:
print("kmds step 1 file " + str(i) + " failed with ", -retcode, file=sys.stderr)
subsampled_output.append("kmds.step1." + str(i))
except OSError as e:
print("Execution failed:", e, file=sys.stderr)
# Check all jobs have finished
if args.LSF:
while not (check_done(jobs)):
os.sleep(30)
jobs = []
write_list = open(subsampled_list,'w')
for subsample in subsampled_output:
write_list.write(subsample + "\n")
write_list.close()
# Run kmds --mds_concat on output
print("Calculating MDS components\n")
try:
kmds_command = ""
if args.LSF:
kmds_command = "bsub -o kmds.step2.%J.o -e kmds.step2.%J..e -n" + str(args.threads) + " -R \"span[hosts=1]\" -R \"select[mem>4000] rusage[mem=4000]\" -M4000 "
kmds_command += "kmds --mds_concat " + str(subsampled_list) + " -o all_structure --threads " + str(args.threads) + " --pc " + str(args.pcs)
print(kmds_command)
if args.LSF:
job_return = subprocess.check_output(kmds_command, shell=True)
m = job_num.match(job_return)
jobs.append(m.group())
else:
retcode = subprocess.call(kmds_command, shell=True)
if retcode < 0:
print("kmds step 2 file failed with ", -retcode, file=sys.stderr)
except OSError as e:
print("Execution failed:", e, file=sys.stderr)
if args.LSF:
while not (check_done(jobs)):
os.sleep(30)
jobs = []
# Run seer on each file in parallel
print("Association on " + str(len(dsm_files)) + " files\n")
i = 0
seer_output = []
for dsm in dsm_files:
i += 1
try:
seer_command = ""
if args.LSF:
seer_command = "bsub -o kmds.step1.%J." + str(i) + ".o -e kmds.step1.%J." + str(i) + ".e -n" + str(args.threads) + " -R \"span[hosts=1]\""
seer_command += "'seer -k " + str(dsm) + " -p " + str(args.pheno) + " --no_filtering --pval " + str(args.pval) + " --struct all_structure.dsm --threads " + str(args.threads) + " --print_samples > seer." + str(i) + ".result'"
print(seer_command)
if args.LSF:
job_return = subprocess.check_output(seer_command, shell=True)
m = job_num.match(job_return)
jobs.append(m.group())
else:
retcode = subprocess.call(seer_command, shell=True)
if retcode < 0:
print("seer file " + str(i) + " failed with ", -retcode, file=sys.stderr)
seer_output.append("kmds." + str(i))
except OSError as e:
print("Execution failed:", e, file=sys.stderr)
if args.LSF:
while not (check_done(jobs)):
os.sleep(30)
jobs = []
# TODO post-processing:
subprocess.check_call("cat seer.*.result > seer.result", shell=True)
for i in range(1, len(dsm_files)):
subprocess.check_call("rm seer." + str(i) + ".result", shell=True)
# map back to references
subprocess.call("map_back -k seer.result -r " + args.drafts + " > kmer_draft_locations.txt")
# assembly of significant kmers
if (args.assemble):
subprocess.call("VelvetOptimiser.pl --s 11 --e 71 --t 1 -f '-short -fasta ../../resultErytrhomycin.fa' --m -1 --k max --c tbp")
# use blat by default
# fall back to blast
print("All pans piped\nAssocation results written to seer.result")
|