1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
import itertools
import pytest
from huggingface_hub import (
InferenceClient,
)
from huggingface_hub.errors import OverloadedError
from sentry_sdk import start_transaction
from sentry_sdk.integrations.huggingface_hub import HuggingfaceHubIntegration
from unittest import mock # python 3.3 and above
@pytest.mark.parametrize(
"send_default_pii, include_prompts, details_arg",
itertools.product([True, False], repeat=3),
)
def test_nonstreaming_chat_completion(
sentry_init, capture_events, send_default_pii, include_prompts, details_arg
):
sentry_init(
integrations=[HuggingfaceHubIntegration(include_prompts=include_prompts)],
traces_sample_rate=1.0,
send_default_pii=send_default_pii,
)
events = capture_events()
client = InferenceClient("some-model")
if details_arg:
client.post = mock.Mock(
return_value=b"""[{
"generated_text": "the model response",
"details": {
"finish_reason": "length",
"generated_tokens": 10,
"prefill": [],
"tokens": []
}
}]"""
)
else:
client.post = mock.Mock(
return_value=b'[{"generated_text": "the model response"}]'
)
with start_transaction(name="huggingface_hub tx"):
response = client.text_generation(
prompt="hello",
details=details_arg,
stream=False,
)
if details_arg:
assert response.generated_text == "the model response"
else:
assert response == "the model response"
tx = events[0]
assert tx["type"] == "transaction"
span = tx["spans"][0]
assert span["op"] == "ai.chat_completions.create.huggingface_hub"
if send_default_pii and include_prompts:
assert "hello" in span["data"]["ai.input_messages"]
assert "the model response" in span["data"]["ai.responses"]
else:
assert "ai.input_messages" not in span["data"]
assert "ai.responses" not in span["data"]
if details_arg:
assert span["measurements"]["ai_total_tokens_used"]["value"] == 10
@pytest.mark.parametrize(
"send_default_pii, include_prompts, details_arg",
itertools.product([True, False], repeat=3),
)
def test_streaming_chat_completion(
sentry_init, capture_events, send_default_pii, include_prompts, details_arg
):
sentry_init(
integrations=[HuggingfaceHubIntegration(include_prompts=include_prompts)],
traces_sample_rate=1.0,
send_default_pii=send_default_pii,
)
events = capture_events()
client = InferenceClient("some-model")
client.post = mock.Mock(
return_value=[
b"""data:{
"token":{"id":1, "special": false, "text": "the model "}
}""",
b"""data:{
"token":{"id":2, "special": false, "text": "response"},
"details":{"finish_reason": "length", "generated_tokens": 10, "seed": 0}
}""",
]
)
with start_transaction(name="huggingface_hub tx"):
response = list(
client.text_generation(
prompt="hello",
details=details_arg,
stream=True,
)
)
assert len(response) == 2
print(response)
if details_arg:
assert response[0].token.text + response[1].token.text == "the model response"
else:
assert response[0] + response[1] == "the model response"
tx = events[0]
assert tx["type"] == "transaction"
span = tx["spans"][0]
assert span["op"] == "ai.chat_completions.create.huggingface_hub"
if send_default_pii and include_prompts:
assert "hello" in span["data"]["ai.input_messages"]
assert "the model response" in span["data"]["ai.responses"]
else:
assert "ai.input_messages" not in span["data"]
assert "ai.responses" not in span["data"]
if details_arg:
assert span["measurements"]["ai_total_tokens_used"]["value"] == 10
def test_bad_chat_completion(sentry_init, capture_events):
sentry_init(integrations=[HuggingfaceHubIntegration()], traces_sample_rate=1.0)
events = capture_events()
client = InferenceClient("some-model")
client.post = mock.Mock(side_effect=OverloadedError("The server is overloaded"))
with pytest.raises(OverloadedError):
client.text_generation(prompt="hello")
(event,) = events
assert event["level"] == "error"
def test_span_origin(sentry_init, capture_events):
sentry_init(
integrations=[HuggingfaceHubIntegration()],
traces_sample_rate=1.0,
)
events = capture_events()
client = InferenceClient("some-model")
client.post = mock.Mock(
return_value=[
b"""data:{
"token":{"id":1, "special": false, "text": "the model "}
}""",
]
)
with start_transaction(name="huggingface_hub tx"):
list(
client.text_generation(
prompt="hello",
stream=True,
)
)
(event,) = events
assert event["contexts"]["trace"]["origin"] == "manual"
assert event["spans"][0]["origin"] == "auto.ai.huggingface_hub"
|