1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
|
// ==========================================================================
// SeqAn - The Library for Sequence Analysis
// ==========================================================================
// Copyright (c) 2006-2018, Knut Reinert, FU Berlin
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of Knut Reinert or the FU Berlin nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL KNUT REINERT OR THE FU BERLIN BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
// DAMAGE.
//
// ==========================================================================
// Author: Manuel Holtgrewe <manuel.holtgrewe@fu-berlin.de>
// Author: David Weese <david.weese@fu-berlin.de>
// ==========================================================================
// SEQAN_NO_GENERATED_FORWARDS: No forwards are generated for this file.
#ifndef SEQAN_PARALLEL_PARALLEL_ATOMIC_PRIMITIVES_H_
#define SEQAN_PARALLEL_PARALLEL_ATOMIC_PRIMITIVES_H_
#if defined(STDLIB_VS)
#include <intrin.h>
#endif // #if defined(STDLIB_VS)
namespace seqan {
// ============================================================================
// Forwards
// ============================================================================
// ============================================================================
// Tags, Classes, Enums
// ============================================================================
// ============================================================================
// Metafunctions
// ============================================================================
template <typename T>
struct Atomic
{
typedef std::atomic<T> Type;
};
// ============================================================================
// Functions
// ============================================================================
/*!
* @defgroup AtomicPrimitives Atomic Primitives
* @brief Portable atomic operations.
*/
/*!
* @fn AtomicPrimitives#atomicInc
* @headerfile <seqan/parallel.h>
* @brief Atomically increment an integer.
*
* @signature TResult atomicInc(x);
*
* @param[in,out] x An integer, by reference.
*
* @return TResult The old value of $x$, <tt>TResult</tt> has the same type as <tt>x</tt>.
*
* @section Remarks
*
* This is equivalent to an atomic <tt>++x</tt>.
*
* Note that atomic increments are limited to 32 bit and 64 bit with MSVC (64 bit is only available on 64 bit Windows).
*
* You are responsible for correctly aligning <tt>x</tt> such that the atomic increment works on the hardware you
* target.
*/
/*!
* @fn AtomicPrimitives#atomicDec
* @headerfile <seqan/parallel.h>
* @brief Atomically decrement an integer.
*
* @signature TResult atomicDec(x);
*
* @param[in,out] x An integer, by reference.
*
* @return TResult The old value of $x$, <tt>TResult</tt> has the same type as <tt>x</tt>.
*
* @section Remarks
*
* This is equivalent to an atomic <tt>--x</tt>.
*
* Note that atomic decrements are limited to 32 bit and 64 bit with MSVC (64 bit is only available on 64 bit Windows).
*
* You are responsible for correctly aligning <tt>x</tt> such that the atomic decrement works on the hardware you
* target.
*/
/*!
* @fn AtomicPrimitives#atomicAdd
* @headerfile <seqan/parallel.h>
* @brief Atomically add an integer to another integer.
*
* @signature TResult atomicAdd(x, y)
*
* @param[in,out] x Integer, by reference.
* @param[in] y Integer to add to <tt>x</tt>.
*
* @return TResult The old value of <tt>x</tt>.
*
* @section Remarks
*
* This is equivalent to an atomic <tt>x += y</tt>.
*
* Note that atomic fetch-and-add is limited to 32 bit and 64 bit with MSVC (64 bit is only available on 64 bit
* Windows).
*
* You are responsible for correctly aligning <tt>x</tt> such that the atomic increment works on the hardware you
* target.
*/
/*!
* @fn AtomicPrimitives#atomicOr
* @headerfile <seqan/parallel.h>
* @brief Atomically combine two integers with <tt>OR</tt> operation.
*
* @signature TResult atomicOr(x, y);
*
* @param[in,out] x Integer, by reference.
* @param[in] y Integer to combine with <tt>OR</tt> operation.
*
* @return TResult The old value of <tt>x</tt>, <tt>TResult</tt> is the type of <tt>x</tt>.
*
* @section Remarks
*
* This is equivalent to an atomic <tt>x |= y</tt>.
*
* Atomic fetch-and-or for 64 bit integers is only available on 64 bit processors when targeting Intel.
*
* Atomic fetch-and-or does not work in VS8 on 64 bit Windows, you can only use <tt>atomicOr()</tt> portably on 32 and
* 64 bit integers.
*
* You are responsible for correctly aligning <tt>x</tt> such that the atomic increment works on the hardware you
* target.
*/
/*!
* @fn AtomicPrimitives#atomicXor
* @headerfile <seqan/parallel.h>
* @brief Atomically combine two integers with <tt>XOR</tt> operation.
*
* @signature TResult atomicXor(x, y);
*
* @param[in,out] x Integer, by reference.
* @param[in] y Integer to combine with <tt>XOR</tt> operation.
*
* @return TResult The old value of <tt>x</tt>, <tt>TResult</tt> is the type of <tt>x</tt>.
*
* @section Remarks
*
* This is equivalent to an atomic <tt>x ^= y</tt>.
*
* Atomic fetch-and-xor fxor 64 bit integers is only available on 64 bit processxors when targeting Intel.
*
* Atomic fetch-and-xor does not wxork in VS8 on 64 bit Windows, you can only use <tt>atomicXor()</tt> pxortably on 32 and
* 64 bit integers.
*
* You are responsible fxor cxorrectly aligning <tt>x</tt> such that the atomic increment wxorks on the hardware you
* target.
*/
/*!
* @fn AtomicPrimitives#atomicCas
* @headerfile <seqan/parallel.h>
* @brief Atomic ompare-and-Swap operation.
*
* @signature TResult atomicCas(x, cmp, y)
*
* @param[in,out] x Pointer to the integer to swap.
* @param[in,out] cmp Value to compare <tt>x</tt> with.
* @param[in] y Value to set <tt>x</tt> to if it is equal to <tt>cmp</tt>.
*
* @return TResult Returns the original value of x.
*
* @section Remarks
*
* The pseudo code for this is as follows:
*
* @code{.cpp}
* atomic {
* T val = *(&x);
* if (val == cmp)
* *(&x) = y;
* return val;
* }
* @endcode
*
* On Windows, atomic CAS is only available for 16, 32, and 64 bit integers, 64 bit is only available on 64 bit Windows.
*
* You are responsible for correctly aligning <tt>x</tt> such that the atomic increment works on the hardware you
* target.
*/
// TODO(holtgrew): What about correct alignment?!
#ifndef SEQAN_CACHE_LINE_SIZE
#define SEQAN_CACHE_LINE_SIZE 128
#endif
#if defined(STDLIB_VS)
// ----------------------------------------------------------------------------
// Implementation in MSVC
// ----------------------------------------------------------------------------
// NOTE(marehr): clang/c2 v3.7 doesn't know #pragma intrinsic.
#if !defined(COMPILER_CLANG)
#pragma intrinsic(_InterlockedOr, _InterlockedXor, _InterlockedCompareExchange)
#endif
// We break the standard code layout here since we only wrap compiler
// intrinsics and it's easier to see things with one glance this way.
template <typename T, typename S>
inline T _atomicOr(T volatile &x, ConstInt<sizeof(char)>, S y) { return _InterlockedOr8(reinterpret_cast<char volatile *>(&x), y); }
template <typename T, typename S>
inline T _atomicXor(T volatile &x, ConstInt<sizeof(char)>, S y) { return _InterlockedXor8(reinterpret_cast<char volatile *>(&x), y); }
template <typename T>
inline T _atomicInc(T volatile &x, ConstInt<sizeof(short)>) { return InterlockedIncrement16(reinterpret_cast<short volatile *>(&x)); }
template <typename T>
inline T _atomicDec(T volatile &x, ConstInt<sizeof(short)>) { return InterlockedDecrement16(reinterpret_cast<short volatile *>(&x)); }
template <typename T, typename S>
inline T _atomicAdd(T volatile &x, ConstInt<sizeof(short)>, S y) { return InterlockedExchangeAdd16(reinterpret_cast<short volatile *>(&x), y); }
template <typename T, typename S>
inline T _atomicOr(T volatile &x, ConstInt<sizeof(short)>, S y) { return _InterlockedOr16(reinterpret_cast<short volatile *>(&x), y); }
template <typename T, typename S>
inline T _atomicXor(T volatile &x, ConstInt<sizeof(short)>, S y) { return _InterlockedXor16(reinterpret_cast<short volatile *>(&x), y); }
template <typename T, typename S, typename U>
inline T _atomicCas(T volatile &x, ConstInt<sizeof(short)>, S cmp, U y) { return _InterlockedCompareExchange16(reinterpret_cast<short volatile *>(&x), y, cmp); }
template <typename T>
inline T _atomicInc(T volatile &x, ConstInt<sizeof(LONG)>) { return InterlockedIncrement(reinterpret_cast<LONG volatile *>(&x)); }
template <typename T>
inline T* _atomicInc(T* volatile &x, ConstInt<sizeof(LONG)>) { InterlockedExchangeAdd(reinterpret_cast<LONG volatile *>(&x), sizeof(LONG)); return x; }
template <typename T>
inline T _atomicDec(T volatile &x, ConstInt<sizeof(LONG)>) { return InterlockedDecrement(reinterpret_cast<LONG volatile *>(&x)); }
template <typename T>
inline T* _atomicDec(T* volatile &x, ConstInt<sizeof(LONG)>) { InterlockedExchangeAdd(reinterpret_cast<LONG volatile *>(&x), -sizeof(LONG)); return x; }
template <typename T, typename S>
inline T _atomicAdd(T volatile &x, ConstInt<sizeof(LONG)>, S y) { return InterlockedExchangeAdd(reinterpret_cast<LONG volatile *>(&x), y); }
template <typename T, typename S>
inline T _atomicOr(T volatile &x, ConstInt<sizeof(long)>, S y) { return _InterlockedOr(reinterpret_cast<long volatile *>(&x), y); }
template <typename T, typename S>
inline T _atomicXor(T volatile &x, ConstInt<sizeof(long)>, S y) { return _InterlockedXor(reinterpret_cast<long volatile *>(&x), y); }
template <typename T, typename S, typename U>
inline T _atomicCas(T volatile &x, ConstInt<sizeof(long)>, S cmp, U y) { return _InterlockedCompareExchange(reinterpret_cast<long volatile *>(&x), y, cmp); }
#ifdef _WIN64
template <typename T>
inline T _atomicInc(T volatile &x, ConstInt<sizeof(LONGLONG)>) { return InterlockedIncrement64(reinterpret_cast<LONGLONG volatile *>(&x)); }
template <typename T>
inline T* _atomicInc(T* volatile &x, ConstInt<sizeof(LONGLONG)>) { InterlockedExchangeAdd64(reinterpret_cast<LONGLONG volatile *>(&x), sizeof(LONGLONG)); return x; }
template <typename T>
inline T _atomicDec(T volatile &x, ConstInt<sizeof(LONGLONG)>) { return InterlockedDecrement64(reinterpret_cast<LONGLONG volatile *>(&x)); }
template <typename T>
inline T* _atomicDec(T* volatile &x, ConstInt<sizeof(LONGLONG)>) { InterlockedExchangeAdd64(reinterpret_cast<LONGLONG volatile *>(&x), -sizeof(LONGLONG)); return x; }
template <typename T, typename S>
inline T _atomicAdd(T volatile &x, ConstInt<sizeof(LONGLONG)>, S y) { return InterlockedExchangeAdd64(reinterpret_cast<LONGLONG volatile *>(&x), y); }
template <typename T, typename S>
inline T _atomicOr(T volatile &x, ConstInt<sizeof(int64_t)>, S y) { return _InterlockedOr64(reinterpret_cast<int64_t volatile *>(&x), y); }
template <typename T, typename S>
inline T _atomicXor(T volatile &x, ConstInt<sizeof(int64_t)>, S y) { return _InterlockedXor64(reinterpret_cast<int64_t volatile *>(&x), y); }
template <typename T, typename S, typename U>
inline T _atomicCas(T volatile &x, ConstInt<sizeof(int64_t)>, S cmp, U y) { return _InterlockedCompareExchange64(reinterpret_cast<int64_t volatile *>(&x), y, cmp); }
#endif // #ifdef _WIN64
template <typename T>
inline T atomicInc(T volatile & x) { return _atomicInc(x, ConstInt<sizeof(T)>()); }
template <typename T>
inline T atomicDec(T volatile & x) { return _atomicDec(x, ConstInt<sizeof(T)>()); }
template <typename T, typename S>
inline T atomicAdd(T volatile &x, S y) { return _atomicAdd(x, ConstInt<sizeof(T)>(), y); }
template <typename T, typename S>
inline T atomicOr(T volatile &x, S y) { return _atomicOr(x, ConstInt<sizeof(T)>(), y); }
template <typename T, typename S>
inline T atomicXor(T volatile &x, S y) { return _atomicXor(x, ConstInt<sizeof(T)>(), y); }
template <typename T, typename S, typename U>
inline T atomicCas(T volatile &x, S cmp, U y) { return _atomicCas(x, ConstInt<sizeof(T)>(), cmp, y); }
template <typename T, typename S, typename U>
inline bool atomicCasBool(T volatile &x, S cmp, U y) { return _atomicCas(x, ConstInt<sizeof(T)>(), cmp, y) == cmp; }
template <typename T>
inline T atomicPostInc(T volatile & x) { return atomicInc(x) - 1; }
template <typename T>
inline T atomicPostDec(T volatile & x) { return atomicDec(x) + 1; }
#else // #if defined(STDLIB_VS)
// ----------------------------------------------------------------------------
// Implementation in GCC (LLVM is GCC compatible)
// ----------------------------------------------------------------------------
template <typename T>
inline T atomicInc(T volatile & x)
{
return __sync_add_and_fetch(&x, 1);
}
template <typename T>
inline T atomicPostInc(T volatile & x)
{
return __sync_fetch_and_add(&x, 1);
}
template <typename T>
inline T atomicDec(T volatile & x)
{
return __sync_add_and_fetch(&x, -1);
}
template <typename T>
inline T atomicPostDec(T volatile & x)
{
return __sync_fetch_and_add(&x, -1);
}
template <typename T1, typename T2>
inline T1 atomicAdd(T1 volatile & x, T2 y)
{
return __sync_add_and_fetch(&x, y);
}
template <typename T>
inline T atomicOr(T volatile & x, T y)
{
return __sync_or_and_fetch(&x, y);
}
template <typename T>
inline T atomicXor(T volatile & x, T y)
{
return __sync_xor_and_fetch(&x, y);
}
template <typename T>
inline T atomicCas(T volatile & x, T cmp, T y)
{
return __sync_val_compare_and_swap(&x, cmp, y);
}
template <typename T>
inline bool atomicCasBool(T volatile & x, T cmp, T y)
{
return __sync_bool_compare_and_swap(&x, cmp, y);
}
template <typename T>
inline T atomicSwap(T volatile & x, T y)
{
return __sync_lock_test_and_set(x, y);
}
// Pointer versions
template <typename T>
inline T * atomicInc(T * volatile & x)
{
return (T *) __sync_add_and_fetch((size_t volatile *)&x, sizeof(T));
}
template <typename T>
inline T * atomicPostInc(T * volatile & x)
{
return (T *) __sync_fetch_and_add((size_t volatile *)&x, sizeof(T));
}
template <typename T>
inline T * atomicDec(T * volatile & x)
{
return (T *) __sync_add_and_fetch((size_t volatile *)&x, -sizeof(T));
}
template <typename T>
inline T * atomicPostDec(T * volatile & x)
{
return (T *) __sync_fetch_and_add((size_t volatile *)&x, -sizeof(T));
}
template <typename T1, typename T2>
inline T1 * atomicAdd(T1 * volatile & x, T2 y)
{
return (T1 *) __sync_add_and_fetch((size_t volatile *)&x, y * sizeof(T2));
}
#endif // #if defined(STDLIB_VS)
// ----------------------------------------------------------------------------
// Wrappers to use faster non-synced functions in serial implementations
// ----------------------------------------------------------------------------
template <typename T> inline T atomicInc(T & x, Serial) { return ++x; }
template <typename T> inline T atomicPostInc(T & x, Serial) { return x++; }
template <typename T> inline T atomicDec(T & x, Serial) { return --x; }
template <typename T> inline T atomicPostDec(T & x, Serial) { return x--; }
template <typename T> inline T atomicOr (T & x, T y, Serial) { return x |= y; }
template <typename T> inline T atomicXor(T & x, T y, Serial) { return x ^= y; }
// In serial mode, there is no other thread changing cmp except us
template <typename T> inline T atomicCas(T & x, T cmp, T y, Serial) { if (x == cmp) x = y; return x; }
//template <typename T> inline bool atomicCasBool(T & x, T cmp, T y, Serial) { if (x == cmp) { x = y; return true; } return false; }
template <typename T> inline bool atomicCasBool(T volatile & x, T, T y, Serial) { x = y; return true; }
template <typename T> inline T atomicInc(T volatile & x, Parallel) { return atomicInc(x); }
template <typename T> inline T atomicPostInc(T volatile & x, Parallel) { return atomicPostInc(x); }
template <typename T> inline T atomicDec(T volatile & x, Parallel) { return atomicDec(x); }
template <typename T> inline T atomicPostDec(T volatile & x, Parallel) { return atomicPostDec(x); }
template <typename T> inline T atomicOr (T volatile & x, T y, Parallel) { return atomicOr(x, y); }
template <typename T> inline T atomicXor(T volatile & x, T y, Parallel) { return atomicXor(x, y); }
template <typename T> inline T atomicCas(T volatile & x, T cmp, T y, Parallel) { return atomicCas(x, cmp, y); }
template <typename T> inline bool atomicCasBool(T volatile & x, T cmp, T y, Parallel) { return atomicCasBool(x, cmp, y); }
template <typename T1, typename T2> inline T1 atomicAdd(T1 & x, T2 y, Serial) { return x = x + y; }
template <typename T1, typename T2> inline T1 atomicAdd(T1 volatile & x, T2 y, Parallel) { return atomicAdd(x, y); }
// C++11 atomic wrappers
template <typename T> inline T atomicInc(std::atomic<T> & x ) { return ++x; }
template <typename T> inline T atomicPostInc(std::atomic<T> & x ) { return x++; }
template <typename T> inline T atomicDec(std::atomic<T> & x ) { return --x; }
template <typename T> inline T atomicPostDec(std::atomic<T> & x ) { return x--; }
template <typename T> inline T atomicOr (std::atomic<T> & x, T y) { return x |= y; }
template <typename T> inline T atomicXor(std::atomic<T> & x, T y) { return x ^= y; }
template <typename T> inline T atomicCas(std::atomic<T> & x, T cmp, T y, Serial) { if (x == cmp) x = y; return x; }
template <typename T> inline T atomicCas(std::atomic<T> & x, T cmp, T y, Parallel) { x.compare_exchange_weak(cmp, y); return cmp; }
template <typename T> inline bool atomicCasBool(std::atomic<T> & x, T , T y, Serial) { x = y; return true; }
template <typename T> inline bool atomicCasBool(std::atomic<T> & x, T cmp, T y, Parallel) { return x.compare_exchange_weak(cmp, y); }
} // namespace seqan
#endif // #if defined(STDLIB_VS)
|