1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
|
// ==========================================================================
// SeqAn - The Library for Sequence Analysis
// ==========================================================================
// Copyright (c) 2006-2018, Knut Reinert, FU Berlin
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of Knut Reinert or the FU Berlin nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL KNUT REINERT OR THE FU BERLIN BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
// DAMAGE.
//
// ==========================================================================
// Author: Manuel Holtgrewe <manuel.holtgrewe@fu-berlin.de>
// ==========================================================================
// Split alignment implementation.
// ==========================================================================
#ifndef SEQAN_INCLUDE_SEQAN_ALIGN_SPLIT_ALIGN_SPLIT_INTERFACE_H_
#define SEQAN_INCLUDE_SEQAN_ALIGN_SPLIT_ALIGN_SPLIT_INTERFACE_H_
#include "dp_scout_split.h"
namespace seqan {
// ============================================================================
// Forwards
// ============================================================================
// ============================================================================
// Tags, Classes, Enums
// ============================================================================
// Tag for the split alignment algorithm in DPProfile_.
template <typename TSpec = Default>
struct SplitAlignment_ {};
// Tag for the split alignment algorithm.
struct SplitAlignmentAlgo_;
typedef Tag<SplitAlignmentAlgo_> SplitAlignmentAlgo;
// ============================================================================
// Metafunctions
// ============================================================================
// ----------------------------------------------------------------------------
// Metafunction ScoutSpecForAlignmentAlgorithm_
// ----------------------------------------------------------------------------
// For the split alignment, we will use our SplitAlignmentScout specialization of DPScout.
template <typename TSpec>
struct ScoutSpecForAlignmentAlgorithm_<SplitAlignment_<TSpec>, DPScoutState_<SplitAlignmentScout> >
{
typedef SplitAlignmentScout Type;
};
template <typename TSpec>
struct ScoutSpecForAlignmentAlgorithm_<SplitAlignment_<TSpec> const, DPScoutState_<SplitAlignmentScout> >
{
typedef SplitAlignmentScout Type;
};
// ----------------------------------------------------------------------------
// Metafunction IsSplitAlignment_
// ----------------------------------------------------------------------------
// Convenience function used in the DP configuration below.
template <typename TParam>
struct IsSplitAlignment_ : False {};
template <typename TSpec>
struct IsSplitAlignment_<SplitAlignment_<TSpec> >:
True {};
template <typename TSpec>
struct IsSplitAlignment_<SplitAlignment_<TSpec> const>:
True {};
template <typename TAlgoSpec, typename TGapCosts, typename TTraceFlag, typename TExecPolicy>
struct IsSplitAlignment_<DPProfile_<TAlgoSpec, TGapCosts, TTraceFlag, TExecPolicy> >:
IsSplitAlignment_<TAlgoSpec> {};
template <typename TAlgoSpec, typename TGapCosts, typename TTraceFlag, typename TExecPolicy>
struct IsSplitAlignment_<DPProfile_<TAlgoSpec, TGapCosts, TTraceFlag, TExecPolicy> const>:
IsSplitAlignment_<TAlgoSpec> {};
// ----------------------------------------------------------------------------
// Metafunction IsFreeEndGap_
// ----------------------------------------------------------------------------
// We want the same free endgaps configuration as for global alignments.
template <typename TSpec, typename TRow>
struct IsFreeEndGap_<SplitAlignment_<TSpec>, TRow> :
IsFreeEndGap_<GlobalAlignment_<TSpec>, TRow>
{};
template <typename TSpec, typename TRow>
struct IsFreeEndGap_<SplitAlignment_<TSpec> const, TRow> :
IsFreeEndGap_<GlobalAlignment_<TSpec> const, TRow>
{};
// ----------------------------------------------------------------------------
// Metafunction IsGlobalAlignment_
// ----------------------------------------------------------------------------
// We use similar functionality as the global alignment.
template <typename TSpec>
struct IsGlobalAlignment_<SplitAlignment_<TSpec> > :
True
{};
template <typename TSpec>
struct IsGlobalAlignment_<SplitAlignment_<TSpec> const> :
True
{};
// ----------------------------------------------------------------------------
// Metafunction TraceTail_
// ----------------------------------------------------------------------------
template <typename TSpec>
struct TraceTail_<SplitAlignment_<TSpec> > :
False
{};
// ----------------------------------------------------------------------------
// Metafunction LastColumnEnabled_
// ----------------------------------------------------------------------------
template <typename TSpec, typename TColumnDescriptor>
struct LastColumnEnabled_<SplitAlignment_<TSpec>, TColumnDescriptor>
{
typedef typename If<IsSameType<typename TColumnDescriptor::TColumnProperty, DPFinalColumn>,
typename IsFreeEndGap_<SplitAlignment_<TSpec>, DPLastColumn>::Type,
False>::Type Type;
};
// ----------------------------------------------------------------------------
// Metafunction LastRowEnabled_
// ----------------------------------------------------------------------------
template <typename TSpec, typename TColumnDescriptor>
struct LastRowEnabled_<SplitAlignment_<TSpec>, LastCell, TColumnDescriptor>
{
typedef typename If<Or<IsSameType<typename TColumnDescriptor::TLocation, PartialColumnBottom>,
IsSameType<typename TColumnDescriptor::TLocation, FullColumn> >,
typename IsFreeEndGap_<SplitAlignment_<TSpec>, DPLastRow>::Type,
False>::Type Type;
};
// ----------------------------------------------------------------------------
// Metafunction DPMetaColumn_
// ----------------------------------------------------------------------------
template <typename TSpec, typename TGapCosts, typename TTraceFlag, typename TExecPolicy,
typename TColumnType>
struct DPMetaColumn_<DPProfile_<SplitAlignment_<TSpec>, TGapCosts, TTraceFlag, TExecPolicy>,
MetaColumnDescriptor<TColumnType, FullColumn> >
{
typedef DPProfile_<SplitAlignment_<TSpec>, TGapCosts, TTraceFlag, TExecPolicy> TDPProfile;
typedef typename IsLocalAlignment_<TDPProfile>::Type TIsLocal;
// If InitialColumn -> Zero, Vertical | Zero, Vertical | Zero // Within the algorithm we need to define the first row as only one cell if it is no initial column
// If InnerColumn -> Horizontal | Zero, All, All
// If FinalColumn -> Horizontal | Zero, All, All
typedef typename If<Or<IsSameType<TColumnType, DPInitialColumn>,
IsFreeEndGap_<TDPProfile, DPFirstRow> >, RecursionDirectionZero, RecursionDirectionHorizontal>::Type TRecursionTypeFirstCell_;
typedef typename If<IsSameType<TColumnType, DPInitialColumn>,
typename If<IsFreeEndGap_<TDPProfile, DPFirstColumn>, RecursionDirectionZero, RecursionDirectionVertical>::Type,
RecursionDirectionAll>::Type TRecursionTypeInnerCell_;
typedef typename If<IsSameType<TColumnType, DPInitialColumn>,
typename If<IsFreeEndGap_<TDPProfile, DPFirstColumn>, RecursionDirectionZero, RecursionDirectionVertical>::Type,
RecursionDirectionAll>::Type TRecursionTypeLastCell_;
typedef DPMetaCell_<TRecursionTypeFirstCell_, True> TFirstCell_;
typedef DPMetaCell_<TRecursionTypeInnerCell_, True> TInnerCell_;
typedef DPMetaCell_<TRecursionTypeLastCell_, True> TLastCell_;
};
template <typename TSpec, typename TGapCosts, typename TTraceFlag, typename TExecPolicy,
typename TColumnType>
struct DPMetaColumn_<DPProfile_<SplitAlignment_<TSpec>, TGapCosts, TTraceFlag, TExecPolicy>,
MetaColumnDescriptor<TColumnType, PartialColumnTop> >
{
typedef DPProfile_<SplitAlignment_<TSpec>, TGapCosts, TTraceFlag> TDPProfile;
typedef typename IsLocalAlignment_<TDPProfile>::Type TIsLocal;
// How does the recursion directions look like?
// If InitialColumn -> Zero, Vertical | Zero, Vertical | Zero // Within the algorithm we need to define the first row as only one cell if it is no initial column
// If InnerColumn -> Horizontal | Zero, All, LowerBand
// If FinalColumn -> Horizontal | Zero, All, LowerBand
typedef typename If<Or<IsSameType<TColumnType, DPInitialColumn>,
IsFreeEndGap_<TDPProfile, DPFirstRow> >, RecursionDirectionZero, RecursionDirectionHorizontal>::Type TRecursionTypeFirstCell_;
typedef typename If<IsSameType<TColumnType, DPInitialColumn>,
typename If<IsFreeEndGap_<TDPProfile, DPFirstColumn>, RecursionDirectionZero, RecursionDirectionVertical>::Type,
RecursionDirectionAll>::Type TRecursionTypeInnerCell_;
typedef typename If<IsSameType<TColumnType, DPInitialColumn>,
typename If<IsFreeEndGap_<TDPProfile, DPFirstColumn>, RecursionDirectionZero, RecursionDirectionVertical>::Type,
RecursionDirectionLowerDiagonal>::Type TRecursionTypeLastCell_;
typedef DPMetaCell_<TRecursionTypeFirstCell_, True> TFirstCell_;
typedef DPMetaCell_<TRecursionTypeInnerCell_, True> TInnerCell_;
typedef DPMetaCell_<TRecursionTypeLastCell_, True> TLastCell_;
};
template <typename TSpec, typename TGapCosts, typename TTraceFlag, typename TExecPolicy,
typename TColumnType>
struct DPMetaColumn_<DPProfile_<SplitAlignment_<TSpec>, TGapCosts, TTraceFlag, TExecPolicy>,
MetaColumnDescriptor<TColumnType, PartialColumnMiddle> >
{
typedef DPProfile_<SplitAlignment_<TSpec>, TGapCosts, TTraceFlag, TExecPolicy> TDPProfile;
typedef typename IsLocalAlignment_<TDPProfile>::Type TIsLocal;
// If InitialColumn -> Zero, Vertical | Zero, Vertical | Zero // Within the algorithm we need to define the first row as only one cell if it is no initial column
// If InnerColumn -> UpperDiagonal, All, LowerDiagonal
// If FinalColumn -> UpperDiagonal, All, LowerDiagonal
typedef typename If<IsSameType<TColumnType, DPInitialColumn>, RecursionDirectionZero, RecursionDirectionUpperDiagonal>::Type TRecursionTypeFirstCell_;
typedef typename If<IsSameType<TColumnType, DPInitialColumn>,
typename If<IsFreeEndGap_<TDPProfile, DPFirstColumn>, RecursionDirectionZero, RecursionDirectionVertical>::Type,
RecursionDirectionAll>::Type TRecursionTypeInnerCell_;
typedef typename If<IsSameType<TColumnType, DPInitialColumn>,
typename If<IsFreeEndGap_<TDPProfile, DPFirstColumn>, RecursionDirectionZero, RecursionDirectionVertical>::Type,
RecursionDirectionLowerDiagonal>::Type TRecursionTypeLastCell_;
typedef DPMetaCell_<TRecursionTypeFirstCell_, True> TFirstCell_;
typedef DPMetaCell_<TRecursionTypeInnerCell_, True> TInnerCell_;
typedef DPMetaCell_<TRecursionTypeLastCell_, True> TLastCell_;
};
template <typename TSpec, typename TGapCosts, typename TTraceFlag, typename TExecPolicy,
typename TColumnType>
struct DPMetaColumn_<DPProfile_<SplitAlignment_<TSpec>, TGapCosts, TTraceFlag, TExecPolicy>,
MetaColumnDescriptor<TColumnType, PartialColumnBottom> >
{
typedef DPProfile_<SplitAlignment_<TSpec>, TGapCosts, TTraceFlag, TExecPolicy> TDPProfile;
typedef typename IsLocalAlignment_<TDPProfile>::Type TIsLocal;
// If InitialColumn -> Zero, Vertical | Zero, Vertical | Zero // Within the algorithm we need to define the first row as only one cell if it is no initial column
// If InnerColumn -> UpperDiagonal, All, All
// If FinalColumn -> UpperDiagonal, All, All
typedef typename If<IsSameType<TColumnType, DPInitialColumn>, RecursionDirectionZero, RecursionDirectionUpperDiagonal>::Type TRecursionTypeFirstCell_;
typedef typename If<IsSameType<TColumnType, DPInitialColumn>,
typename If<IsFreeEndGap_<TDPProfile, DPFirstColumn>, RecursionDirectionZero, RecursionDirectionVertical>::Type,
RecursionDirectionAll>::Type TRecursionTypeInnerCell_;
typedef typename If<IsSameType<TColumnType, DPInitialColumn>,
typename If<IsFreeEndGap_<TDPProfile, DPFirstColumn>, RecursionDirectionZero, RecursionDirectionVertical>::Type,
RecursionDirectionAll>::Type TRecursionTypeLastCell_;
typedef DPMetaCell_<TRecursionTypeFirstCell_, True> TFirstCell_;
typedef DPMetaCell_<TRecursionTypeInnerCell_, True> TInnerCell_;
typedef DPMetaCell_<TRecursionTypeLastCell_, True> TLastCell_;
};
// ----------------------------------------------------------------------------
// Metafunction SetupAlignmentProfile_
// ----------------------------------------------------------------------------
template <typename TFreeEndGaps, typename TGapCosts, typename TTraceSwitch>
struct SetupAlignmentProfile_<SplitAlignmentAlgo, TFreeEndGaps, TGapCosts, TTraceSwitch>
{
typedef DPProfile_<SplitAlignment_<TFreeEndGaps>, TGapCosts, TTraceSwitch, Serial> Type;
};
// ============================================================================
// Functions
// ============================================================================
// ----------------------------------------------------------------------------
// Function _reverseTrace()
// ----------------------------------------------------------------------------
// Reverse a trace string and adapt internal position.
template <typename TPosition, typename TSize, typename TSpec>
void _reverseTrace(String<TraceSegment_<TPosition, TSize>, TSpec> & trace,
size_t const lengthH,
size_t const lengthV)
{
typedef String<TraceSegment_<TPosition, TSize>, TSpec> TTrace;
typedef typename Iterator<TTrace, Rooted>::Type TTraceIter;
if (empty(trace))
return;
for (TTraceIter it = begin(trace, Rooted()); !atEnd(it); goNext(it))
{
it->_horizontalBeginPos = lengthH - _getEndHorizontal(*it);
it->_verticalBeginPos = lengthV - _getEndVertical(*it);
}
reverse(trace);
}
// ----------------------------------------------------------------------------
// Function _computeSplitTrace()
// ----------------------------------------------------------------------------
template <typename TTarget,
typename TSeqH,
typename TSeqV,
typename TDPContext,
typename TMatPos,
typename TDPType, typename TBandSwitch, typename TFreeEndGaps, typename TTraceConfig>
void _computeSplitTrace(TTarget & target,
TSeqH const & seqH,
TSeqV const & seqV,
TDPContext const & dpContext,
TMatPos const matPos,
AlignConfig2<TDPType, DPBandConfig<TBandSwitch>, TFreeEndGaps, TTraceConfig> const & config)
{
typedef typename SetupAlignmentProfile_<TDPType, TFreeEndGaps, LinearGaps, TTraceConfig>::Type TDPProfile;
using TDPTraceMatrixHost = std::remove_reference_t<decltype(getDpTraceMatrix(dpContext))>;
typedef typename Value<TDPTraceMatrixHost>::Type TTraceValue;
typedef DPMatrix_<TTraceValue, FullDPMatrix> TDPTraceMatrix;
typedef DPMatrixNavigator_<TDPTraceMatrix, DPTraceMatrix<TTraceConfig>, NavigateColumnWise> TDPTraceMatrixNavigator;
TDPTraceMatrix matrix;
setLength(matrix, +DPMatrixDimension_::HORIZONTAL, length(seqH) + 1 - std::max(0, lowerDiagonal(config._band)));
SEQAN_IF_CONSTEXPR (IsSameType<TBandSwitch, BandOff>::VALUE)
{
setLength(matrix, +DPMatrixDimension_::VERTICAL, length(seqV) + 1);
}
else
{
int bandSize = _min(static_cast<int>(length(seqH)), upperDiagonal(config._band)) -
_max(lowerDiagonal(config._band), -static_cast<int>(length(seqV))) + 1;
setLength(matrix, +DPMatrixDimension_::VERTICAL, _min(static_cast<int>(length(seqV)) + 1, bandSize));
}
setHost(matrix, getDpTraceMatrix(dpContext));
resize(matrix);
SEQAN_ASSERT_EQ(length(getDpTraceMatrix(dpContext)), length(matrix));
TDPTraceMatrixNavigator navi{matrix, config._band};
_computeTraceback(target, navi, matPos, seqH, seqV, config._band, TDPProfile());
}
// ----------------------------------------------------------------------------
// Function _splitAlignmentImpl()
// ----------------------------------------------------------------------------
// We call the long sequence contig and the shorter one read but could be changed roles.
template <typename TContigSeqL,
typename TReadSeqL,
typename TContigSeqR,
typename TReadSeqR,
typename TScoreValue, typename TScoreSpec,
typename TAlignConfigL,
typename TAlignConfigR,
typename TGapModel>
auto _splitAlignmentImpl(Gaps<TContigSeqL> & gapsContigL,
Gaps<TReadSeqL> & gapsReadL,
Gaps<TContigSeqR> & gapsContigR,
Gaps<TReadSeqR> & gapsReadR,
Score<TScoreValue, TScoreSpec> const & scoringScheme,
TAlignConfigL const & alignConfigL,
TAlignConfigR const & alignConfigR,
TGapModel const & /*gapModel*/)
{
typedef Gaps<TContigSeqL> TGaps;
typedef typename Size<TGaps>::Type TSize;
typedef typename Position<TGaps>::Type TPosition;
typedef TraceSegment_<TPosition, TSize> TTraceSegment;
// Compute trace and split score sequence for the left alignment.
// We actually need to first compute the scores, than trace from the choosen split position.
DPContext<DPCell_<TScoreValue, TGapModel>, typename TraceBitMap_<TScoreValue>::Type> dpContextL;
DPScoutState_<SplitAlignmentScout> scoutStateL;
resize(scoutStateL.splitScore, length(source(gapsContigL)) + 1, std::numeric_limits<TScoreValue>::min() / 2);
resize(scoutStateL.splitPos, length(scoutStateL.splitScore));
String<TTraceSegment> traceL;
_setUpAndRunAlignment(dpContextL, traceL, scoutStateL, source(gapsContigL), source(gapsReadL), scoringScheme, alignConfigL);
// Get reversed versions of the right contig and read sequence.
ModifiedString<TContigSeqR, ModReverse> revContigR(source(gapsContigR));
ModifiedString<TReadSeqR, ModReverse> revReadR(source(gapsReadR));
// Compute trace and split score sequence for the right alignment.
DPContext<DPCell_<TScoreValue, TGapModel>, typename TraceBitMap_<TScoreValue>::Type> dpContextR;
DPScoutState_<SplitAlignmentScout> scoutStateR;
resize(scoutStateR.splitScore, length(source(gapsContigR)) + 1, std::numeric_limits<TScoreValue>::min() / 2);
resize(scoutStateR.splitPos, length(scoutStateR.splitScore));
String<TTraceSegment> traceR;
_setUpAndRunAlignment(dpContextR, traceR, scoutStateR, revContigR, revReadR, scoringScheme, alignConfigR);
// Reverse trace so it fits to the forward right sequences. Also reverse the trace such that we can directly apply
// it for the right alignment.
reverse(scoutStateR.splitScore);
reverse(scoutStateR.splitPos);
SEQAN_ASSERT_EQ(length(scoutStateL.splitScore), length(scoutStateR.splitScore));
// We will split the left and right alignments into two parts such that the alignment score is optimal. We compute
// the leftmost best position for a split (equivalent to the best prefix of the first left alignment). Note that
// placing the breakpoint at the leftmost position is coherent with the SNPdb semantics but there are other data
// bases that use rightmost placement.
// TODO(holtgrew): Make selecting the left/right split position from interface possible? Maybe not necessary.
auto itBegin = makeZipIterator(begin(scoutStateL.splitScore), begin(scoutStateR.splitScore));
auto res = std::max_element(itBegin, makeZipIterator(end(scoutStateL.splitScore), end(scoutStateR.splitScore)),
[] (auto const & lhs, auto const & rhs)
{
return std::get<0>(lhs) + std::get<1>(lhs) < std::get<0>(rhs) + std::get<1>(rhs);
});
auto bestPrefixLength = res - itBegin;
// std::cerr << "bestPrefixLength = " << bestPrefixLength << "\n";
// std::cerr << "split store left ";
// for (unsigned i = 0; i < length(scoutStateL.splitScore); ++i)
// fprintf(stderr, " %3d", scoutStateL.splitScore[i]);
// std::cerr << "\n";
// std::cerr << "split store right";
// for (unsigned i = 0; i < length(scoutStateR.splitScore); ++i)
// fprintf(stderr, " %3d", scoutStateR.splitScore[i]);
// std::cerr << "\n";
// Recompute the best trace starting from the recorded split position for left ...
clear(traceL);
_computeSplitTrace(traceL, source(gapsContigL), source(gapsReadL), dpContextL,
scoutStateL.splitPos[bestPrefixLength], alignConfigL);
_adaptTraceSegmentsTo(gapsContigL, gapsReadL, traceL);
// ... and right anchor.
clear(traceR);
_computeSplitTrace(traceR, source(gapsContigR), source(gapsReadR), dpContextR,
scoutStateR.splitPos[bestPrefixLength], alignConfigR);
_reverseTrace(traceR, length(source(gapsContigR)), length(source(gapsReadR)));
_adaptTraceSegmentsTo(gapsContigR, gapsReadR, traceR);
// We have to correct the clipping position for the left alignment because of the to-right projection. The
// insertion itself is not part of the alignment.
TPosition cePosL = toViewPosition(gapsContigL, bestPrefixLength);
if (bestPrefixLength > 0)
cePosL = toViewPosition(gapsContigL, bestPrefixLength - 1) + 1;
setClippedEndPosition(gapsContigL, cePosL);
setClippedEndPosition(gapsReadL, cePosL);
return std::make_pair(std::get<0>(*res), std::get<1>(*res));
}
template <typename TContigSeqL, typename TReadSeqL,
typename TContigSeqR, typename TReadSeqR,
typename TScoreValue, typename TScoreSpec,
bool TTop, bool TRight, bool TLeft, bool TBottom, typename TConfigSpec,
typename TGapModel>
auto _splitAlignmentImpl(Gaps<TContigSeqL> & gapsContigL,
Gaps<TReadSeqL> & gapsReadL,
Gaps<TContigSeqR> & gapsContigR,
Gaps<TReadSeqR> & gapsReadR,
Score<TScoreValue, TScoreSpec> const & scoringScheme,
AlignConfig<TTop, TRight, TLeft, TBottom, TConfigSpec> const &,
int lowerDiagonal,
int upperDiagonal,
TGapModel const & /*gapModel*/)
{
typedef typename SubstituteAlignConfig_<AlignConfig<TTop, TRight, TLeft, TBottom> >::Type TFreeEndGaps;
// Check whether we need to run the banded versions.
if (lowerDiagonal != std::numeric_limits<int>::min() && upperDiagonal != std::numeric_limits<int>::max())
{
typedef AlignConfig2<SplitAlignmentAlgo, DPBandConfig<BandOn>, TFreeEndGaps,
TracebackOn<TracebackConfig_<CompleteTrace, GapsLeft> > > TAlignConfigL;
typedef AlignConfig2<SplitAlignmentAlgo, DPBandConfig<BandOn>, TFreeEndGaps,
TracebackOn<TracebackConfig_<CompleteTrace, GapsRight> > > TAlignConfigR;
return _splitAlignmentImpl(gapsContigL, gapsReadL, gapsContigR, gapsReadR, scoringScheme,
TAlignConfigL(lowerDiagonal, upperDiagonal),
TAlignConfigR(lowerDiagonal, upperDiagonal),
TGapModel());
}
else
{
typedef AlignConfig2<SplitAlignmentAlgo, DPBandConfig<BandOff>, TFreeEndGaps,
TracebackOn<TracebackConfig_<CompleteTrace, GapsLeft> > > TAlignConfigL;
typedef AlignConfig2<SplitAlignmentAlgo, DPBandConfig<BandOff>, TFreeEndGaps,
TracebackOn<TracebackConfig_<CompleteTrace, GapsRight> > > TAlignConfigR;
return _splitAlignmentImpl(gapsContigL, gapsReadL, gapsContigR, gapsReadR, scoringScheme, TAlignConfigL(),
TAlignConfigR(), TGapModel());
}
}
template <typename TContigSeqL, typename TReadSeqL, typename TContigSeqR, typename TReadSeqR,
typename TScoreValue, typename TScoreSpec,
bool TTop, bool TRight, bool TLeft, bool TBottom, typename TConfigSpec>
auto _splitAlignmentImpl(Gaps<TContigSeqL> & gapsContigL,
Gaps<TReadSeqL> & gapsReadL,
Gaps<TContigSeqR> & gapsContigR,
Gaps<TReadSeqR> & gapsReadR,
Score<TScoreValue, TScoreSpec> const & scoringScheme,
AlignConfig<TTop, TRight, TLeft, TBottom, TConfigSpec> const & config,
int lowerDiagonal = std::numeric_limits<int>::min(),
int upperDiagonal = std::numeric_limits<int>::max())
{
if (_usesAffineGaps(scoringScheme, source(gapsContigL), source(gapsReadL)))
return _splitAlignmentImpl(gapsContigL, gapsReadL, gapsContigR, gapsReadR,
scoringScheme, config, lowerDiagonal, upperDiagonal, AffineGaps());
else
return _splitAlignmentImpl(gapsContigL, gapsReadL, gapsContigR, gapsReadR,
scoringScheme, config, lowerDiagonal, upperDiagonal, LinearGaps());
}
// ----------------------------------------------------------------------------
// Function splitAlignment()
// ----------------------------------------------------------------------------
/*!
* @fn splitAlignment
* @headerfile <seqan/align_split.h>
* @brief Compute split alignments.
*
* @signature TScoreValue splitAlignment(alignL, alignR, scoringScheme[, config][, lowerDiag, upperDiag]);
* @signature TScoreValue splitAlignment(gapsHL, gapsVL, gapsHR, gapsVR, scoringScheme[, config][, lowerDiag, upperDiag]);
*
* @param[in,out] alignL @link Align @endlink object with two rows for the left alignment.
* @param[in,out] alignR @link Align @endlink object with two rows for the right alignment.
* @param[in,out] gapsHL @link Gaps @endlink object with the horizontal/contig row for the left alignment.
* @param[in,out] gapsVL @link Gaps @endlink object with the vertical/read row for the left alignment.
* @param[in,out] gapsHR @link Gaps @endlink object with the horizontal/contig row for the right alignment.
* @param[in,out] gapsVR @link Gaps @endlink object with the vertical/read row for the right alignment.
* @param[in] scoringScheme The scoring scheme to use for the alignment.
* @param[in] config A configuration object of type @link AlignConfig @endlink, to specify free-end-gaps.
* @param[in] lowerDiag The lower diagonal.You have to specify the upper and lower diagonals for the left
* alignment. For the right alignment, the corresponding diagonals are chosen for the
* lower right part of the DP matrix, <tt>int</tt>.
* @param[in] upperDiag The lower diagonal. Also see remark for <tt>lowerDiag</tt>, <tt>int</tt>.
*
* @return TScoreValue The sum of the alignment scores of both alignments (Metafunction: @link Score#Value @endlink
* of the type of <tt>scoringScheme</tt>).
*
* There are two variants of the split alignment problem. In the first variant, we want to align two sequences where the
* first (say the reference) one is shorter than the second (say a read) and the read contains an insertion with respect
* to the reference. We now want to align the read agains the reference such that the left part of the read aligns well
* against the left part of the reference and the right part of the read aligns well against the right part of the
* reference. The center gap in the reference is free.
*
* For example:
*
* @code{.console}
* reference AGCATGTTAGATAAGATAGC-----------TGTGCTAGTAGGCAGTCAGCGCCAT
* |||||||||||||||||||| |||||||||||||||||||||||||
* read AGCATGTTAGATAAGATAGCCCCCCCCCCCCTGTGCTAGTAGGCAGTCAGCGCCAT
* @endcode
*
* The second variant is to align two sequences A and B against a reference such that the left part of A aligns well to
* the left part of the reference and the right part of B aligns well to the right part of the reference. Together,
* both reads span the whole reference and overlap with an insertion in the reference.
*
* @code{.console}
* reference AGCATGTTAGATAAGATAGCTGTGCTAGTAGGCAGTCAGCGCCAT
* |||||||||||||||||| | ||
* AGCATGTTAGATAAGATATCCGTCC
* read 1
* ||| |||||||||||||||||||||||
* CCGCTATGCTAGTAGGCAGTCAGCGCCAT
* read 2
* @endcode
*
* The resulting alignment of the left/right parts is depicted below. The square brackets indicate clipping positions.
*
* @code{.console}
* reference AGCATGTTAGATAAGATA [GCTGTGCTAGTAGGCAGTCAGCGCCAT
* |||||||||||||||||| [ | ||
* AGCATGTTAGATAAGATA [TCCGTCC
* read 1
* reference AGCATGTTAGATAAGATA] GTGCTAGTAGGCAGTCAGCGCCAT
* ] |||||||||||||||||||||||
* CCGCT] ATGCTAGTAGGCAGTCAGCGCCAT
* read 2
* @endcode
*
* In the first case, we want to find the one breakpoint in the reference and the two breakpoints in the reads and the
* alignment of the left and right well-aligning read parts. In the second case, we want to find the one breakpoint in
* the reference and the breakpoint/clipping position in each read.
*
* The <tt>splitAlignment()</tt> function takes as the input two alignments. The sequence in each alignment's first row
* is the reference and the sequence of the second row is the read. The sequence has to be the same sequence whereas
* the reads might differ. If the reads are the same then this is the same as the first case and if the reads differ
* then this is the second case.
*
* The result is two alignments of the left and right contig path clipped appropriately. The resulting score is the sum
* of the scores of both alignments.
*
* @section Remarks
*
* The DP algorithm is chosen automatically depending on whether the gap open and extension costs are equal.
*
* @section Example
*
* The following example demonstrates the usage of <tt>splitAlignment</tt> in the first case. The second case
* works accordingly.
*
* @include demos/dox/align_split/split_alignment.cpp
*
* The output is as follows.
*
* @include demos/dox/align_split/split_alignment.cpp.stdout
*/
// Variant: unbanded, with Align objects.
template <typename TSequenceL, typename TAlignSpecL, typename TSequenceR, typename TAlignSpecR,
typename TScoreVal, typename TScoreSpec,
bool TTop, bool TRight, bool TLeft, bool TBottom, typename TConfigSpec>
int splitAlignment(Align<TSequenceL, TAlignSpecL> & alignL,
Align<TSequenceR, TAlignSpecR> & alignR,
Score<TScoreVal, TScoreSpec> const & scoringScheme,
AlignConfig<TTop, TRight, TLeft, TBottom, TConfigSpec> const & config)
{
SEQAN_ASSERT_EQ_MSG(source(row(alignL, 0)), source(row(alignR, 0)),
"Contig must be the same for left and right split alignment.");
auto tmp = _splitAlignmentImpl(row(alignL, 0), row(alignL, 1), row(alignR, 0), row(alignR, 1), scoringScheme, config);
return std::get<0>(tmp) + std::get<1>(tmp);
}
template <typename TSequenceL, typename TAlignSpecL, typename TSequenceR, typename TAlignSpecR,
typename TScoreVal, typename TScoreSpec>
int splitAlignment(Align<TSequenceL, TAlignSpecL> & alignL,
Align<TSequenceR, TAlignSpecR> & alignR,
Score<TScoreVal, TScoreSpec> const & scoringScheme)
{
return splitAlignment(alignL, alignR, scoringScheme, AlignConfig<false, false, true, true>());
}
// Variant: unbanded, with Gaps objects.
template <typename TSeqHL, typename TGapSpecHL, typename TSeqVL, typename TGapSpecVL,
typename TSeqHR, typename TGapSpecHR, typename TSeqVR, typename TGapSpecVR,
typename TScoreVal, typename TScoreSpec,
bool TTop, bool TRight, bool TLeft, bool TBottom, typename TConfigSpec>
int splitAlignment(Gaps<TSeqHL, TGapSpecHL> & gapsHL,
Gaps<TSeqVL, TGapSpecVL> & gapsVL,
Gaps<TSeqHR, TGapSpecHR> & gapsHR,
Gaps<TSeqVR, TGapSpecVR> & gapsVR,
Score<TScoreVal, TScoreSpec> const & scoringScheme,
AlignConfig<TTop, TRight, TLeft, TBottom, TConfigSpec> const & config)
{
SEQAN_ASSERT_EQ_MSG(source(gapsHL), source(gapsHR),
"Contig must be the same for left and right split alignment.");
auto tmp = _splitAlignmentImpl(gapsHL, gapsVL, gapsHR, gapsVR, scoringScheme, config);
return std::get<0>(tmp) + std::get<1>(tmp);
}
template <typename TSeqHL, typename TGapSpecHL, typename TSeqVL, typename TGapSpecVL,
typename TSeqHR, typename TGapSpecHR, typename TSeqVR, typename TGapSpecVR,
typename TScoreVal, typename TScoreSpec>
int splitAlignment(Gaps<TSeqHL, TGapSpecHL> & gapsHL,
Gaps<TSeqVL, TGapSpecVL> & gapsVL,
Gaps<TSeqHR, TGapSpecHR> & gapsHR,
Gaps<TSeqVR, TGapSpecVR> & gapsVR,
Score<TScoreVal, TScoreSpec> const & scoringScheme)
{
return splitAlignment(gapsHL, gapsVL, gapsHR, gapsVR, scoringScheme, AlignConfig<false, false, true, true>());
}
// Variant: banded, with Align objects.
template <typename TSequenceL, typename TAlignSpecL, typename TSequenceR, typename TAlignSpecR,
typename TScoreVal, typename TScoreSpec,
bool TTop, bool TRight, bool TLeft, bool TBottom, typename TConfigSpec>
int splitAlignment(Align<TSequenceL, TAlignSpecL> & alignL,
Align<TSequenceR, TAlignSpecR> & alignR,
Score<TScoreVal, TScoreSpec> const & scoringScheme,
AlignConfig<TTop, TRight, TLeft, TBottom, TConfigSpec> const & config,
int const lowerDiagonal,
int const upperDiagonal)
{
SEQAN_ASSERT_EQ_MSG(source(row(alignL, 0)), source(row(alignR, 0)),
"Contig must be the same for left and right split alignment.");
auto tmp = _splitAlignmentImpl(row(alignL, 0), row(alignL, 1), row(alignR, 0), row(alignR, 1),
scoringScheme, config, lowerDiagonal, upperDiagonal);
return std::get<0>(tmp) + std::get<1>(tmp);
}
template <typename TSequenceL, typename TAlignSpecL, typename TSequenceR, typename TAlignSpecR,
typename TScoreVal, typename TScoreSpec>
int splitAlignment(Align<TSequenceL, TAlignSpecL> & alignL,
Align<TSequenceR, TAlignSpecR> & alignR,
Score<TScoreVal, TScoreSpec> const & scoringScheme,
int const lowerDiagonal,
int const upperDiagonal)
{
return splitAlignment(alignL, alignR, scoringScheme, AlignConfig<false, false, true, true>(),
lowerDiagonal, upperDiagonal);
}
// Variant: banded, with Gaps objects.
template <typename TSeqHL, typename TGapSpecHL, typename TSeqVL, typename TGapSpecVL,
typename TSeqHR, typename TGapSpecHR, typename TSeqVR, typename TGapSpecVR,
typename TScoreVal, typename TScoreSpec,
bool TTop, bool TRight, bool TLeft, bool TBottom, typename TConfigSpec>
int splitAlignment(Gaps<TSeqHL, TGapSpecHL> & gapsHL,
Gaps<TSeqVL, TGapSpecVL> & gapsVL,
Gaps<TSeqHR, TGapSpecHR> & gapsHR,
Gaps<TSeqVR, TGapSpecVR> & gapsVR,
Score<TScoreVal, TScoreSpec> const & scoringScheme,
AlignConfig<TTop, TRight, TLeft, TBottom, TConfigSpec> const & config,
int const lowerDiagonal,
int const upperDiagonal)
{
SEQAN_ASSERT_EQ_MSG(source(gapsHL), source(gapsHR),
"Contig must be the same for left and right split alignment.");
auto tmp = _splitAlignmentImpl(gapsHL, gapsVL, gapsHR, gapsVR, scoringScheme, config, lowerDiagonal, upperDiagonal);
return std::get<0>(tmp) + std::get<1>(tmp);
}
template <typename TSeqHL, typename TGapSpecHL, typename TSeqVL, typename TGapSpecVL,
typename TSeqHR, typename TGapSpecHR, typename TSeqVR, typename TGapSpecVR,
typename TScoreVal, typename TScoreSpec>
int splitAlignment(Gaps<TSeqHL, TGapSpecHL> & gapsHL,
Gaps<TSeqVL, TGapSpecVL> & gapsVL,
Gaps<TSeqHR, TGapSpecHR> & gapsHR,
Gaps<TSeqVR, TGapSpecVR> & gapsVR,
Score<TScoreVal, TScoreSpec> const & scoringScheme,
int const lowerDiagonal,
int const upperDiagonal)
{
return splitAlignment(gapsHL, gapsVL, gapsHR, gapsVR, scoringScheme, AlignConfig<false, false, true, true>(),
lowerDiagonal, upperDiagonal);
}
} // namespace seqan
#endif // #ifndef SEQAN_INCLUDE_SEQAN_ALIGN_SPLIT_ALIGN_SPLIT_INTERFACE_H_
|