1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
|
// ==========================================================================
// SeqAn - The Library for Sequence Analysis
// ==========================================================================
// Copyright (c) 2006-2018, Knut Reinert, FU Berlin
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of Knut Reinert or the FU Berlin nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL KNUT REINERT OR THE FU BERLIN BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
// DAMAGE.
//
// ==========================================================================
// Author: Andreas Gogol-Doering <andreas.doering@mdc-berlin.de>
// ==========================================================================
// Allocator that pools blocks of a given size; Different-sized blocks are
// not pooled.
// ==========================================================================
#ifndef SEQAN_BASIC_BASIC_ALLOCATOR_SINGLE_POOL_H_
#define SEQAN_BASIC_BASIC_ALLOCATOR_SINGLE_POOL_H_
#include <seqan/basic/allocator_interface.h>
namespace seqan {
// ============================================================================
// Forwards
// ============================================================================
// ============================================================================
// Tags, Classes, Enums
// ============================================================================
/*!
* @class SinglePoolAllocator
* @extends Allocator
* @headerfile <seqan/basic.h>
* @brief Allocator that pools memory blocks of a specific size.
*
* @signature template <unsigned SIZE, typename TParentAllocator>
* class Allocator;
*
* @tparam SIZE The size of the blocks.
* @tparam TParentAllocator The parent allocator to use.
*
* A pool allocator allocates several memory blocks at once. Freed blocks are not immediately deallocated but
* recycled in subsequential allocations. This way, the number of calls to the heap manager is reduced, and that
* might speed up memory management.
*
* The single pool allocator only pools memory blocks of size at most $SIZE$. Blocks of other sizes are allocated and
* deallocated using an allocator of type $ParentAllocator$. Using the single pool allocator for blocksizes larger
* than a few KB is not advised.
*/
template <size_t SIZE, typename TParentAllocator = SimpleAllocator>
struct SinglePool;
template <size_t SIZE, typename TParentAllocator>
struct Allocator<SinglePool<SIZE, TParentAllocator> >
{
enum
{
// item must be large enough to keep a pointer to the next free item
SIZE_PER_ITEM = SIZE < sizeof(void*)? sizeof(void*) : SIZE,
ITEMS_PER_BLOCK = (SIZE_PER_ITEM < 0x0100) ? 0x01000 / SIZE_PER_ITEM : 16,
STORAGE_SIZE = SIZE_PER_ITEM * ITEMS_PER_BLOCK,
STORAGE_SIZE_MIN = SIZE_PER_ITEM
};
char * data_recycled_blocks;
char * data_current_begin;
char * data_current_end;
char * data_current_free;
Holder<TParentAllocator, Tristate> data_parent_allocator;
Allocator() : data_recycled_blocks(), data_current_begin(), data_current_end(), data_current_free()
{}
Allocator(size_t reserve_item_count) : data_recycled_blocks()
{
size_t storage_size = std::max(reserve_item_count * SIZE_PER_ITEM, STORAGE_SIZE_MIN);
allocate(parentAllocator(*this), data_current_begin, storage_size);
data_current_end = data_current_begin + storage_size;
data_current_free = data_current_begin;
}
Allocator(TParentAllocator & parent_alloc)
{
setValue(data_parent_allocator, parent_alloc);
data_recycled_blocks = data_current_end = data_current_free = 0;
//dont need to initialize data_current_begin
}
Allocator(size_t reserve_item_count, TParentAllocator & parent_alloc)
{
data_recycled_blocks = 0;
setValue(data_parent_allocator, parent_alloc);
size_t storage_size = std::max(reserve_item_count * SIZE_PER_ITEM, STORAGE_SIZE_MIN);
allocate(parentAllocator(*this), data_current_begin, storage_size);
data_current_end = data_current_begin + storage_size;
data_current_free = data_current_begin;
}
// Dummy copy
Allocator(Allocator const &) :
data_recycled_blocks(), data_current_begin(), data_current_end(),
data_current_free()
{
data_recycled_blocks = data_current_end = data_current_free = 0;
}
inline Allocator &
operator=(Allocator const &)
{
clear(*this);
return *this;
}
~Allocator()
{
clear(*this);
}
};
// ============================================================================
// Metafunctions
// ============================================================================
// ============================================================================
// Functions
// ============================================================================
// ----------------------------------------------------------------------------
// Function parentAllocator()
// ----------------------------------------------------------------------------
template <size_t SIZE, typename TParentAllocator>
inline TParentAllocator &
parentAllocator(Allocator<SinglePool<SIZE, TParentAllocator> > & me)
{
return value(me.data_parent_allocator);
}
// ----------------------------------------------------------------------------
// Function clear()
// ----------------------------------------------------------------------------
template <size_t SIZE, typename TParentAllocator>
void
clear(Allocator<SinglePool<SIZE, TParentAllocator> > & me)
{
me.data_recycled_blocks = me.data_current_end = me.data_current_free = 0;
clear(parentAllocator(me));
}
// ----------------------------------------------------------------------------
// Function allocate()
// ----------------------------------------------------------------------------
template <size_t SIZE, typename TParentAllocator, typename TValue, typename TSize, typename TUsage>
inline void
allocate(Allocator<SinglePool<SIZE, TParentAllocator> > & me,
TValue * & data,
TSize count,
Tag<TUsage> const tag_)
{
typedef Allocator<SinglePool<SIZE, TParentAllocator> > TAllocator;
size_t bytes_needed = count * sizeof(TValue);
if (bytes_needed > TAllocator::SIZE_PER_ITEM)
{//no blocking
allocate(parentAllocator(me), data, count, tag_);
return;
}
if (bytes_needed < TAllocator::SIZE_PER_ITEM)
bytes_needed = TAllocator::SIZE_PER_ITEM;
char * ptr;
if (me.data_recycled_blocks)
{//use recycled
ptr = me.data_recycled_blocks;
me.data_recycled_blocks = * reinterpret_cast<char **>(ptr);
}
else
{//use new
ptr = me.data_current_free;
if (ptr + bytes_needed > me.data_current_end)
{//not enough free space in current storage: allocate new
allocate(parentAllocator(me), ptr, (size_t) TAllocator::STORAGE_SIZE, tag_);
me.data_current_begin = ptr;
me.data_current_end = ptr + TAllocator::STORAGE_SIZE;
}
me.data_current_free = ptr + bytes_needed;
}
data = reinterpret_cast<TValue *>(ptr);
}
// ----------------------------------------------------------------------------
// Function deallocate()
// ----------------------------------------------------------------------------
template <size_t SIZE, typename TParentAllocator, typename TValue, typename TSize, typename TUsage>
inline void
deallocate(Allocator<SinglePool<SIZE, TParentAllocator> > & me,
TValue * data,
TSize count,
Tag<TUsage> const tag_)
{
typedef Allocator<SinglePool<SIZE, TParentAllocator> > TAllocator;
size_t bytes_needed = count * sizeof(TValue);
if (bytes_needed > TAllocator::SIZE_PER_ITEM)
{//no blocking
deallocate(parentAllocator(me), data, count, tag_);
return;
}
//link in recycling list
*reinterpret_cast<char **>(data) = me.data_recycled_blocks;
me.data_recycled_blocks = reinterpret_cast<char *>(data);
}
} // namespace seqan
#endif // #ifndef SEQAN_BASIC_BASIC_ALLOCATOR_SINGLE_POOL_H_
|