File: math_common_factor.h

package info (click to toggle)
seqan2 2.4.0%2Bdfsg-17
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 224,224 kB
  • sloc: cpp: 256,886; ansic: 91,672; python: 8,330; sh: 995; xml: 570; makefile: 255; awk: 51; javascript: 21
file content (524 lines) | stat: -rw-r--r-- 14,508 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
// ==========================================================================
//                 SeqAn - The Library for Sequence Analysis
// ==========================================================================
// Copyright (c) 2006-2018, Knut Reinert, FU Berlin
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above copyright
//       notice, this list of conditions and the following disclaimer in the
//       documentation and/or other materials provided with the distribution.
//     * Neither the name of Knut Reinert or the FU Berlin nor the names of
//       its contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL KNUT REINERT OR THE FU BERLIN BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
// DAMAGE.
//
// ==========================================================================
// Author: David Weese <david.weese@fu-berlin.de>
// ==========================================================================
// A data type to represent rational numbers.
// Taken from the Rational Number Library in Boost version 1.47 adapted
// to SeqAn's code conventions.
// ==========================================================================

#ifndef SEQAN_MATH_COMMON_FACTOR_H_
#define SEQAN_MATH_COMMON_FACTOR_H_

namespace seqan {

// ============================================================================
// Forwards
// ============================================================================

template < typename IntegerType >
inline IntegerType
greatestCommonDivisor( IntegerType const &a, IntegerType const &b );

template < typename IntegerType >
inline IntegerType
leastCommonMultiple( IntegerType const &a, IntegerType const &b );


// ============================================================================
// Tags, Classes, Enums
// ============================================================================

template < typename IntegerType >
class GcdEvaluator
{
public:
    // Types
    typedef IntegerType  resultType, firstArgumentType, secondArgumentType;

    // Function object interface
    resultType  operator ()( firstArgumentType const &a,
     secondArgumentType const &b ) const;

};  // boost::math::GcdEvaluator


//  Least common multiple evaluator class declaration  -----------------------//

template < typename IntegerType >
class LcmEvaluator
{
public:
    // Types
    typedef IntegerType  resultType, firstArgumentType, secondArgumentType;

    // Function object interface
    resultType  operator ()( firstArgumentType const &a,
     secondArgumentType const &b ) const;

};  // boost::math::LcmEvaluator

//  Implementation details  --------------------------------------------------//

namespace detail
{
    // Greatest common divisor for rings (including unsigned integers)
    template < typename RingType >
    RingType
    gcdEuclidean
    (
        RingType a,
        RingType b
    )
    {
        // Avoid repeated construction
        RingType const  zero = static_cast<RingType>( 0 );

        // Reduce by GCD-remainder property [GCD(a,b) == GCD(b,a MOD b)]
        while ( true )
        {
            if ( a == zero )
                return b;
            b %= a;

            if ( b == zero )
                return a;
            a %= b;
        }
    }

    // Greatest common divisor for (signed) integers
    template < typename IntegerType >
    inline
    IntegerType
    gcdInteger
    (
        IntegerType const &  a,
        IntegerType const &  b
    )
    {
        // Avoid repeated construction
        IntegerType const  zero = static_cast<IntegerType>( 0 );
        IntegerType const  result = gcdEuclidean( a, b );

        return ( result < zero ) ? static_cast<IntegerType>(-result) : result;
    }

    // Greatest common divisor for unsigned binary integers
    template < typename BuiltInUnsigned >
    BuiltInUnsigned
    gcd_binary
    (
        BuiltInUnsigned  u,
        BuiltInUnsigned  v
    )
    {
        if ( u && v )
        {
            // Shift out common factors of 2
            unsigned  shifts = 0;

            while ( !(u & 1u) && !(v & 1u) )
            {
                ++shifts;
                u >>= 1;
                v >>= 1;
            }

            // Start with the still-even one, if any
            BuiltInUnsigned  r[] = { u, v };
            unsigned         which = static_cast<bool>( u & 1u );

            // Whittle down the values via their differences
            do
            {
                // Remove factors of two from the even one
                while ( !(r[ which ] & 1u) )
                {
                    r[ which ] >>= 1;
                }

                // Replace the larger of the two with their difference
                if ( r[!which] > r[which] )
                {
                    which ^= 1u;
                }

                r[ which ] -= r[ !which ];
            }
            while ( r[which] );

            // Shift-in the common factor of 2 to the residues' GCD
            return r[ !which ] << shifts;
        }
        else
        {
            // At least one input is zero, return the other
            // (adding since zero is the additive identity)
            // or zero if both are zero.
            return u + v;
        }
    }

    // Least common multiple for rings (including unsigned integers)
    template < typename RingType >
    inline
    RingType
    lcmEuclidean
    (
        RingType const &  a,
        RingType const &  b
    )
    {
        RingType const  zero = static_cast<RingType>( 0 );
        RingType const  temp = gcdEuclidean( a, b );

        return ( temp != zero ) ? ( a / temp * b ) : zero;
    }

    // Least common multiple for (signed) integers
    template < typename IntegerType >
    inline
    IntegerType
    lcmInteger
    (
        IntegerType const &  a,
        IntegerType const &  b
    )
    {
        // Avoid repeated construction
        IntegerType const  zero = static_cast<IntegerType>( 0 );
        IntegerType const  result = lcmEuclidean( a, b );

        return ( result < zero ) ? static_cast<IntegerType>(-result) : result;
    }

    // Function objects to find the best way of computing GCD or LCM
#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
    template < typename T, bool IsSpecialized, bool IsSigned >
    struct GcdOptimalEvaluatorHelper
    {
        T  operator ()( T const &a, T const &b )
        {
            return gcdEuclidean( a, b );
        }
    };

    template < typename T >
    struct GcdOptimalEvaluatorHelper< T, true, true >
    {
        T  operator ()( T const &a, T const &b )
        {
            return gcdInteger( a, b );
        }
    };
#else
    template < bool IsSpecialized, bool IsSigned >
    struct GcdOptimalEvaluatorHelper2
    {
        template < typename T >
        struct Helper
        {
            T  operator ()( T const &a, T const &b )
            {
                return gcdEuclidean( a, b );
            }
        };
    };

    template < >
    struct GcdOptimalEvaluatorHelper2< true, true >
    {
        template < typename T >
        struct Helper
        {
            T  operator ()( T const &a, T const &b )
            {
                return gcdInteger( a, b );
            }
        };
    };

    template < typename T, bool IsSpecialized, bool IsSigned >
    struct GcdOptimalEvaluatorHelper
        : GcdOptimalEvaluatorHelper2<IsSpecialized, IsSigned>
           ::BOOST_NESTED_TEMPLATE helper<T>
    {
    };
#endif

    template < typename T >
    struct GcdOptimalEvaluator
    {
        T  operator ()( T const &a, T const &b )
        {
            typedef std::numeric_limits<T>  limitsType;

            typedef GcdOptimalEvaluatorHelper<T,
             limitsType::is_specialized, limitsType::is_signed>  helperType;

            helperType  solver;

            return solver( a, b );
        }
    };
#else // BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
    template < typename T >
    struct GcdOptimalEvaluator
    {
        T  operator ()( T const &a, T const &b )
        {
            return gcdInteger( a, b );
        }
    };
#endif

    // Specialize for the built-in integers
#define BOOST_PRIVATE_GCD_UF( Ut )                  \
    template < >  struct GcdOptimalEvaluator<Ut>  \
    {  Ut  operator ()( Ut a, Ut b ) const  { return gcd_binary( a, b ); }  }

    BOOST_PRIVATE_GCD_UF( unsigned char );
    BOOST_PRIVATE_GCD_UF( unsigned short );
    BOOST_PRIVATE_GCD_UF( unsigned );
    BOOST_PRIVATE_GCD_UF( unsigned long );

#ifdef BOOST_HAS_LONG_LONG
    BOOST_PRIVATE_GCD_UF( boost::ulong_longType );
#elif defined(BOOST_HAS_MS_INT64)
    BOOST_PRIVATE_GCD_UF( unsigned int64_t );
#endif

#if CHAR_MIN == 0
    BOOST_PRIVATE_GCD_UF( char ); // char is unsigned
#endif

#undef BOOST_PRIVATE_GCD_UF

#define BOOST_PRIVATE_GCD_SF( St, Ut )                            \
    template < >  struct GcdOptimalEvaluator<St>                \
    {  St  operator ()( St a, St b ) const  { Ut const  a_abs =   \
    static_cast<Ut>( a < 0 ? -a : +a ), b_abs = static_cast<Ut>(  \
    b < 0 ? -b : +b ); return static_cast<St>(                    \
    GcdOptimalEvaluator<Ut>()(a_abs, b_abs) ); }  }

    BOOST_PRIVATE_GCD_SF( signed char, unsigned char );
    BOOST_PRIVATE_GCD_SF( short, unsigned short );
    BOOST_PRIVATE_GCD_SF( int, unsigned );
    BOOST_PRIVATE_GCD_SF( long, unsigned long );

#if CHAR_MIN < 0
    BOOST_PRIVATE_GCD_SF( char, unsigned char ); // char is signed
#endif

#ifdef BOOST_HAS_LONG_LONG
    BOOST_PRIVATE_GCD_SF( boost::long_longType, boost::ulong_longType );
#elif defined(BOOST_HAS_MS_INT64)
    BOOST_PRIVATE_GCD_SF( int64_t, unsigned int64_t );
#endif

#undef BOOST_PRIVATE_GCD_SF

#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
    template < typename T, bool IsSpecialized, bool IsSigned >
    struct LcmOptimalEvaluatorHelper
    {
        T  operator ()( T const &a, T const &b )
        {
            return lcmEuclidean( a, b );
        }
    };

    template < typename T >
    struct LcmOptimalEvaluatorHelper< T, true, true >
    {
        T  operator ()( T const &a, T const &b )
        {
            return lcmInteger( a, b );
        }
    };
#else
    template < bool IsSpecialized, bool IsSigned >
    struct LcmOptimalEvaluatorHelper2
    {
        template < typename T >
        struct Helper
        {
            T  operator ()( T const &a, T const &b )
            {
                return lcmEuclidean( a, b );
            }
        };
    };

    template < >
    struct LcmOptimalEvaluatorHelper2< true, true >
    {
        template < typename T >
        struct Helper
        {
            T  operator ()( T const &a, T const &b )
            {
                return lcmInteger( a, b );
            }
        };
    };

    template < typename T, bool IsSpecialized, bool IsSigned >
    struct LcmOptimalEvaluatorHelper
        : lcmOptimalEvaluatorHelper2<IsSpecialized, IsSigned>
           ::BOOST_NESTED_TEMPLATE helper<T>
    {
    };
#endif

    template < typename T >
    struct LcmOptimalEvaluator
    {
        T  operator ()( T const &a, T const &b )
        {
            typedef std::numeric_limits<T>  limitsType;

            typedef LcmOptimalEvaluatorHelper<T,
             limitsType::is_specialized, limitsType::is_signed>  helperType;

            helperType  solver;

            return solver( a, b );
        }
    };
#else // BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
    template < typename T >
    struct LcmOptimalEvaluator
    {
        T  operator ()( T const &a, T const &b )
        {
            return lcmInteger( a, b );
        }
    };
#endif

    // Functions to find the GCD or LCM in the best way
    template < typename T >
    inline
    T
    gcdOptimal
    (
        T const &  a,
        T const &  b
    )
    {
        GcdOptimalEvaluator<T>  solver;

        return solver( a, b );
    }

    template < typename T >
    inline
    T
    lcmOptimal
    (
        T const &  a,
        T const &  b
    )
    {
        LcmOptimalEvaluator<T>  solver;

        return solver( a, b );
    }

}  // namespace detail


//  Greatest common divisor evaluator member function definition  ------------//

template < typename IntegerType >
inline
typename GcdEvaluator<IntegerType>::resultType
GcdEvaluator<IntegerType>::operator ()
(
    firstArgumentType const &   a,
    secondArgumentType const &  b
) const
{
    return detail::gcdOptimal( a, b );
}


//  Least common multiple evaluator member function definition  --------------//

template < typename IntegerType >
inline
typename LcmEvaluator<IntegerType>::resultType
LcmEvaluator<IntegerType>::operator ()
(
    firstArgumentType const &   a,
    secondArgumentType const &  b
) const
{
    return detail::lcmOptimal( a, b );
}


//  Greatest common divisor and least common multiple function definitions  --//

template < typename IntegerType >
inline IntegerType
greatestCommonDivisor
(
    IntegerType const &  a,
    IntegerType const &  b
)
{
    GcdEvaluator<IntegerType>  solver;

    return solver( a, b );
}

template < typename IntegerType >
inline IntegerType
leastCommonMultiple
(
    IntegerType const &  a,
    IntegerType const &  b
)
{
    LcmEvaluator<IntegerType>  solver;

    return solver( a, b );
}

}  // namespace seqan

#endif  // #ifndef SEQAN_MATH_COMMON_FACTOR_H_