1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
|
// ==========================================================================
// SeqAn - The Library for Sequence Analysis
// ==========================================================================
// Copyright (c) 2006-2018, Knut Reinert, FU Berlin
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of Knut Reinert or the FU Berlin nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL KNUT REINERT OR THE FU BERLIN BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
// DAMAGE.
//
// ==========================================================================
// Author: Manuel Holtgrewe <manuel.holtgrewe@fu-berlin.de>
// ==========================================================================
// Tests for alphabet concepts.
//
// All checks are compile time checks, as long as this file compiles, the
// checks pass.
// ==========================================================================
#ifndef SEQAN_TESTS_BASIC_TEST_BASIC_ALPHABET_CONCEPTS_H_
#define SEQAN_TESTS_BASIC_TEST_BASIC_ALPHABET_CONCEPTS_H_
// ============================================================================
// Test basic concepts
// ============================================================================
// Test the conformance to the Alphabet concept for (1) built-in types, (2) aggregates, (3) simple types.
inline void testAlphabetConcepts()
{
using namespace seqan;
SEQAN_CONCEPT_ASSERT((AlphabetConcept<bool>));
SEQAN_CONCEPT_ASSERT((AlphabetConcept<char>));
SEQAN_CONCEPT_ASSERT((AlphabetConcept<unsigned>));
SEQAN_CONCEPT_ASSERT((AlphabetConcept<int>));
SEQAN_CONCEPT_ASSERT((AlphabetConcept<double>));
SEQAN_CONCEPT_ASSERT((AlphabetConcept<Pair<int, double> >));
SEQAN_CONCEPT_ASSERT((AlphabetConcept<Dna>));
SEQAN_CONCEPT_ASSERT((AlphabetConcept<Dna5>));
SEQAN_CONCEPT_ASSERT((AlphabetConcept<DnaQ>));
SEQAN_CONCEPT_ASSERT((AlphabetConcept<Dna5Q>));
SEQAN_CONCEPT_ASSERT((AlphabetConcept<Rna>));
SEQAN_CONCEPT_ASSERT((AlphabetConcept<Rna5>));
SEQAN_CONCEPT_ASSERT((AlphabetConcept<Iupac>));
SEQAN_CONCEPT_ASSERT((AlphabetConcept<AminoAcid>));
SEQAN_CONCEPT_ASSERT((AlphabetConcept<char>));
// SEQAN_CONCEPT_ASSERT((AlphabetConcept<Finite<10> >));
}
// Test the conformance to the OrderedAlphabet concept for (1) built-in types, (2) aggregates, (3) simple types.
inline void testOrderedAlphabetConcepts()
{
using namespace seqan;
SEQAN_CONCEPT_ASSERT((OrderedAlphabetConcept<bool>));
SEQAN_CONCEPT_ASSERT((OrderedAlphabetConcept<char>));
SEQAN_CONCEPT_ASSERT((OrderedAlphabetConcept<unsigned>));
SEQAN_CONCEPT_ASSERT((OrderedAlphabetConcept<int>));
SEQAN_CONCEPT_ASSERT((OrderedAlphabetConcept<double>));
// TODO(holtgrew): With lexicographic ordering, pairs are also ordered. We would need complete implementations of the functions then, though.
// SEQAN_CONCEPT_ASSERT((OrderedAlphabetConcept<Pair<int, double> >));
SEQAN_CONCEPT_ASSERT((OrderedAlphabetConcept<Dna>));
SEQAN_CONCEPT_ASSERT((OrderedAlphabetConcept<Dna5>));
SEQAN_CONCEPT_ASSERT((OrderedAlphabetConcept<DnaQ>));
SEQAN_CONCEPT_ASSERT((OrderedAlphabetConcept<Dna5Q>));
SEQAN_CONCEPT_ASSERT((OrderedAlphabetConcept<Rna>));
SEQAN_CONCEPT_ASSERT((OrderedAlphabetConcept<Rna5>));
SEQAN_CONCEPT_ASSERT((OrderedAlphabetConcept<Iupac>));
SEQAN_CONCEPT_ASSERT((OrderedAlphabetConcept<AminoAcid>));
SEQAN_CONCEPT_ASSERT((OrderedAlphabetConcept<char>));
// SEQAN_CONCEPT_ASSERT((OrderedAlphabetConcept<Finite<10> >));
}
// Test the conformance to the FiniteOrderedAlphabet concept for (1) built-in types, (2) aggregates, (3) simple types.
inline void testFiniteOrderedAlphabetConcepts()
{
using namespace seqan;
SEQAN_CONCEPT_ASSERT((FiniteOrderedAlphabetConcept<bool>));
SEQAN_CONCEPT_ASSERT((FiniteOrderedAlphabetConcept<char>));
SEQAN_CONCEPT_ASSERT((FiniteOrderedAlphabetConcept<unsigned>));
SEQAN_CONCEPT_ASSERT((FiniteOrderedAlphabetConcept<int>));
SEQAN_CONCEPT_ASSERT((FiniteOrderedAlphabetConcept<Dna>));
SEQAN_CONCEPT_ASSERT((FiniteOrderedAlphabetConcept<Dna5>));
SEQAN_CONCEPT_ASSERT((FiniteOrderedAlphabetConcept<DnaQ>));
SEQAN_CONCEPT_ASSERT((FiniteOrderedAlphabetConcept<Dna5Q>));
SEQAN_CONCEPT_ASSERT((FiniteOrderedAlphabetConcept<Rna>));
SEQAN_CONCEPT_ASSERT((FiniteOrderedAlphabetConcept<Rna5>));
SEQAN_CONCEPT_ASSERT((FiniteOrderedAlphabetConcept<Iupac>));
SEQAN_CONCEPT_ASSERT((FiniteOrderedAlphabetConcept<AminoAcid>));
SEQAN_CONCEPT_ASSERT((FiniteOrderedAlphabetConcept<char>));
// SEQAN_CONCEPT_ASSERT((FiniteOrderedAlphabetConcept<Finite<10> >));
}
// Test the conformance to the AlphabetWithGaps concept for char and modified alphabets.
inline void testAlphabetWithGapsConcept()
{
using namespace seqan;
SEQAN_CONCEPT_ASSERT((AlphabetWithGapsConcept<char>));
// // TODO(holtgrew): <seqan/modifier.h> is required for this.
// SEQAN_CONCEPT_ASSERT((AlphabetWithGapsConcept<ModifiedAlphabet<Dna, ModExpand<'-'> > >));
}
// Test the conformance to the AlphabetWithGaps concept for char and the *5 alphabets.
inline void testAlphabetWithUnknownValueConcept()
{
using namespace seqan;
SEQAN_CONCEPT_ASSERT((AlphabetWithUnknownValueConcept<char>));
SEQAN_CONCEPT_ASSERT((AlphabetWithUnknownValueConcept<Dna5>));
SEQAN_CONCEPT_ASSERT((AlphabetWithUnknownValueConcept<Rna5>));
SEQAN_CONCEPT_ASSERT((AlphabetWithUnknownValueConcept<Dna5Q>));
}
// Test the conformance to the AlphabetWithQualities concept.
inline void testAlphabetWithQualitiesConcept()
{
using namespace seqan;
SEQAN_CONCEPT_ASSERT((AlphabetWithQualitiesConcept<DnaQ>));
SEQAN_CONCEPT_ASSERT((AlphabetWithQualitiesConcept<Dna5Q>));
}
// Test conformance of pointer with TrivialIteratorConcept.
/*
inline void testTrivialIteratorConcept()
{
SEQAN_CONCEPT_ASSERT((TrivialIteratorConcept<int *>));
}
// Test conformance of pointer with InputIteratorConcept.
inline void testInputIteratorConcept()
{
SEQAN_CONCEPT_ASSERT((InputIteratorConcept<int *>));
}
// Test conformance of pointer with OutputIteratorConcept.
inline void testOutputIteratorConcept()
{
SEQAN_CONCEPT_ASSERT((OutputIteratorConcept<int *>));
}
// Test conformance of pointer with ForwardIteratorConcept.
inline void testForwardIteratorConcept()
{
SEQAN_CONCEPT_ASSERT((ForwardIteratorConcept<int *>));
}
// Test conformance of pointer with BidirectionalIteratorConcept.
inline void testBidirectionalIteratorConcept()
{
SEQAN_CONCEPT_ASSERT((BidirectionalIteratorConcept<int *>));
}
// Test conformance of pointer with RandomAccessIteratorConcept.
inline void testRandomAccessIteratorConcept()
{
SEQAN_CONCEPT_ASSERT((RandomAccessIteratorConcept<int *>));
}
*/
template <typename T>
inline void testInteger()
{
using namespace seqan;
SEQAN_CONCEPT_ASSERT((IntegerConcept<T>));
SEQAN_STATIC_ASSERT_MSG(Is< IntegerConcept<T> >::VALUE, "Type is not marked to be an integer");
}
template <typename T>
inline void testSignedInteger()
{
using namespace seqan;
SEQAN_CONCEPT_ASSERT((SignedIntegerConcept<T>));
SEQAN_STATIC_ASSERT_MSG(Is< SignedIntegerConcept<T> >::VALUE, "Type is not marked to be a signed integer");
testInteger<T>();
}
template <typename T>
inline void testUnsignedInteger()
{
using namespace seqan;
SEQAN_CONCEPT_ASSERT((UnsignedIntegerConcept<T>));
SEQAN_STATIC_ASSERT_MSG(Is< UnsignedIntegerConcept<T> >::VALUE, "Type is not marked to be an unsigned integer");
testInteger<T>();
}
inline void testIntegers()
{
using namespace seqan;
testInteger<char>();
testSignedInteger<signed char>();
testSignedInteger<signed short>();
testSignedInteger<signed int>();
testSignedInteger<signed long>();
testSignedInteger<int64_t>();
testUnsignedInteger<unsigned char>();
testUnsignedInteger<unsigned short>();
testUnsignedInteger<unsigned int>();
testUnsignedInteger<unsigned long>();
testUnsignedInteger<uint64_t>();
// testSignedInteger<unsigned long>(); // <== this should fail
}
#endif // #ifndef SEQAN_TESTS_BASIC_TEST_BASIC_ALPHABET_CONCEPTS_H_
|