1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632
|
// We are using the following parameters in the paper:
//
// -nt 8 -g 100286070 -id 1 -e 0.01 -dsr 3 -krr 0.01 -os 0.3 -or 1 -l 0 0 -i 1000
//
// Setting options triggers quite complex behaviours that we need to simplify later.
//#define FIONA_NOERROROPTIMIZATION //enable mode to emulate error correction by random encounter
#define SEQAN_PROFILE // enable time measuring
//#define FIONA_MEMOPT // small suffix array values (<16mio reads of length <256)
#define FIONA_USE_SA // use binary search in a suffix array for traversal
#define FIONA_REDUCE_MEMORY
//#define FIONA_OVERLAP_WITH_EDIT_DISTANCE // allow indels in the overlap (instead of only mismatches)
#define FIONA_CONSENSUS_REDUCE_MEMORY
//#define FIONA_MAX_CORRECTIONS_PER_BASE 3 // record and limit the number of found corrections per base
#define FIONA_MATCH_N
#define FIONA_MAXIMIZE_OVERLAPSUM // instead of maximizing the SUM of left and right, simply use the MAXIMUM of left and right
#define FIONA_NO_SEPARATE_OVERLAPSUM //in this mode just save the max over left and right in the linked list of corrections and only keep one correction per position
#define FIONA_INTERNAL_MEMORY
// debugging
//#define SEQAN_DEBUG_INDEX
//#define SEQAN_DEBUG
//#define SEQAN_VERBOSE
//#define SEQAN_VVERBOSE
// iodebug
//#define SEQAN_DEBUG_OR_TEST_
//#define SEQAN_HEADER_PIPE_DEBUG
#define FIONA_ALLOWINDELS // allow for indels (chooses a less compact FragmentStore)
// // currently, consensus works only without indels
// #ifndef FIONA_OVERLAP_WITH_EDIT_DISTANCE
// #define FIONA_CONSENSUS
// #endif
//
// //#define FIONA_FIXED_OVERLAP_ERRORS // use fixed (ISMB) instead of error rate dependent threshold for overlap errors
//
// // Dave's proposal to locally chose the operation with maximal support
// #define FIONA_MAXIMIZE_SUPPORT
//
// //#define FIONA_DISTANCE_BASED_ERROR_OPTIMIZATION // in this mode errors are corrected independent of type (mismatch or indels) but constraining the corrections to be apart at least min_k distance on a read
#ifdef FIONA_ILLUMINA
// Illumina settings (currently set above)
#define FIONA_FIXED_OVERLAP_ERRORS
#define FIONA_CONSENSUS
#undef FIONA_OVERLAP_WITH_EDIT_DISTANCE
#undef FIONA_MAXIMIZE_SUPPORT
#undef FIONA_DISTANCE_BASED_ERROR_OPTIMIZATION
#define FIONA_BINARY_NAME "fiona_illumina"
#else
// Indel settings
#undef FIONA_FIXED_OVERLAP_ERRORS
#undef FIONA_CONSENSUS
#define FIONA_OVERLAP_WITH_EDIT_DISTANCE
#define FIONA_MAXIMIZE_SUPPORT
#define FIONA_DISTANCE_BASED_ERROR_OPTIMIZATION
#define FIONA_BINARY_NAME "fiona"
#endif
#include <seqan/platform.h>
#if defined(_OPENMP)
#include <omp.h>
#define SEQAN_PARALLEL // Only enable parallelism in fiona if OpenMP is enabled.
#define FIONA_PARALLEL // divide suffix tree into subtrees for each possible 3-gram
#if defined(STDLIB_GNU)
#include <parallel/algorithm>
#endif
#else
#pragma message("Please enable OpenMP.")
#endif // #ifdef _OPENMP
// The q-gram length used for the q-gram index. This has to be hard-coded as a precompiler definition since it is part
// of the template parameters for the indices.
#ifndef QGRAM_LENGTH
#define QGRAM_LENGTH 10 // must be less or equal to fromLevel
#endif
// The hardcoded maximal indel length.
const unsigned int MAX_INDEL_LENGTH = 4;
// The hardcoded maximal number of rounds when using auto round detection.
const unsigned int MAX_NUM_ROUND = 6;
// The program's version and release date are kept here at the top of the file for easier maintenance.
const char * PROGRAM_VERSION = "0.2";
#include <iostream>
#include <fstream>
#include <cmath>
#include <ctime>
#include <string>
#include <sstream>
//#include <sys/resource.h>
// TODO (hugues)
// 1_ Update all formulas of mixed poisson and binomial to use
// boost library
// 2_ Use the boost functions for all computations involving binomial/poisson
#include <seqan/basic.h>
#include <seqan/sequence.h>
#include <seqan/parallel.h>
#include <seqan/index.h>
#include <seqan/store.h>
#include <seqan/seq_io.h>
#include <seqan/arg_parse.h>
#include <seqan/version.h>
#if SEQAN_VERSION_MAJOR == 1 && SEQAN_VERSION_MINOR == 4
// in SeqAn 1.4.x the SA tree and the View classes were in extras
#include <../../include/seqan/index/index_sa_stree.h>
#include <../../include/seqan/basic/basic_view.h>
#include <../../include/seqan/sequence/iterator_range.h>
#endif
#include "index_qgram_parallel.h"
//Boost Math headers
#include <boost/math/distributions.hpp>
#include <boost/math/special_functions/binomial.hpp>
using boost::math::binomial;
#include <boost/numeric/ublas/matrix.hpp>
using namespace boost::numeric::ublas;
// TODO(holtgrew): This raises a warning with Boost 1.42. Deactivate warnings, activate again afterwards. The correct #pragma has to be used for each supported compiler.
//#include <boost/math/distributions/normal.hpp>
//#define MEDIAN
using namespace seqan2;
#ifdef FIONA_ALLOWINDELS
// NOTE:
// Currently we have to change the StringSet spec of the readSeqStore
// to Owner as ConcatDirect<> (default) is not able to notice if a read
// changes its size (after correction).
struct FionaStoreConfig:
public FragmentStoreConfig<>
{
//typedef String<Dna5, Packed<> > TReadSeq;
typedef String<Dna5> TReadSeq;
typedef Owner<> TReadSeqStoreSpec;
typedef Owner<> TReadNameStoreSpec;
};
typedef FragmentStore<void, FionaStoreConfig> TFionaFragStore;
typedef Value<TFionaFragStore::TReadSeqStore>::Type TRead;
typedef Infix<TRead>::Type TReadPrefix;
#else
struct FionaStoreConfig:
public FragmentStoreConfig<>
{
//typedef String<Dna5, Packed<> > TReadSeq;
typedef String<Dna5> TReadSeq;
typedef Owner<> TReadNameStoreSpec;
};
typedef FragmentStore<void, FionaStoreConfig> TFionaFragStore;
typedef Value<TFionaFragStore::TReadSeqStore>::Type TReadPrefix;
#endif
typedef StringSet<TReadPrefix> TReadPrefixes;
#ifdef FIONA_USE_SA
typedef Index<TFionaFragStore::TReadSeqStore, IndexSa<> > TFionaIndex;
#else
typedef Index<TFionaFragStore::TReadSeqStore, IndexWotd<> > TFionaIndex;
#endif
typedef Index<TReadPrefixes, IndexQGram< Shape<Dna5, UngappedShape<QGRAM_LENGTH> > > > TFionaQgramIndex;
//typedef Index<TFionaFragStore::TReadSeqStore, IndexQGram< Shape<Dna5, UngappedShape<5> > > > TFionaQgramIndex;
struct FionaPoisson_;
struct FionaExpected_;
struct FionaCount_;
struct FionaPoissonSens_;
struct FionaPoissonClassif_;
typedef Tag<FionaPoisson_> const FionaPoisson;
typedef Tag<FionaPoissonSens_> const FionaPoissonSens;
typedef Tag<FionaExpected_> const FionaExpected;
typedef Tag<FionaCount_> const FionaCount;
typedef Tag<FionaPoissonClassif_> const FionaPoissonClassif;
struct FionaCorrectedError
{
unsigned int correctReadId;
// unsigned int occurrences;
unsigned short errorPos;
unsigned short correctPos;
unsigned short overlap;
signed char indelLength; // 0..mismatch, <0..deletion, >0..insertion
// unsigned char mismatches;
};
// Enum for representing the Fiona method.
enum FionaMethod
{
CONTROL_FP,
EXPECTED,
CONTROL_FN,
COUNT,
CLASSIFIER
};
// Return a string with the name for the given Fiona method.
char const * methodName(FionaMethod m)
{
switch (m)
{
case CONTROL_FP:
return "CONTROL FALSE POSITIVES";
case EXPECTED:
return "EXPECTED";
case CONTROL_FN:
return "CONTROL FALSE NEGATIVES";
case COUNT:
return "COUNT";
case CLASSIFIER:
return "CLASSIFIER";
}
return "INVALID";
}
// Convert a valid method name into a FionaMethod.
FionaMethod methodForName(seqan2::CharString const & str)
{
if (str == "control_fp")
return CONTROL_FP;
else if (str == "expected")
return EXPECTED;
else if (str == "control_fn")
return CONTROL_FN;
else if (str == "count")
return COUNT;
else
return CLASSIFIER;
}
struct FionaOptions
{
// Verbosity: 0 - quiet, 1 - normal, 2 - verbose, 3 - very verbose.
int verbosity;
int64_t genomeLength;
double strictness;
unsigned acceptedMismatches;
int maxIndelLength;
bool autolevel;
int fromLevel;
int toLevel;
unsigned cycles;
unsigned cycle;
double errorrate;
double overlap_errorrate;
double oddserrorreads;
double wovsum;
int debugRead, corrRead;
unsigned packagesPerThread;
int loopLevel;
// Whether or not to append correction information into the FASTA output headers.
bool appendCorrectionInfo;
double kmerAbundanceCutoff;
double kmerStdDevCutOff;
int depthSampleRate;
double timeComputeOverlapSum;
// The number of errors to correct per read relative to the read length.
double relativeErrorsToCorrect;
CharString inputFilename;
CharString outputFilename;
FionaMethod method;
int numThreads;
// internal parameters
String<double> expectedTheoretical;
String<int> errorCutoffs;
String<unsigned> repeatCutoffs;
matrix<double> overlapSumCutoffs;
//create new String with allowed errors per Read that is used to skip further corrections on reads
String<unsigned char> allowedCorrectionsPerRead;
bool limitCorrPerRound;
bool trimNsOnOutput;
unsigned numSuperPackages;
FionaOptions()
{
verbosity = 0;
method = CLASSIFIER;
numThreads = 1;
limitCorrPerRound = true;
trimNsOnOutput = true;
genomeLength = 0;
strictness = 0.0001;
acceptedMismatches = 1;
maxIndelLength = 1;
cycles = 6;
cycle = 1;
autolevel = false;
fromLevel = 0;
toLevel = 0;
#ifdef FIONA_ILLUMINA
errorrate = 0.01;
kmerAbundanceCutoff = 0.01;
#else
errorrate = 0.05;
kmerAbundanceCutoff = 0.05;
#endif
overlap_errorrate = 0;
oddserrorreads = 0;
wovsum = 0.3;
debugRead = -1;
corrRead = -1;
packagesPerThread = 100;
kmerStdDevCutOff = 2.0;
depthSampleRate = 3;
relativeErrorsToCorrect = 0.02;
timeComputeOverlapSum = 0;
loopLevel = -1;
appendCorrectionInfo = false;
numSuperPackages = 10;
}
};
// Return C-style string "YES"/"NO" depending on the value of b. Useful for printing options.
char const * yesNo(bool b)
{
return b ? "YES" : "NO";
}
// Print options to out.
void printOptions(std::ostream & out, FionaOptions const & options)
{
out << "__OPTIONS________________________________________________________\n"
<< "\n"
<< "MODE INFORMATION\n"
<< "\n";
#if defined(FIONA_PARALLEL)
out << " PARALLEL MODE YES\n";
#else // #if defined(FIONA_PARALLEL)
out << " PARALLEL MODE NO\n";
#endif // #if defined(FIONA_PARALLEL)
#if defined(FIONA_NOERROROPTIMIZATION)
out << " RANDOM ENCOUNTER MODE YES\n";
#else // #if defined(FIONA_NOERROROPTIMIZATION)
out << " RANDOM ENCOUNTER MODE NO\n";
#endif // #if defined(FIONA_NOERROROPTIMIZATION)
#if defined(FIONA_ALLOWINDELS)
out << " ALLOW INDELS MODE YES\n";
#else // #if defined(FIONA_ALLOWINDELS)
out << " ALLOW INDELS MODE NO\n";
#endif // #if defined(FIONA_ALLOWINDELS)
#if defined(FIONA_USE_SA)
out << " SUFFIX ARRAY MODE YES\n";
#else // #if defined(FIONA_USE_SA)
out << " SUFFIX ARRAY MODE NO\n";
#endif // #if defined(FIONA_USE_SA)
out << "\n"
<< "CONSTANTS\n"
<< "\n"
<< " K-MER LENGTH " << QGRAM_LENGTH << "\n"
<< " MAX INDEL LENGTH " << MAX_INDEL_LENGTH << "\n"
<< " MAX NUM ROUNDS " << MAX_NUM_ROUND << "\n"
<< "\n"
<< "OPTIONS\n"
<< "\n"
<< " METHOD " << methodName(options.method) << "\n"
<< " GENOME LENGTH " << options.genomeLength << "\n"
<< " STRICTNESS " << options.strictness << "\n"
<< " ACCEPTED MISMATCHES " << options.acceptedMismatches << "\n"
<< " MAX INDEL LENGTH " << options.maxIndelLength << "\n"
<< " CYCLES " << options.cycles << "\n"
<< " CYCLE " << options.cycle << "\n"
<< " AUTOLEVEL " << yesNo(options.autolevel) << "\n"
<< " FROM LEVEL " << options.fromLevel << "\n"
<< " TO LEVEL " << options.toLevel << "\n"
<< " ERROR RATE " << options.errorrate << "\n"
<< " ODDS ERROR READS " << options.oddserrorreads << "\n"
<< " WOV SUM " << options.wovsum << "\n"
<< " RELATIVE ERRORS TO CORR. " << options.relativeErrorsToCorrect << "\n";
if (options.debugRead != -1)
out << " DEBUG READ " << options.debugRead << "\n";
if (options.corrRead != -1)
out << " CORR READ " << options.corrRead << "\n";
out << " PACKAGES PER THREAD " << options.packagesPerThread << "\n"
<< " KMER ABOUNDANCE CUTOFF " << options.kmerAbundanceCutoff << "\n"
<< " DEPTH SAMPLE RATE " << options.depthSampleRate << "\n"
<< " TIME COMPUTE OVERLAP SUM " << options.timeComputeOverlapSum << "\n";
if (options.loopLevel != -1)
out << " LOOP LEVEL " << options.loopLevel << "\n";
out << " APPEND CORRECTION INFO " << yesNo(options.appendCorrectionInfo) << "\n"
<< " NUM THREADS " << options.numThreads << "\n"
<< "\n";
}
// used for profiling
struct FionaResources
{
unsigned long bucketBegin;
unsigned long bucketEnd;
double cpuTime;
unsigned investigatedNodes;
unsigned putCorrections;
FionaResources():
bucketBegin(0),
bucketEnd(0),
cpuTime(0),
investigatedNodes(0),
putCorrections(0) {}
bool operator < (FionaResources const &right) const
{
return cpuTime > right.cpuTime;
}
};
//Temp global variable num of families
unsigned int nfamilies = 0;
/*
new struct for Fiona to record several errors and their corrections per read
with support for different indels and both strands.
The struct is saved in a String<Correction> that essentially is a save efficient
linked list of these structs. Therefore the first variable nextCorrection points to the
position in the String where the next correction for that read position can be found.
The last linked list item for a read position holds the maxValue for int.
The array overlap records the maximum overlap sum observed for the forward and the reverse strand.
Note that for indel events special care must be taken if both strands are considered
as the indel position may differ relative to orientation.
Note that the maximum recordable overlapsum is bounded by 65.535.
*/
struct CorrectionIndelPos
{
unsigned int nextCorrection; // -1u..last correction
#ifndef FIONA_CONSENSUS_REDUCE_MEMORY
unsigned int correctReadId;
unsigned short correctPos;
#endif
unsigned short errorPos;
unsigned char onReverse:1; // 0 if forward strand, 1 if reverse strand similar to boolean strand variable
unsigned char foundCorrections:7;
unsigned short overlap[2]; // 0..forward, 1..reverse
Dna5 correctSeq[MAX_INDEL_LENGTH];
signed char indelLength; // -x..insertion
// 0..mismatch
// x..deletion
};
namespace seqan2
{
struct CargoQgramIndex
{
FionaOptions* optionsPtr;
};
/*restriction for certain levels - between max and min, also table with frequency may be to use eventually TODO*/
struct FionaNodeConstraints
{
unsigned replen_max;
unsigned replen_min;
// String<unsigned> *repeatCutoffs;
// std::map<unsigned,double> frequency;
};
template <>
struct Cargo<TFionaQgramIndex>
{
typedef CargoQgramIndex Type;
};
template <>
struct Cargo<TFionaIndex> {
typedef FionaNodeConstraints Type;
};
#ifdef FIONA_MEMOPT
typedef Pair<
unsigned,
unsigned,
BitCompressed<24, 8> // max. 16M reads of length < 256
> TSAValue;
#else
typedef Pair<
unsigned, // many reads
unsigned short, // of arbitrary length
Pack
> TSAValue;
#endif
template <>
struct SAValue< TFionaIndex >
{
typedef TSAValue Type;
};
template <>
struct SAValue< TFionaQgramIndex >
{
typedef TSAValue Type;
};
#ifndef FIONA_INTERNAL_MEMORY
// use a mmap string for storing the q-grams
template <>
struct Fibre< TFionaQgramIndex, FibreSA >
{
#ifdef FIONA_REDUCE_MEMORY
typedef String<TSAValue, External<ExternalConfigLarge<> > > Type;
#else
typedef String<TSAValue, MMap<> > Type;
#endif
};
#endif
#ifdef FIONA_PARALLEL
template <>
struct Fibre< TFionaIndex, FibreSA >
{
typedef Fibre< TFionaQgramIndex, QGramSA >::Type TSA;
#ifdef FIONA_REDUCE_MEMORY
typedef Value<TSA>::Type TValue;
typedef Range<TValue*> Type;
#else
typedef Infix<TSA>::Type Type;
#endif
};
#endif
// Copy from store_io.h, could/should go into library.
template <typename TFSSpec, typename TFSConfig, typename TFileName>
bool loadReadsNoNames(FragmentStore<TFSSpec, TFSConfig> &store, TFileName &fileName, FionaOptions const & options)
{
//StringSet<String<Dna5, Packed<> >, Owner<ConcatDirect<> > > reads;
SeqFileIn seqFile;
if (!open(seqFile, toCString(fileName)))
return false;
// read sequences
// String<Dna5Q> seq;
// CharString qual;
CharString _id;
String<Dna5> seq;
unsigned i = 0;
while (!atEnd(seqFile))
{
readRecord(_id, seq, seqFile);
// appendRead(store, seq/*, _id*/);
appendValue(store.readSeqStore, seq);
if (options.verbosity >= 1 && ++i % 100000 == 0)
std::cout<<'.'<<std::flush;
}
// store.readSeqStore = reads;
return true;
}
template <typename THash>
inline bool
hashContainsN(THash h)
{
// we assume that the hash value was computed for a Dna5 q-gram (sigma=5)
while (h != 0)
{
if (h % 5 == 4)
return true;
h /= 5;
}
return false;
}
template <typename TDir>
struct GreaterBucketSize
{
TDir const &dir;
GreaterBucketSize(TDir const &dir_): dir(dir_) {}
inline bool
operator () (unsigned a, unsigned b)
{
return dir[a] > dir[b];
}
};
template <typename TDir>
inline void
maskRepeatBuckets(TDir &dir, FionaOptions const & options)
{
typedef typename Value<TDir>::Type TDirValue;
typedef typename MakeSigned<typename Size<TDir>::Type>::Type TDirSize;
const TDirValue PURGE_BUCKET = (TDirValue)-1;
TDirSize dirLen = length(dir);
if (options.verbosity >= 1)
std::cerr << "Purge repetitive k-mers ........... " << std::flush;
// extract bucket numbers
uint64_t suffixCount = 0;
String<unsigned> bktIdx;
// #pragma omp parallel for reduction(+:suffixCount)
for (TDirSize i = 0; i < dirLen - 1; ++i)
if (dir[i] != PURGE_BUCKET && dir[i] > 0)
{
suffixCount += dir[i];
// SEQAN_OMP_PRAGMA(critical)
appendValue(bktIdx, i);
}
// sort them descendingly by bucket size
sort(bktIdx, GreaterBucketSize<TDir>(dir), Parallel());
// mask for removal of the largest buckets that
// contain overall at most 2% of all suffixes
if (options.verbosity >= 1)
std::cerr << " suffixes: " << suffixCount << std::endl;
uint64_t threshN1 = (uint64_t)(suffixCount * options.kmerAbundanceCutoff);
Dna5String kmer;
suffixCount = 0;
for (unsigned i = 0; i < length(bktIdx); ++i)
{
unsigned bkt = bktIdx[i];
suffixCount += dir[bkt];
if (suffixCount < threshN1)
{
dir[bkt] = PURGE_BUCKET;
unhash(kmer, bkt, QGRAM_LENGTH);
if (options.verbosity >= 2)
std::cerr << kmer << ' ' << std::flush;
} else
break;
}
if (options.verbosity >= 2)
std::cerr << std::endl;
}
template <typename TDir>
inline void
maskRepeatBuckets2(TDir &dir, FionaOptions const & options)
{
typedef typename Value<TDir>::Type TDirValue;
typedef typename MakeSigned<typename Size<TDir>::Type>::Type TDirSize;
typedef typename Iterator<String<unsigned> >::Type TBktIter;
const TDirValue PURGE_BUCKET = (TDirValue)-1;
TDirSize dirLen = length(dir);
if (options.verbosity >= 1)
std::cerr << "Purge repetitive k-mers ........... " << std::flush;
// extract bucket numbers
uint64_t suffixCount = 0;
String<unsigned> bktIdx;
// #pragma omp parallel for reduction(+:suffixCount)
for (TDirSize i = 0; i < dirLen - 1; ++i)
if (dir[i] != PURGE_BUCKET && dir[i] > 0)
{
suffixCount += dir[i];
// SEQAN_OMP_PRAGMA(critical)
appendValue(bktIdx, i);
}
// sort them descendingly by bucket size
sort(bktIdx, GreaterBucketSize<TDir>(dir), Parallel());
TBktIter itFirst = begin(bktIdx, Standard());
TBktIter itLast = end(bktIdx, Standard());
// omit the disabled buckets in front
while (dir[*itFirst] == PURGE_BUCKET && itFirst != itLast)
++itFirst;
// omit the empty buckets in the back
do {
--itLast;
} while (dir[*itLast] == 0 && itLast != itFirst);
++itLast;
// compute k-mer median
unsigned n = itLast - itFirst;
std::cout<<std::endl;
std::cout<<std::endl;
std::cout<<dir[*itFirst]<<'\t'<<dir[*(itFirst+1)]<<'\t'<<dir[*(itFirst+2)]<<std::endl;
std::cout<<dir[*(itLast-1)]<<'\t'<<dir[*(itLast-2)]<<'\t'<<dir[*(itLast-3)]<<std::endl;
std::cout<<std::endl;
std::cout<<std::endl;
TDirValue median = dir[*(itFirst + n / 2)];
double stdDev = 0;
for (TBktIter it = itFirst; it != itLast; ++it)
{
double diff = (double)dir[*it] - (double)median;
stdDev += diff * diff;
}
// compute k-mer standard deviation
stdDev = std::sqrt(stdDev / (n - 1));
TDirValue cutOff = median + stdDev * options.kmerStdDevCutOff;
if (options.verbosity >= 1)
{
std::cerr << " k-mer median: " << median << std::endl;
std::cerr << " k-mer stddev: " << stdDev << std::endl;
std::cerr << " k-mer cutoff: " << cutOff << std::endl;
}
// remove bucket above the cut-off
Dna5String kmer;
for (TBktIter it = itFirst; it != itLast; ++it)
{
if (dir[*it] > cutOff)
{
dir[*it] = PURGE_BUCKET;
unhash(kmer, *it, QGRAM_LENGTH);
if (options.verbosity >= 2)
std::cerr << kmer << ' ' << std::flush;
}
}
if (options.verbosity >= 2)
std::cerr << std::endl;
}
inline bool
_qgramDisableBuckets(TFionaQgramIndex &index)
{
typedef TFionaQgramIndex TIndex;
typedef Fibre<TIndex, QGramDir>::Type TDir;
typedef Fibre<TIndex, QGramShape>::Type TShape;
typedef Value<TDir>::Type TDirValue;
typedef MakeSigned<Size<TDir>::Type>::Type TDirSize;
typedef Host<TShape>::Type TValue;
typedef ValueSize<TValue>::Type TValueSize;
const TDirValue PURGE_BUCKET = (TDirValue)-1;
TDir &dir = indexDir(index);
TDirSize dirLen = length(dir);
TShape &shape = indexShape(index);
String<TValue> kmer;
// 1. manually remove all homopolymer repeats
for (TValueSize x = 0; x < ValueSize<TValue>::VALUE; ++x)
{
clear(kmer);
resize(kmer, length(shape), (TValue)x);
dir[hash(shape, begin(kmer, Standard()))] = PURGE_BUCKET;
}
// 2. mask k-mers with Ns
SEQAN_OMP_PRAGMA(parallel for)
for (TDirSize i = 0; i < dirLen - 1; ++i)
if (hashContainsN(i))
dir[i] = PURGE_BUCKET;
// 3. mask k-mers from repeat regions
maskRepeatBuckets(dir, *(cargo(index).optionsPtr));
// maskRepeatBuckets2(dir, *(cargo(index).optionsPtr));
return true;
}
// check whether a string can be exactly be overlapped with itself
// try different overlap offsets 1,...,6
template <typename TString>
inline bool
isSelfRepetitive(TString const &str)
{
typedef typename Iterator<TString const, Standard>::Type TIterator;
TIterator itBegin = begin(str, Standard());
TIterator itEnd = end(str, Standard());
unsigned maxOverlap = _min(6, (itEnd - itBegin) / 2);
for (unsigned ofs = 1; ofs <= maxOverlap; ++ofs)
{
TIterator it1 = itBegin;
TIterator it2 = itBegin + ofs;
for (; it2 != itEnd; ++it1, ++it2)
if (*it1 != *it2) break;
if (it2 == itEnd)
{
// std::cerr << ofs << '\t' << str << " skipped." << std::endl;
return true;
}
}
return false;
}
/*TODO THIS FONCTION CAN BE CHANGED FOR THE FREQUENCY - here just one experience*/
/*by the use also the frequency for A,T,G,C*/
/*higher frequency - high level as min in which we will begin the searching*/
/*hide the node between certain level*/
template <typename TSpec>
inline bool nodeHullPredicate(Iter<TFionaIndex, VSTree<TopDown<TSpec> > > &it)
{
//Hugues: to parse all the node levels, I would use nodeDepth, e.g.
//return nodeDepth(it) < cargo(container(it)).replen_max;
return parentRepLength(it) <= cargo(container(it)).replen_max;
}
template <typename TSpec>
inline bool nodePredicate(Iter<TFionaIndex, VSTree<TopDown<TSpec> > > &it)
{
// return true;
FionaNodeConstraints &cons = cargo(container(it));
unsigned repLen = parentRepLength(it);
//the same here why isn't it nodeDepth ?
//unsigned repLen = nodeDepth(it);
/*TODO may utilise >=*/
return cons.replen_min <= repLen && repLen <= cons.replen_max;
}
} // namespace seqan2
// fill an array of type alphabet with the correction string
// of the correct read, in case the reverse sequence is seeked the
// readID is changed accordingly.
template <typename TAlphabet, typename TValue,typename TValue2,typename TFragmentStore>
inline void getCorrectionString(TAlphabet array[], //the array has to be at least of length abs(indelLength)
signed char indelLength,
TValue correctReadId,
TValue2 correctPos,
bool strand,
TFragmentStore &store)
{
typedef typename TFragmentStore::TReadSeqStore TReadSeqStore;
typedef typename Value<TReadSeqStore>::Type TRead;
typedef typename Iterator<TRead, Standard>::Type TReadIterator;
SEQAN_ASSERT_LEQ(indelLength, 0);
if (strand)
{
// change the pos in the correctRead and the readID
unsigned readCount = length(store.readSeqStore) / 2;
// switch to reverse-complements
if (correctReadId < readCount)
correctReadId += readCount;
else
correctReadId -= readCount;
// mirror positions
correctPos = length(store.readSeqStore[correctReadId]) - correctPos;
// for insertions the position is correct already
if (indelLength == 0)
--correctPos;
}
// from here on the correctPos and the readID should refer
// to the forward strand respective to the error position
TReadIterator it = begin(store.readSeqStore[correctReadId], Standard()) + correctPos;
array[0] = *it; // always copy first char (also for mismatches when indelLength==0)
for (int i = 1; i < -indelLength; ++i)
array[i] = *(++it); //store.readSeqStore[correctReadId][correctPos+i];
}
/*
update a Correction entry with a higher overlap sum if necessary
*/
template <typename TCorrection,typename TValue,typename TValueShort,typename TValue2,typename TAlphabet>
inline void updateCorrectionEntry(String<TCorrection> &correctionList,
TValue posInCorrectionList,
// TValue2 correctReadId,
// TValue3 correctPos,
TValueShort overlap,
bool strand,
TValue correctReadId,
TValue2 indelLength,
TAlphabet &correctSeq,
TValue2 previousIndelLength)
{
TValue pos = (strand)? 1: 0;
#ifdef FIONA_NO_SEPARATE_OVERLAPSUM
pos=0;
bool change = false;
#else
(void) previousIndelLength;
(void) correctSeq;
(void) indelLength;
#endif
//because we are querying this position for a potential update we had found a correction
correctionList[posInCorrectionList].foundCorrections++;
if (correctionList[posInCorrectionList].overlap[pos] < overlap)
{
#ifndef FIONA_CONSENSUS_REDUCE_MEMORY
correctionList[posInCorrectionList].correctReadId = correctReadId; // for debugging only
#else
(void)correctReadId;
#endif
// correctionList[posInCorrectionList].correctPos= correctPos;
#ifdef FIONA_NO_SEPARATE_OVERLAPSUM
change = true;
#endif
correctionList[posInCorrectionList].overlap[pos] = overlap;
}
#ifdef FIONA_NO_SEPARATE_OVERLAPSUM
//check if the overlap sum is the same put the type of correction preferred
else if(correctionList[posInCorrectionList].overlap[pos] == overlap){
if(previousIndelLength ==0)
return;
if(indelLength ==0)
change =true;
else if(indelLength > previousIndelLength)
change= true;
}
if(change){
//update the indeLength and string as well
correctionList[posInCorrectionList].indelLength = indelLength;
// add seq to array in the struct
correctionList[posInCorrectionList].correctSeq[0] = correctSeq[0]; // we always copy the first char (even for deletions, which are rare)
for(int i = 1; i < -indelLength; ++i) // copy insertion string (indelLength < 0)
correctionList[posInCorrectionList].correctSeq[i] = correctSeq[i];
}
#endif
return;
}
/*
Basic function to fill a new CorrectionIndelPos with values.
The nextCorrection field is initialized with highest integer value.
*/
template <
typename TCorrection,
typename TPos1,
typename TPos2,
typename TAlphabet,
typename TOverlap,
typename TIndel,
typename TSize,
typename TId >
inline void fillCorrection(TCorrection &newCorrection,
// TValue correctReadId,
TPos1 correctPos,
TPos2 errorPos,
TAlphabet correctSeq[], //this should always be in forward direction
TOverlap overlap,
bool strand,
TIndel indelLength,
TSize readLength,
TId correctReadId)
{
//TValue empty=maxValue(readLength);
//fill Correction struct
newCorrection.nextCorrection = std::numeric_limits<unsigned>::max(); // it will be the last correction in the linked list
#ifndef FIONA_CONSENSUS_REDUCE_MEMORY
newCorrection.correctReadId = correctReadId; // only for debugging purposes
newCorrection.correctPos = correctPos;
#else
(void)correctReadId;
(void)correctPos;
#endif
newCorrection.indelLength = indelLength;
newCorrection.foundCorrections=1;
if (!strand)
{
// forward
newCorrection.errorPos = errorPos;
newCorrection.overlap[0] = overlap; // 0..forward, 1..reverse
newCorrection.overlap[1] = 0;
newCorrection.onReverse = 0;
}
else
{
// mirror positions
newCorrection.errorPos = readLength - errorPos;
newCorrection.onReverse = 1;
// for insertions the position is correct already
if (indelLength == 0)
--newCorrection.errorPos;
else if (indelLength > 0) // deletion
newCorrection.errorPos -= indelLength;
newCorrection.overlap[1] = overlap;
newCorrection.overlap[0] = 0; // 0..forward, 1..reverse
}
#ifdef FIONA_NO_SEPARATE_OVERLAPSUM
//put is always in overlap[0]
newCorrection.overlap[0] = overlap; // 0..forward, 1..reverse
newCorrection.overlap[1] = 0;
#endif
// add seq to array in the struct
newCorrection.correctSeq[0] = correctSeq[0]; // we always copy the first char (even for deletions, which are rare)
for(int i = 1; i < -indelLength; ++i) // copy insertion string (indelLength < 0)
newCorrection.correctSeq[i] = correctSeq[i];
}
/*
existsCorrectionAtPos computes given the error type and length
if it corresponds to the same position.
The position has to be converted
depending if on a different strand.
Example (forward sequence):
A C G T A C G
0 1 2 3 4 5 6
mismatch at forward position 2
Pos(reverse) = readLength - Pos(forward) -1 = 7-2-1=4
insertion at forward position 2
Pos(reverse) = readlength - Pos(forward) = 7-2 = 5
deletion of size del at position 2
Pos(reverse) = readlength - Pos(forward) - del = 7-2-2 = 3
We assume that the strand of the previousError that is given to the function
is forward and as such that previousErrorPos is on the forward strand of the read
If the position is the same the character(s) for the correction are compared with the entry
*/
template <typename TValueShort, typename TValueShort2, typename TValueLength,typename TAlphabet, typename TAlphabet2>
inline bool existsCorrectionAtPos(TValueShort previousErrorPos,
// TValue2 previousCorrectReadId,
signed char previousIndelLength,
TAlphabet2 previousCorrectSeq[],
TValueShort2 errorPos,
// TValue3 correctReadId,
bool strand,
signed char indelLength,
TValueLength readLength,
TAlphabet correctSeq[])
{
(void)previousCorrectSeq;
(void)correctSeq;
//std::cerr << "in existsCorrectionAtPos, previousindelLength, indelLength"<<(int)previousIndelLength<<","<<(int)indelLength<<std::endl;
#ifdef FIONA_NO_SEPARATE_OVERLAPSUM
//make extra part for new mode to avoid clash with FIONA_NOERROROPTIMIZATION
//here change strand pos already
if (strand)
{
// mirror positions
errorPos = readLength - errorPos;
//for insertions the position is correct already
if (indelLength == 0)
--errorPos;
else if (indelLength > 0) // deletion
errorPos -= indelLength;
}
if (errorPos == previousErrorPos)
return true;
else
return false;
#endif
if (previousIndelLength == indelLength)
{
//here change strand pos already
if (strand)
{
// mirror positions
errorPos = readLength - errorPos;
//for insertions the position is correct already
if (indelLength == 0)
--errorPos;
else if (indelLength > 0) // deletion
errorPos -= indelLength;
}
#ifdef FIONA_NOERROROPTIMIZATION
if (errorPos == previousErrorPos)
return true;
#else //this is the original part
if (indelLength == 0)
{
//check here if position and alphabet character for correction is the same
return errorPos == previousErrorPos && correctSeq[0] == previousCorrectSeq[0];
}
else if (indelLength > 0) //deletion in read no string to compare
{
return errorPos == previousErrorPos;
}
else
{
SEQAN_ASSERT_LT(indelLength, 0);
//insertion in read
if (previousErrorPos == errorPos)
{
int lcp = 0;
for (; lcp < -indelLength; ++lcp)
if (correctSeq[lcp] != previousCorrectSeq[lcp])
break;
return lcp == -indelLength;
}
}
#endif
}
return false;
}
// this lock augments a string class by thread-safety as follows:
// - supports multiple concurrent readers (possibly waiting for writer to finish)
// - supports only a single writer at a time (possibly waiting for readers or other writers to finish)
// - the writer has higher priority than all readers
struct StringLock
{
volatile unsigned readers;
volatile unsigned writers;
StringLock():
readers(0),
writers(0)
{
}
};
static StringLock correctionListLock;
inline void
lockReading(StringLock &lock)
{
do
{
// wait for the end of a write access
while (lock.writers != 0)
{}
// SEQAN_OMP_PRAGMA(atomic)
// ++lock.readers;
atomicInc(lock.readers);
if (lock.writers == 0)
break;
// writer hasn't noticed us -> retry
// SEQAN_OMP_PRAGMA(atomic)
// --lock.readers;
atomicDec(lock.readers);
} while (true);
}
inline void
unlockReading(StringLock &lock)
{
// SEQAN_OMP_PRAGMA(atomic)
// --lock.readers;
atomicDec(lock.readers);
}
inline void
lockWriting(StringLock &lock)
{
// wait until we are the only writer
while (atomicCas(lock.writers, 0u, 1u) != 0)
{}
// wait until all readers are done
while (lock.readers != 0)
{}
}
inline void
unlockWriting(StringLock &lock)
{
lock.writers = 0;
}
/*
new function that returns the number of corrections already entered for a read position
*/
template <typename TCorrection,typename TValue, typename TId1, typename TPos,typename TReadStore>
inline unsigned
getFoundCorrections(
String<TCorrection> const &correctionList,
String<TValue> &firstCorrectionForRead,
TId1 erroneousReadId,
TPos errorPos,
TReadStore & store)
{
unsigned numReads = length(store.readSeqStore) / 2;
// project errorPos on forward strand
if (erroneousReadId >= numReads)
{
erroneousReadId -= numReads;
// mirror positions
errorPos = length(store.readSeqStore[erroneousReadId]) - errorPos;
}
unsigned numCorrections = 0;
TValue currentPos = firstCorrectionForRead[erroneousReadId];
while (currentPos != std::numeric_limits<TValue>::max())
{
if (correctionList[currentPos].errorPos == errorPos)
{
numCorrections = correctionList[currentPos].foundCorrections;
break;
}
currentPos = correctionList[currentPos].nextCorrection;
}
return numCorrections;
}
/*
the add new linked list item append a new entry to the correctionList and
takes care that the corresponding entries in firstCorrectionForRead are updated
*/
template <typename TCorrection,typename TValue, typename TId1, typename TId2, typename TPos1,typename TPos2,typename TOverlap, typename TReadStore, typename TAlphabet>
inline void addCorrectionEntry(String<TCorrection> &correctionList,
String<TValue> &firstCorrectionForRead,
TId1 erroneousReadId,
TId2 correctReadId,
TPos1 correctPos,
TPos2 errorPos,
TOverlap overlap,
bool strand,
signed char indelLength,
// TValueLength readLength,
TReadStore & store,
TAlphabet & correctSeq)
{
//get Alphabet type from String here
//Dna5 correctSeq[MAX_INDEL_LENGTH];
//std::cerr <<abs( (int)indelLength) << " lll " << MAX_INDEL_LENGTH<<std::endl;
// get the correction sequence
//if(indelLength <= 0) //only get string if insertion in read or mismatch
// getCorrectionString(correctSeq,indelLength,correctReadId,correctPos,strand,store);
/* //DEBUG
unsigned length2=abs((int)indelLength);
if(indelLength ==0){
length2=1;
}
std::cerr << "In add CorrectionEntry retrieved CorrectionSequence:";
for(unsigned i =0;i<length2;++i)
std::cerr << correctSeq[i];
std::cerr << "errorPos,strand" <<errorPos<<strand<< std::endl;
//DEBUG */
//change the erroneousReadId if necessary
unsigned numReads = length(store.readSeqStore) / 2;
// switch to reverse-complements for strand
if (erroneousReadId >= numReads)
erroneousReadId -= numReads;
//std::cerr << " erroneousReadID and dummy " <<erroneousReadId<< ","<< dummyErroneousReadId<< std::endl;
//TValue empty=maxValue(erroneousReadId);
//first check if a Correction for erroneousReadId exists already
TValue insertLinkAt = std::numeric_limits<TValue>::max();
TValue currentPos = firstCorrectionForRead[erroneousReadId];
while (currentPos != std::numeric_limits<TValue>::max())
{
TCorrection &corr = correctionList[currentPos];
if (existsCorrectionAtPos(
corr.errorPos,
corr.indelLength,
corr.correctSeq,
errorPos,
strand,
indelLength,
length(store.readSeqStore[erroneousReadId]),
correctSeq))
{
#ifndef FIONA_NOERROROPTIMIZATION
updateCorrectionEntry(
correctionList,
currentPos,
overlap,
strand,
correctReadId,
indelLength,
correctSeq,
correctionList[currentPos].indelLength);
#endif
return;
}
insertLinkAt = currentPos;
currentPos = correctionList[currentPos].nextCorrection;
}
TCorrection newCorrection;
fillCorrection(
newCorrection,
correctPos,
errorPos,
correctSeq,
overlap,
strand,
indelLength,
length(store.readSeqStore[erroneousReadId]),
correctReadId);
if (length(correctionList) == capacity(correctionList))
{
lockWriting(correctionListLock);
reserve(correctionList, capacity(correctionList) + 1, Generous());
unlockWriting(correctionListLock);
}
appendValue(correctionList, newCorrection);
if (insertLinkAt == std::numeric_limits<TValue>::max())
firstCorrectionForRead[erroneousReadId] = length(correctionList) - 1;
else
correctionList[insertLinkAt].nextCorrection = length(correctionList) - 1;
/*
if(firstCorrectionForRead[dummyErroneousReadId] == maxValue<TValue>())
{ //we are going to add the first Correction element for the read at the end later
firstCorrectionForRead[dummyErroneousReadId] = (TValue) length(correctionList);
}
else
{
TValue currentPos = firstCorrectionForRead[dummyErroneousReadId];
bool nextElem =true;
while(nextElem)
{
if(existsCorrectionAtPos(correctionList[currentPos].errorPos,correctionList[currentPos].indelLength,correctionList[currentPos].correctSeq, errorPos, strand, indelLength, length(store.readSeqStore[erroneousReadId]),correctSeq) )
{
// add the new information if the overlap sum is bigger decided by addCorrectionInfo
#ifndef FIONA_NOERROROPTIMIZATION
updateCorrectionEntry(correctionList,currentPos,overlap,strand,correctReadId,indelLength,correctSeq,correctionList[currentPos].indelLength);
#endif
return;
}
if (correctionList[currentPos].nextCorrection != maxValue<TValue>())
{
currentPos = correctionList[currentPos].nextCorrection;
}
else
{
nextElem =false;
//we have not found any similar correction item so we extend the last elem
// in the linked list
correctionList[currentPos].nextCorrection = (TValue) length(correctionList);
}
}
}
// if we land here than either there was never an entry or no Correction entry
// of the same pos or error type. Therefore we
// create new Correction struct and add that to the list.
//std::cerr<< "Put new correction:"<<correctReadId<<","<<correctPos<<","<<errorPos<<","<<overlap<<","<<strand<<","<<(int)indelLength<<std::endl;
TCorrection newCorrection;
fillCorrection(
newCorrection,
correctPos,
errorPos,
correctSeq,
overlap,
strand,
indelLength,
length(store.readSeqStore[erroneousReadId]),
correctReadId);
appendValue(correctionList,newCorrection);
*/
return;
}
template <typename TCorrection,typename TValue,typename TReadStore>
inline void _testCorrectionStruct(String<TCorrection> &correctionList, String<TValue> &firstCorrectionForRead,TReadStore &store)
{
// we assume we work with three reads here
TValue empty = std::numeric_limits<TValue>::max();
appendValue(firstCorrectionForRead,empty);
appendValue(firstCorrectionForRead,empty);
appendValue(firstCorrectionForRead,empty);
signed char indelLength = 0;
unsigned short correctPos=12;
unsigned short errorPos =24;
unsigned short overlap =5;
bool strand = false;
unsigned int correctReadId=4;
unsigned int erroneousReadId=0;
unsigned int readLength =36;
TCorrection tester;
Dna5 correctSeq[MAX_INDEL_LENGTH];
correctSeq[0]='A';
correctSeq[1]='T';
String <int> Ovsumcutoffs;
clear(Ovsumcutoffs);
resize(Ovsumcutoffs, readLength+1, 0);
// test to fill a Corrections we will work with all the time
fillCorrection(tester,correctPos,errorPos,correctSeq,overlap,strand,indelLength,readLength,correctReadId); //mismatch
// add correction to the overall list
addCorrectionEntry(correctionList,firstCorrectionForRead,erroneousReadId,correctReadId,correctPos,tester.errorPos,tester.overlap[0],strand,tester.indelLength,store,correctSeq);
//_dumpCorrectionList(correctionList, firstCorrectionForRead);
// create same entry with higher overlap sum
tester.overlap[0]=12;
addCorrectionEntry(correctionList,firstCorrectionForRead,erroneousReadId,correctReadId,correctPos,tester.errorPos,tester.overlap[0],strand,tester.indelLength,store,correctSeq);
//_dumpCorrectionList(correctionList, firstCorrectionForRead);
//test adding same correction on different strand
strand = true;
erroneousReadId = 6; //because of reverse strand
tester.errorPos=readLength-24-1;
correctPos = readLength-12-1;
tester.overlap[1]=8;
addCorrectionEntry(correctionList,firstCorrectionForRead,erroneousReadId,correctReadId,correctPos,tester.errorPos,tester.overlap[1],strand,tester.indelLength,store,correctSeq);
//_dumpCorrectionList(correctionList, firstCorrectionForRead);
//test adding new correction with indel at same position
strand = false;
erroneousReadId = 0; //because of forward strand
correctPos=12;
tester.errorPos=24;
tester.overlap[0]=11;
tester.indelLength=-2;
addCorrectionEntry(correctionList,firstCorrectionForRead,erroneousReadId,correctReadId,correctPos,tester.errorPos,tester.overlap[0],strand,tester.indelLength,store,correctSeq);
//_dumpCorrectionList(correctionList, firstCorrectionForRead);
//test adding new correction with indel at same position but on opposite strand
strand = true;
erroneousReadId = 6; //because of reverse strand
correctPos= readLength - 12 -2;
tester.errorPos = readLength - tester.errorPos - 2;
tester.overlap[1]=13;
tester.indelLength=-2;
addCorrectionEntry(correctionList,firstCorrectionForRead,erroneousReadId,correctReadId,correctPos,tester.errorPos,tester.overlap[1],strand,tester.indelLength,store,correctSeq);
//_dumpCorrectionList(correctionList, firstCorrectionForRead);
//test adding new correction with insertion at same position
strand = false;
erroneousReadId = 0; //because of forward strand
correctPos = 12;
tester.errorPos = 24;
tester.overlap[0]=3;
tester.indelLength=2;
addCorrectionEntry(correctionList,firstCorrectionForRead,erroneousReadId,correctReadId,correctPos,tester.errorPos,tester.overlap[0],strand,tester.indelLength,store,correctSeq);
//_dumpCorrectionList(correctionList, firstCorrectionForRead);
//test adding new correction with insertion at different position but on opposite strand
strand = true;
erroneousReadId = 6; //because of reverse strand
correctPos = readLength - correctPos;
tester.errorPos = readLength - tester.errorPos;
tester.overlap[1]=7;
tester.indelLength=2;
addCorrectionEntry(correctionList,firstCorrectionForRead,erroneousReadId,correctReadId,correctPos,tester.errorPos,tester.overlap[1],strand,tester.indelLength,store,correctSeq);
//_dumpCorrectionList(correctionList, firstCorrectionForRead);
//test adding new correction with insertion at same position but different correction sequence
strand = false;
erroneousReadId = 0; //because of forward strand
correctPos = 2;
tester.errorPos = 24;
tester.overlap[1]=10;
tester.indelLength=2;
addCorrectionEntry(correctionList,firstCorrectionForRead,erroneousReadId,correctReadId,correctPos,tester.errorPos,tester.overlap[1],strand,tester.indelLength,store,correctSeq);
//_dumpCorrectionList(correctionList, firstCorrectionForRead);
//add insertion Correction on reverse strand for new readID
erroneousReadId=2;
addCorrectionEntry(correctionList,firstCorrectionForRead,erroneousReadId,correctReadId,correctPos,tester.errorPos,tester.overlap[1],strand,tester.indelLength,store,correctSeq);
//_dumpCorrectionList(correctionList, firstCorrectionForRead);
//add deletion Correction on reverse strand for new readID
tester.errorPos = readLength - 24 - 2;
tester.indelLength=-2;
tester.overlap[1]=15;
addCorrectionEntry(correctionList,firstCorrectionForRead,erroneousReadId,correctReadId,correctPos,tester.errorPos,tester.overlap[1],strand,tester.indelLength,store,correctSeq);
//adding another mismatch for non-conficting indel correction
erroneousReadId =0;
strand = false;
correctPos = 13;
tester.errorPos = 13;
tester.overlap[1]=97;
tester.indelLength=0;
addCorrectionEntry(correctionList,firstCorrectionForRead,erroneousReadId,correctReadId,correctPos,tester.errorPos,tester.overlap[1],strand,tester.indelLength,store,correctSeq);
//adding yet another mismatch to test if several corrections are done for non-conficting indel correction
erroneousReadId =0;
strand = false;
correctPos = 5;
tester.errorPos = 7;
tester.overlap[1]=90;
tester.indelLength=0;
addCorrectionEntry(correctionList,firstCorrectionForRead,erroneousReadId,correctReadId,correctPos,tester.errorPos,tester.overlap[1],strand,tester.indelLength,store,correctSeq);
//adding another deletion for testing of output
erroneousReadId =1;
strand = false;
correctPos = 12;
tester.errorPos = 11;
tester.overlap[1]=20;
tester.indelLength=2;
addCorrectionEntry(correctionList,firstCorrectionForRead,erroneousReadId,correctReadId,correctPos,tester.errorPos,tester.overlap[1],strand,tester.indelLength,store,correctSeq);
_dumpCorrectionList(correctionList, firstCorrectionForRead,store);
//test non Conflicitng Correction selection
//add several other corrections
FionaOptions options;
//unsigned numberCorrections = applyReadErrorCorrections(correctionList,firstCorrectionForRead,store, Ovsumcutoffs,options);
// std::cout << "did "<< numberCorrections << " many corrections."<<std::endl;
return;
}
/*
function that goes through all reads and prints there Corrections listed
*/
template <typename TCorrection,typename TValue, typename TStore>
inline void _dumpCorrectionList(
String<TCorrection> const &correctionList,
String<TValue> const &firstCorrectionForRead,
TStore & store)
{
// go through all reads and show which Corrections are listed
for (unsigned int i =0;i< length(firstCorrectionForRead);i++)
{
std::cerr << "Found "<<length(correctionList)<<" corrections. Look at readID: " <<i<<std::endl;
if (firstCorrectionForRead[i] != std::numeric_limits<TValue>::max())
{
std::cerr << "found Correction for read "<<i<< " at pos (in String<corrections>) "<< firstCorrectionForRead[i] << std::endl;
_dumpCorrectionIndelPos(correctionList[firstCorrectionForRead[i]],i,store);
TValue next = correctionList[firstCorrectionForRead[i]].nextCorrection;
while (next != std::numeric_limits<TValue>::max())
{
std::cerr << "found Correction for read "<<i<< " at pos (in String<corrections>) "<< next << std::endl;
_dumpCorrectionIndelPos(correctionList[next],i,store);
next = correctionList[next].nextCorrection;
}
}
}
}
template <typename TCorrection, typename TStore>
inline void _dumpCorrectionIndelPos(
TCorrection const &correction,
unsigned errorReadId,
TStore& store)
{
std::cerr << "error___read_id\t" << errorReadId << std::endl;
std::cerr << "error_pos \t" << correction.errorPos << std::endl;
std::cerr << "next correction\t" << correction.nextCorrection << std::endl;
#ifndef FIONA_CONSENSUS_REDUCE_MEMORY
std::cerr << "correct_read_id\t" << correction.correctReadId << std::endl;
std::cerr << "correct_pos \t" << correction.correctPos << std::endl;
#endif
std::cerr << "overlap \t F:" << correction.overlap[0] << " R: " << correction.overlap[1] << std::endl;
std::cerr << "indel_len \t" << (int)correction.indelLength << std::endl;
unsigned length=abs((int)correction.indelLength);
if(correction.indelLength ==0){
length=1;
}
std::cerr << "CorrectionSequence:";
for(unsigned i =0;i<length;++i)
std::cerr << correction.correctSeq[i];
std::cerr << std::endl;
std::cerr << "error___read \t" << store.readSeqStore[errorReadId][correction.errorPos] << '\t';
#ifndef FIONA_CONSENSUS_REDUCE_MEMORY
for (unsigned i = 0; i < correction.correctPos; ++i)
std::cerr << ' ';
#endif
std::cerr << store.readSeqStore[errorReadId] << std::endl;
#ifndef FIONA_CONSENSUS_REDUCE_MEMORY
std::cerr << "correct_read \t" << store.readSeqStore[correction.correctReadId][correction.correctPos] << '\t';
for (unsigned i = 0; i < correction.errorPos; ++i)
std::cerr << ' ';
std::cerr << store.readSeqStore[correction.correctReadId] << std::endl;
#endif
}
/*matching string*/
inline bool strContains(std::string const & inputStr, std::string const & searchStr)
{
return inputStr.find(searchStr) != std::string::npos;
}
template <typename TCorrection>
struct LessOverlap : public std::function<bool (TCorrection, TCorrection)>
{
inline bool operator() (TCorrection const &a, TCorrection const &b) const
{
// sort by overlap
if (a.overlap[0] != b.overlap[0])
return a.overlap[0] > b.overlap[0];
// if overlap equal prefer mismatches
// if no mismatch prefer deletion
if (a.indelLength == 0 || b.indelLength == 0)
return a.indelLength == 0 && b.indelLength != 0; // return (abs((int)a.indelLength) < abs((int)b.indelLength));
else
return a.indelLength > b.indelLength;
}
};
template <typename TCorrection>
struct LessPositionOverlap : public std::function<bool (TCorrection, TCorrection)>
{
inline bool operator() (TCorrection const &a, TCorrection const &b) const
{
// check difference in position
if (a.errorPos != b.errorPos)
return a.errorPos > b.errorPos;
// if position is the same sort by overlap
if (a.overlap[0] != b.overlap[0])
return a.overlap[0] > b.overlap[0];
// if overlap equal prefer mismatches
// if no mismatch prefer deletion
if (a.indelLength == 0 || b.indelLength == 0)
return a.indelLength == 0 && b.indelLength != 0; // return (abs((int)a.indelLength) < abs((int)b.indelLength));
else
return a.indelLength > b.indelLength;
}
};
template<typename TCorrection,typename TValue,typename TReadStore>
inline unsigned applyReadErrorCorrections(String<TCorrection> const &correctionList,
String<TValue> &firstCorrectionForRead,
TReadStore & store,
FionaOptions & options)
{
if (options.verbosity >= 1)
{
std::cerr << "Find non conflicting Corrections\n"
<< "Length of the linked list is " << length(correctionList) << "\n"
<< " => length " << length(correctionList) * sizeof(TCorrection) << " bytes\n"
<< "Capacity of the linked list is " << capacity(correctionList) << "\n"
<< " => capacity " << capacity(correctionList) * sizeof(TCorrection) << " bytes\n";
}
unsigned numberCorrections = 0;
String<TCorrection> possibleCorrections;
String<unsigned int> correctionsToSave;
SEQAN_OMP_PRAGMA(parallel for schedule(guided) private(correctionsToSave, possibleCorrections) reduction(+ : numberCorrections))
for (int readId = 0; readId < (int)length(firstCorrectionForRead); ++readId)
{
// descend if correction exists
TValue corrId = firstCorrectionForRead[readId];
if (corrId == std::numeric_limits<TValue>::max())
continue;
// step through linked list and collect corrections
clear(possibleCorrections);
do
{
appendValue(possibleCorrections, correctionList[corrId]);
TCorrection & correction = back(possibleCorrections);
//add the overlap values for both strand for the new object in the string
#ifdef FIONA_MAXIMIZE_OVERLAPSUM
correction.overlap[0] = _max(correction.overlap[0], correction.overlap[1]);
#else
correction.overlap[0] += correction.overlap[1];
#endif
//_dumpCorrectionIndelPos(correction, readId);
corrId = correction.nextCorrection;
} while (corrId != std::numeric_limits<TValue>::max());
//sorting by Position first to get the best correction per Position
//sorting is done arbitrarily from large to small(right to left)
sort(possibleCorrections, LessPositionOverlap<CorrectionIndelPos>(), Parallel());
#ifndef FIONA_NO_SEPARATE_OVERLAPSUM
//only remove if several corrections per position are saved
if (readId == options.debugRead)
{
std::cerr << "output after sorting for positions and removal of positions"<<std::endl;
for (unsigned j=0;j<length(possibleCorrections);++j)
{
std::cerr << "Output for read "<<readId<<"entry "<<j<<std::endl;
_dumpCorrectionIndelPos(possibleCorrections[j],readId,store);
}
} //output for read
//go through all Correction struct and keep only the first per Position
if (length(possibleCorrections) > 1)
{
unsigned lastErrorPos = possibleCorrections[0].errorPos;
unsigned differentPos = 1;
//std::cerr <<"length if corectios: "<<length(possibleCorrections)<<std::endl;
for (unsigned j = 1; j < length(possibleCorrections); ++j)
{
// if position decreases means we found a new error position
if (possibleCorrections[j].errorPos < lastErrorPos)
{
lastErrorPos = possibleCorrections[j].errorPos;
//if we skipped Correction entries that had been on the same position
//move the Correction with new position forward to differentPos
if (j != differentPos)
possibleCorrections[differentPos] = possibleCorrections[j];
++differentPos;
}
}
//finally resize to the length of different Positions found
resize(possibleCorrections, differentPos);
}//finished the cases with more than one Correction
#endif //FIONA_NO_SEPARATE_OVERLAPSUM
/*/output for debug
std::cerr << "output after sorting for positions and removal of positions"<<std::endl;
for(unsigned j=0;j<length(possibleCorrections);++j){
std::cerr << "entry "<<j<<std::endl;
_dumpCorrectionIndelPos(possibleCorrections[j],readId);
}*/
//sorting by overlap sum now
#ifndef FIONA_NOERROROPTIMIZATION //dont sort in random encounter (local) mode
sort(possibleCorrections, LessOverlap<CorrectionIndelPos>(), Parallel());
#endif
//go through all Correction struct and keep the ones with highest overlapsum
// and without conflict in terms of error type
// execute all correctins that are mismatches and have a higher overlapsum than the best indel correction
//create a new array that saves which correction should be used to accomodate letter N corrections
clear(correctionsToSave);
appendValue(correctionsToSave, 0);
#ifndef FIONA_NOERROROPTIMIZATION
unsigned errorReadLength = length(store.readSeqStore[readId]);
#ifndef FIONA_DISTANCE_BASED_ERROR_OPTIMIZATION
// if indel use just the first correction except there are Ns
bool notFoundCorrectionLimit = (possibleCorrections[0].indelLength == 0);
if(notFoundCorrectionLimit){ //if indel dont do anything more
for (unsigned j = 1; j < length(possibleCorrections); ++j)
{
if (possibleCorrections[j].indelLength != 0)
continue;
// Todo (Hugues) integrate varying k when available.
if (notFoundCorrectionLimit
&& possibleCorrections[j].overlap[0] > options.overlapSumCutoffs(errorReadLength, possibleCorrections[j].errorPos))
{
// if not too many corrections are found do the correction and proceed
if (length(correctionsToSave) < (unsigned) options.allowedCorrectionsPerRead[readId])
{
appendValue(correctionsToSave, j);
continue;
}
// dont pick any further corrections
notFoundCorrectionLimit = false;
}
// special test to check for letter N corrections which where not detected above
if (ordValue(store.readSeqStore[readId][possibleCorrections[j].errorPos]) == 4)
appendValue(correctionsToSave, j);
}
}//endif
#else //new mode that uses distances between corrections
unsigned int next = 1;
while (next < length(possibleCorrections))
{
if (possibleCorrections[next].overlap[0] <= options.overlapSumCutoffs(errorReadLength, possibleCorrections[next].errorPos))
{
++next; // skip this correction
continue;
}
bool add = true;
for(unsigned int i = 0; i < length(correctionsToSave); i++){
//check if the distance between correction positions is apart min_k to each correction accepted
if(abs(possibleCorrections[correctionsToSave[i]].errorPos-possibleCorrections[next].errorPos) <= options.fromLevel){
add=false;
break;
}
}
if (add)
appendValue(correctionsToSave, next);
next++; //check the next possible correction in the list
}
#endif
#else
//do all corrections if no global mode
resize(correctionsToSave, length(possibleCorrections));
for (unsigned j = 0; j < length(possibleCorrections); ++j)
correctionsToSave[j] = j;
#endif
//decrease the number of allowed Corrections
options.allowedCorrectionsPerRead[readId] -= length(correctionsToSave);
// apply the corrections this part is very similar to the original end of the function applyReadErrorCorrections
// in the first Fiona version but that we dont need to copy the original reads as we have saved the correction string in the
// CorrectionIndelPos struct.
numberCorrections += length(correctionsToSave);
unsigned correction;
//for (unsigned int correction =0;correction < numberOfValidCorrections; ++correction)
for (unsigned count = 0; count < length(correctionsToSave); ++count)
{
correction = correctionsToSave[count]; //set the position in the CorrectionString we are executing now
// SEQAN_OMP_PRAGMA(critical) {
// std::cout << "found " << (unsigned ) getFoundCorrections(correctionList,firstCorrectionForRead,
// (unsigned) readId, possibleCorrections[correction].errorPos, false, store)<< "corrections read:" << readId<< " pos:" << possibleCorrections[correction].errorPos << std::endl;
// }
if ((unsigned)readId == (unsigned) options.debugRead)
//if(readId == 18473)
{
std::cerr << "BEFORE:" << std::endl;
_dumpCorrectionIndelPos(possibleCorrections[correction], readId,store);
}
//SEQAN_OMP_PRAGMA(critical) {
// _dumpCorrectionsIndelPos(possibleCorrections[]
//}
std::ostringstream m;
if (options.appendCorrectionInfo)
{
// Start the read correction information with the common prefix " corrected:\t" if it is empty.
if (empty(store.readNameStore[readId]))
m << " corrected:\t";
else
m << "\t";
}
if (possibleCorrections[correction].indelLength == 0)
{
#ifndef FIONA_CONSENSUS_REDUCE_MEMORY
m << possibleCorrections[correction].errorPos << "(" << options.cycle <<',' <<possibleCorrections[correction].overlap[0] << ","<<possibleCorrections[correction].correctReadId<<"):" << store.readSeqStore[readId][possibleCorrections[correction].errorPos] << "->" << possibleCorrections[correction].correctSeq[0];
#else
m << possibleCorrections[correction].errorPos << "(" << options.cycle <<',' <<possibleCorrections[correction].overlap[0] << ",???"<<"):" << store.readSeqStore[readId][possibleCorrections[correction].errorPos] << "->" << possibleCorrections[correction].correctSeq[0];
#endif
store.readSeqStore[readId][possibleCorrections[correction].errorPos] = possibleCorrections[correction].correctSeq[0];
}
#ifdef FIONA_ALLOWINDELS
else if (possibleCorrections[correction].indelLength > 0)
{
#ifndef FIONA_CONSENSUS_REDUCE_MEMORY
m << possibleCorrections[correction].errorPos << "(" << options.cycle <<',' <<possibleCorrections[correction].overlap[0] << ","<<possibleCorrections[correction].correctReadId<<"):-" << infix(store.readSeqStore[readId], possibleCorrections[correction].errorPos, possibleCorrections[correction].errorPos + possibleCorrections[correction].indelLength);
#else
m << possibleCorrections[correction].errorPos << "(" << options.cycle <<',' <<possibleCorrections[correction].overlap[0] << ",???"<<"):-" << infix(store.readSeqStore[readId], possibleCorrections[correction].errorPos, possibleCorrections[correction].errorPos + possibleCorrections[correction].indelLength);
#endif
erase(store.readSeqStore[readId], possibleCorrections[correction].errorPos, possibleCorrections[correction].errorPos + possibleCorrections[correction].indelLength);
} else {
#ifndef FIONA_CONSENSUS_REDUCE_MEMORY
m << possibleCorrections[correction].errorPos << "(" << options.cycle <<',' <<possibleCorrections[correction].overlap[0] <<","<<possibleCorrections[correction].correctReadId<<"):+";
#else
m << possibleCorrections[correction].errorPos << "(" << options.cycle <<',' <<possibleCorrections[correction].overlap[0] <<",??"<<"):+";
#endif
String<Dna5> proxy; //TODO: construct is ugly
resize(proxy,abs(possibleCorrections[correction].indelLength),Exact());
proxy=infix(possibleCorrections[correction].correctSeq,0,(unsigned) abs(possibleCorrections[correction].indelLength));
m << proxy;
insert(store.readSeqStore[readId], possibleCorrections[correction].errorPos,proxy);
}
#endif
#ifdef FIONA_DISTANCE_BASED_ERROR_OPTIMIZATION
//correct offset of subsequent error positions downstream of the current pos after indel corrections
if(possibleCorrections[correction].indelLength != 0){
//SEQAN_OMP_PRAGMA(critical) {
//std::cerr << "Did (read/length) " << readId << "/"<<length(store.readSeqStore[readId])<< " ) e-pos/indel " << possibleCorrections[correction].errorPos << "/" << (int)possibleCorrections[correction].indelLength << std::endl;
//}
for(unsigned nextcount = count+1; nextcount < length(correctionsToSave); ++nextcount)
{
unsigned nextcorrection = correctionsToSave[nextcount];
if(possibleCorrections[nextcorrection].errorPos > possibleCorrections[correction].errorPos){
possibleCorrections[nextcorrection].errorPos -= (int) possibleCorrections[correction].indelLength;
//SEQAN_OMP_PRAGMA(critical) { std::cerr << readId << " changed occurrence " << " ) e-pos/indel " << possibleCorrections[nextcorrection].errorPos << "/" << (int)possibleCorrections[nextcorrection].indelLength << std::endl; }
}
}
}
#endif //DISTANCE_BASED_ERROR_OPTIMIZATION
// Extend the read correction information if configured to do so.
if (options.appendCorrectionInfo)
append(store.readNameStore[readId], m.str());
}
}
//give her the number of corrections
return numberCorrections;
}
///Functions interpretation of results
//Proba of a read with no error
template <typename TErrorRate, typename TPrefixLen>
inline double probabilityNoError(TErrorRate perrorrate, TPrefixLen k)
{
return pow(1.0 - perrorrate, (double) k);
}
// factorial
template <typename TValue>
inline double factorial(TValue n)
{
double fact = 1.0;
for (TValue i = 2; i <= n; ++i)
fact *= i;
return fact;
}
#ifdef CAN_BE_REMOVED
// Expected value - general, use if all reads have the same length
template <typename TExpectedValues, typename TReadSet, typename TGenomeSize>
void expectedValueEqualReadsLength(TExpectedValues & expected, TReadSet const & readSet, TGenomeSize const genomeLength)
{
//
// E(m) = (read_length - suffix_length + 1) * numberReads / genomeLength
//
// without reverse complement
unsigned readCount = length(readSet) / 2;
unsigned readLength = length(readSet[0]);
clear(expected);
for (unsigned suffixLength = 0; suffixLength <= readLength; ++suffixLength)
append(expected, (readLength - suffixLength + 1) * readCount / (double)genomeLength);
}
#endif
// Calculate a read length histogram
// Excluding reverse complements
template <typename TReadLengthHist, typename TReadSet>
void computeReadLengthHistogram(TReadLengthHist &readLenHist, TReadSet const &readSet)
{
clear(readLenHist);
unsigned numReads = length(readSet) / 2;
for (unsigned i = 0; i < numReads; ++i)
{
unsigned readLength = length(readSet[i]);
if (readLength >= length(readLenHist))
resize(readLenHist, readLength + 1, 0);
++readLenHist[readLength];
}
}
// Expected value for set of reads with different length
// Also gets the expected number of erroneous reads
template <typename TExpectedValues, typename TNumRead, typename TGenomeSize, typename TErrorrate>
double expectedValueTheoretical(TExpectedValues & expected, String<TNumRead> const &readLenHist, TGenomeSize const genomeLength, TErrorrate const errorrate)
{
//
// E(m) = (8 - suffix_length + 1) * numberReads / genomeLength
//
double nerrreads = 0.0;
// a = read_length - suffix_length + 1
clear(expected);
resize(expected, length(readLenHist), 0.0);
for (unsigned readLen = 1; readLen < length(readLenHist); ++readLen)
{
TNumRead numReads = readLenHist[readLen];
if (numReads == 0)
continue;
if (errorrate != 0.0)
nerrreads += numReads * (1 - probabilityNoError(errorrate, readLen));
for (unsigned suffixLength = 0; suffixLength <= readLen; ++suffixLength)
{
double a = readLen - suffixLength + 1;
expected[suffixLength] += a * (double)numReads / (double)genomeLength;
}
}
return nerrreads;
}
/* Standard Deviation */
template <typename TDeviationValues, typename TReadSet, typename TGenomeSize>
void standardDeviation(TDeviationValues & deviation, TReadSet const & readSet, TGenomeSize const genomeLength)
{
// without reverse complement
unsigned readCount = length(readSet) / 2;
unsigned readLength = length(readSet[0]);
//
// SD(m)= numberReads*((read_length - suffix_length + 1)/genomeLength
// - (read_length - suffix_length + 1)^2/genomeLength ^2)
//
double valueFirst;
double valueSecond;
resize(deviation, readLength + 1);
for (unsigned suffixLength = 0; suffixLength <= readLength; ++suffixLength)
{
valueFirst = (readLength - suffixLength + 1) / (double)genomeLength;
valueSecond = valueFirst * valueFirst;
deviation[suffixLength] = sqrt((valueFirst - valueSecond) * readCount);
}
}
//P(X = k) for X ~ Poisson
//// WARNING These computation of poisson values are not accurate
//// for low probabilities !!!
//// around 50% relative error at 1e-5 proba
template <typename TValue, typename TMean>
inline double dpois(TValue k, TMean mean)
{
return pow(mean, (double)k) * exp(-mean) / factorial(k);
}
// cumulative poisson distribution
// P(X <= k) with X ~ Poisson(mean)
template <typename TValue, typename TMean>
inline double ppois(TValue k, TMean mean)
{
// return gsl_cdf_poisson_P(k,mean);
double negExp = exp(-mean);
double pValue = 0.0;
double pow = 1.0;
double fact = 1.0;
for (TValue i = 0; i <= k; ++i, fact *= i){
pValue += pow * negExp / fact;
pow *= mean;
}
return pValue;
}
// give the highest k such that P(X < c) <= alpha with X ~ Poisson(lambda)
// carefull it's exclusive (for compatibility with the cutoff mode)
template <typename TPValue, typename TMean>
inline unsigned qpois(TPValue alpha, TMean lambda){
double negExp = exp(-lambda);
double pValue = 0.0;
double pow = 1.0;
double fact = 1.0;
unsigned k = 0;
while (pValue <= alpha){
pValue += pow * negExp / fact;
k++;
pow *= lambda;
fact *= k;
}
return k;
}
//Estimate the two first terms of the error part into the mixture
//this is only valid for error rate sufficiently low (ie < 5%..)
//
template <typename TValue, typename TMean, typename TErrorrates, typename TPrefixLen>
inline double dpoismixerror(TValue k, TMean lambda, TErrorrates errorrate, TPrefixLen prefixlen)
{
double noerrlm2 = pow(1.0 - errorrate, prefixlen - 2.0);
double noerrlm1 = noerrlm2 * (1-errorrate);
double errexp1err = lambda * noerrlm1 * (errorrate/3);
double errexp2err = lambda * noerrlm2 * (errorrate/3) * (errorrate/3);
// double perr1 = ((double) prefixlen) * noerrlm1* errorrate ;
// double perr2 = ((double) prefixlen * (prefixlen -1.0) / 2 ) * noerrlm2 * (errorrate) *(errorrate);
double perr1 = noerrlm1 ;
double perr2 = ((prefixlen -1.0) / 2 )* noerrlm2 * errorrate;
double sc = perr1 + perr2;
perr1 /= sc;
perr2 /= sc;
double proba;
proba = perr1 * dpois(k, errexp1err) + perr2 * dpois(k, errexp2err);
return(proba);
}
// cdf for a poisson mixture of errors, given the
// expected value on the real reads before sequencing
//// WARNING THIS IS extremely sensitive !!
///
template <typename TValue, typename TMean, typename TErrorrates, typename TPrefixLen>
inline double ppoismixerror(TValue k, TMean lambda, TErrorrates errorrate, TPrefixLen prefixlen)
{
double noerrlm2 = pow(1.0 - errorrate, prefixlen - 2.0);
double noerrlm1 = noerrlm2 * (1-errorrate);
double errexp1err = lambda * noerrlm1 * (errorrate/3);
double errexp2err = lambda * noerrlm2 * (errorrate/3) * (errorrate/3);
double perr1 = prefixlen * noerrlm1* (errorrate) ;
double perr2 = (prefixlen * (prefixlen -1) / 2 ) * noerrlm2 * (errorrate) *(errorrate);
double sc = perr1 + perr2;
perr1 /= (sc);
perr2 /= (sc);
double negExp1err = exp(-errexp1err); //
double negExp2err = exp(-errexp2err);
double pow1err = 1.0;
double pow2err = 1.0;
double fact = 1.0;
double pValue = 0.0;
// std::cerr << "Level " << prefixlen << " and params for correc\n";
// std::cerr << "Expected and comp: " << lambda << " - " << errexp1err << " - " << errexp2err << "\n";
// std::cerr << "the observed count: " << k << ", perr is " << perr1 << " - " << perr2 << "\n";
TValue i = 0;
for (i = 0; i <= k; ++i, fact *= i){
pValue += perr1 * pow1err * negExp1err / fact;
pValue += perr2 * pow2err * negExp2err / fact;
pow1err *= errexp1err;
pow2err *= errexp2err;
// std::cerr << "alpha =" << pValue << std::endl;
}
return pValue;
}
///Similar to qpois for the mixture of poisson distributions with error proportions
template <typename TPValue, typename TMean, typename TErrorrates, typename TPrefixLen>
inline unsigned qpoismixerror(TPValue alpha, TMean lambda, TErrorrates errorrate, TPrefixLen prefixlen)
{
double noerrlm2 = pow(1.0 - errorrate, prefixlen - 2.0);
double noerrlm1 = noerrlm2 * (1-errorrate);
double errexp1err = lambda * noerrlm1 * (errorrate/3);
double errexp2err = lambda * noerrlm2 * (errorrate/3) * (errorrate/3);
double perr1 = prefixlen * noerrlm1* (errorrate) ;
double perr2 = (prefixlen * (prefixlen -1) / 2 ) * noerrlm2 * (errorrate) *(errorrate);
double sc = perr1 + perr2;
perr1 /= (sc);
perr2 /= (sc);
double negExp1err = exp(-errexp1err); //
double negExp2err = exp(-errexp2err);
double pow1err = 1.0;
double pow2err = 1.0;
double fact = 1.0;
double pValue = 0.0;
unsigned k = 0;
//std::cerr << "Level " << prefixlen << " and params for correc\n";
//std::cerr << "Expected and comp: " << lambda << " - " << errexp1err << " - " << errexp2err << "\n";
//std::cerr << "the observed count: " << k << ", perr is " << perr1 << " - " << perr2 << "\n";
while (pValue <= alpha){
pValue += perr1 * pow1err * negExp1err / fact;
pValue += perr2 * pow2err * negExp2err / fact;
k++;
pow1err *= errexp1err;
pow2err *= errexp2err;
//std::cerr << "alpha =" << pValue << std::endl;
fact *= k;
}
return k;
}
//
//Cutoff value under a classification scheme according to sign( log {P(X = c| error) / P(X = c |no error)} + log(prior))
//prior = 0 does automatic adjustment of priors according to the number of expected errors
template <typename TOddsRatio, typename TMean, typename TErrorrates, typename TPrefixLen>
inline unsigned PoisClassifCutoff(TOddsRatio prior, TMean lambda, TErrorrates errorrate, TPrefixLen prefixlen){
double noerr = probabilityNoError(errorrate, prefixlen);
double noerrlm2 = pow(1.0 - errorrate, prefixlen - 2.0);
double noerrlm1 = noerrlm2 * (1-errorrate);
double errexpnoerr = lambda * noerr;
double errexp1err = lambda * noerrlm1 * (errorrate/3);
double errexp2err = lambda * noerrlm2 * (errorrate/3) * (errorrate/3);
double perr1 = prefixlen * noerrlm1* (errorrate) ;
double perr2 = (prefixlen * (prefixlen -1) / 2 ) * noerrlm2 * (errorrate) *(errorrate);
double sc = perr1 + perr2;
perr1 /= (sc);
perr2 /= (sc);
double negExpnoerr = exp(-errexpnoerr);
double negExp1err = exp(-errexp1err); //
double negExp2err = exp(-errexp2err);
double pow1err = 1.0;
double pow2err = 1.0;
double pownoerr = 1.0;
double fact = 1.0;
double Ppostnoerr = 1.0;
double Pposterr = 0.0;
if (prior == 0){
prior = (1-noerr) / noerr;
}else {
prior = prior * (1-noerr) / noerr;
}
unsigned k = 0;
//std::cerr << "prefix of len " << prefixlen << " expected " << lambda << " prior " << prior << " error-rate " <<errorrate << std::endl;
//we impose that k shall not be higher than the expected count for correct reads.
unsigned kquart = (unsigned)round(errexpnoerr);
//while ((log((Pposterr / (Ppostnoerr)) * prior) > 0) || k == 0){
while ((k < kquart && log(Pposterr / Ppostnoerr * prior) > 0) || k == 0){
//not as efficient
//Ppostnoerr = dpois(k, lambda*noerr);
//Pposterr = dpoismixerror( k, lambda, errorrate, prefixlen);
//std::cerr << "(" << k << " , " << Ppostnoerr << " , " << Pposterr << ")" << std::endl;
Ppostnoerr = pownoerr * negExpnoerr / fact;
Pposterr = (perr1 * pow1err * negExp1err + perr2 * pow2err * negExp2err) / fact;
pownoerr *= errexpnoerr;
pow1err *= errexp1err;
pow2err *= errexp2err;
k++;
fact *= k;
}
//std::cerr << "(" << k << " , " << Ppostnoerr << " , " << Pposterr << ")" << std::endl;
return k;
}
// The probability distribution of a repeat, given the probability of the word
// !!! We assume simply non overlapping word and do a poisson approximation
inline double drepeat(int nrep, double pword, long genomelength){
return dpois(nrep, pword * genomelength);
}
//Compute the odds of having a repeat for all counts from kmin to kmax
//given an (iid M00) genome, a prefix length, the errorrate and the expected coverage
template <typename TPosterior, typename TCount, typename TMean, typename TErrorrates , typename TPrefixLen, typename TGenomeLen>
void OddsRepeat(TPosterior & post1occ, TCount cmin, TCount cmax, TMean lambda, TErrorrates errorrate, TPrefixLen prefixlen, TGenomeLen genomelength){
double pword = 1.0 / pow(4.0, (double)prefixlen);
int nrmax = 10;
//prior on having a repeat for a random genome, not used now.
String <double> prepeats ;
resize(prepeats, nrmax+1, 0.0);
double pnoerr = probabilityNoError(errorrate, prefixlen);
for (int i = 0; i <= nrmax; i++) {
prepeats[i] = drepeat(i, pword, genomelength);
}
String <double> posteriors;
clear(post1occ);
resize(post1occ, cmax, 0.0);
for (int c = cmin; c < cmax; c++) {
clear(posteriors);
resize( posteriors, nrmax+1, 0.0);
double sum = 0.0;
posteriors[0] = 0.0;
for (int nr=1; nr <= nrmax; nr++) {
posteriors[nr] = ((pnoerr) * ppois(c, lambda*nr*pnoerr) + (1-pnoerr)*ppoismixerror(c, lambda*nr, errorrate, prefixlen)) * prepeats[nr];
sum += posteriors[nr];
}
//rescale
for (int nr=1; nr <= nrmax; nr++){
posteriors[nr] /= sum;
}
post1occ[c] = (1-posteriors[1])/ posteriors[1] ;
}
}
//The same methods, but computes the cutoff k where the odds of repeat over non repeat is > odds
template <typename TOdds, typename TMean, typename TErrorrate , typename TPrefixLen, typename TGenomeLen>
inline int OddsRepeatCutoff(
TOdds odds,
TMean lambda,
TErrorrate errorrate,
TPrefixLen prefixlen,
TGenomeLen genomelength){
double pword = 1.0 / pow(4.0, (double)prefixlen);
int nrmax = 10;
String <double> posteriors;
clear(posteriors);
resize( posteriors, nrmax+1, 0.0);
//prior on having a repeat for a random genome, not used for now.
String <double> prepeats ;
resize(prepeats, nrmax+1, 0.0);
double pnoerr = probabilityNoError(errorrate, prefixlen);
for (int i = 0; i <= nrmax; i++) {
prepeats[i] = drepeat(i, pword, genomelength);
}
//
double post1occ = 0.0;
int c = (odds < 1) ? 0 : (int)(lambda * pnoerr);
int cmax = (int)(100.0 * lambda * pnoerr);
while(post1occ < odds && c <cmax){
clear(posteriors);
resize( posteriors, nrmax+1, 0.0);
double sum = 0.0;
posteriors[0] = 0.0;
for (int nr=1; nr <= nrmax; nr++) {
posteriors[nr] = ((pnoerr) * ppois(c, lambda*nr*pnoerr) + (1-pnoerr)*ppoismixerror(c, lambda*nr, errorrate, prefixlen)) * prepeats[nr];
sum += posteriors[nr];
}
//rescale
for (int nr=1; nr <= nrmax; nr++){
posteriors[nr] /= sum;
}
post1occ = (posteriors[1] == 0.0) ? std::numeric_limits<double>::infinity() : (1-posteriors[1])/ posteriors[1] ;
c++;
}
if (c == cmax) return 0;
return c;
}
template <typename TCuttoffs, typename TOdds, typename TExpectedValues, typename TErrorrate , typename TPrefixLen, typename TGenomeLen>
void computeCutoffRepeats(
TCuttoffs & thresholds,
TOdds const odds,
TExpectedValues const & expected,
TErrorrate errorrate,
TPrefixLen kmin,
TPrefixLen kmax,
TGenomeLen genomelength)
{
clear(thresholds);
resize(thresholds, kmax + 1, std::numeric_limits<typename Value<TCuttoffs>::Type>::max());
for (int i = kmin; i <= kmax; i++)
thresholds[i] = OddsRepeatCutoff(odds, expected[i], errorrate, i, genomelength); // Dave: I added "/ 3", otherwise this cutoff seems to have no effect
}
//Compute the number of ways of placing at most e errors in a read of length l such that
//any interval of length k has at least one error
inline void
precomputeOverlapCombinatorics(
String<double> &expectedCorrectOverlapSum,
String<double> &expectedFPOverlapSum,
int maxNonSeedOverlap,
int k,
FionaOptions & options)
{
clear(expectedCorrectOverlapSum);
clear(expectedFPOverlapSum);
resize(expectedCorrectOverlapSum, maxNonSeedOverlap + 1);
resize(expectedFPOverlapSum, maxNonSeedOverlap + 1);
SEQAN_OMP_PRAGMA(parallel for schedule(dynamic, 1))
for (int nonSeedOverlap = maxNonSeedOverlap; nonSeedOverlap >= 0; --nonSeedOverlap)
{
binomial Zerr(nonSeedOverlap, options.errorrate);
binomial Zotherov(nonSeedOverlap, (1 + options.errorrate) / 4);
unsigned maxErrors = (unsigned)(options.overlap_errorrate * (nonSeedOverlap + k + 1));
double expovsumT1 = 0;
double expovsumT2 = 0;
for (unsigned numError = 0; numError < maxErrors; ++numError)
{
expovsumT1 += (k + 1 + nonSeedOverlap - numError) * pdf(Zerr, numError);
expovsumT2 += (k + 1 + numError) * pdf(Zotherov, numError);
}
expectedCorrectOverlapSum[nonSeedOverlap] = expovsumT1;
expectedFPOverlapSum[nonSeedOverlap] = expovsumT2;
}
}
//
// Model for putting a threshold on the OverlapSum
// We compute the expected overlapsum count for the real and the erroneous reads
//
template <typename TMean, typename TErrorrate, typename TWeight, typename TReadLengthHist>
inline int OddsOverlapSumCutoff(
int i, // position of the error
TMean lambda, // expected coverage per position
int lenError, // error read length
int k, // seed length
TErrorrate errorrate,
TWeight w,
String<double> & expectedCorrectOverlapSum,
String<double> & expectedFPOverlapSum,
TReadLengthHist & readLenHist,
FionaOptions & /*options*/)
{
double pnoerr = probabilityNoError(errorrate, k+1);
double potherpos = probabilityNoError(errorrate, k) * (3./4);
double pword = 1.0 / pow(4.0, (double)k);
double totalExpectedCorrectOverlapSum = 0.0; // expected value for bona fide reads
double totalExpectedFPOverlapSum = 0.0; // expected value for reads with errors
//double varovsum = 0; //we would like also to compute the variance (later).
//count the forward strand overlaps
for (int lenCorrect = 1; lenCorrect < (int)length(readLenHist); ++lenCorrect)
{
unsigned numReads = readLenHist[lenCorrect];
if (numReads == 0)
continue;
double localExpectedCorrectOverlapSum = 0;
double localExpectedFPOverlapSum = 0;
int stepSize = 1 + (lenCorrect / 150);
// seed is left of the error
if (i >= k)
{
// j is the start position of the seed
for (int j = 0; j < lenCorrect - k; j += stepSize)
{
// |left overlap| |========== right overlap =======================|
int nonSeedOverlap = _min(i - k, j) + _min(lenError - (i + 1), lenCorrect - (j + k + 1));
localExpectedCorrectOverlapSum += stepSize * expectedCorrectOverlapSum[nonSeedOverlap];
localExpectedFPOverlapSum += stepSize * expectedFPOverlapSum[nonSeedOverlap];
}
}
// seed is right of the error
if (i < lenError - k)
{
// j is the position of the "error" in the correct read
for (int j = 0; j < (int)lenCorrect - k; j += stepSize)
{
// |left overlap| |========== right overlap ===========================|
int nonSeedOverlap = _min(i, j) + _min(lenError - (i + k + 1), lenCorrect - (j + k + 1));
localExpectedCorrectOverlapSum += stepSize * expectedCorrectOverlapSum[nonSeedOverlap];
localExpectedFPOverlapSum += stepSize * expectedFPOverlapSum[nonSeedOverlap];
}
}
totalExpectedCorrectOverlapSum += localExpectedCorrectOverlapSum * numReads;
totalExpectedFPOverlapSum += localExpectedFPOverlapSum * numReads;
}
totalExpectedCorrectOverlapSum *= lambda * pnoerr;
totalExpectedFPOverlapSum *= lambda * potherpos * pword;
// if (options.verbosity >= 2)
// {
// SEQAN_OMP_PRAGMA(critical(outputOS))
// {
// std::cerr << "(pos:" << i << ")(rl:" << lenError << "-" << k << ")"
// << " -- lambda - OvSum noerror/errors: (" << lambda << " , " << totalExpectedCorrectOverlapSum
// << " -- " << totalExpectedFPOverlapSum << ")" << std::endl;
// }
// }
int cutoff = (int)((1 - w) * totalExpectedCorrectOverlapSum + w * totalExpectedFPOverlapSum);
return _max(cutoff, 5);
// SEQAN_OMP_PRAGMA(parallel for schedule(dynamic, 1) reduction(+:expovsumT1) reduction(+:expovsumT2))
// for (int j = 1; j <= i - k; ++j)
// {
// int mnov = l - j - k ; //max n. overlapping bases with the read
// for (int nerr = 0; nerr < mnov; nerr++)
// {
// expovsumT1 += (k + 1 + mnov - nerr) * matZerr(nerr, mnov);
// expovsumT2 += (k + 1 + nerr) * matZotherov(nerr, mnov);
// }
// }
// //Now the reverse strand
// SEQAN_OMP_PRAGMA(parallel for schedule(dynamic, 1) reduction(+:expovsumT1) reduction(+:expovsumT2))
// for (int j = l; j >= i + k; j--)
// {
// int mnov = j - k - 1;
// for (int nerr = 0; nerr < mnov; nerr++)
// {
// expovsumT1 += (k + 1 + mnov - nerr) * matZerr(nerr, mnov);
// expovsumT2 += (k + 1 + nerr) * matZotherov(nerr, mnov);
// }
// }
// expovsumT1 *= lambda * pnoerr;
// expovsumT2 *= lambda * potherpos * pword;
// if (options.verbosity >= 2)
// std::cerr << "(pos:" << i << ")(rl:" << l << "-" << k << ")"
// << " -- lambda - OvSum noerror/errors: (" << lambda << " , " << expovsumT1
// << " --" << expovsumT2 << ")" << std::endl;
//Todo (Hugues) find a more rational way for this parameter, this one could be too stringent
//one could hypothesize that the variance is equal to expectation and use a binomial approx
//on the T2 values
// int cutoff = ceil((1-w)*expovsumT1 + w*expovsumT2);
// cutoff = (cutoff < 5) ? 5 : cutoff;
// return (cutoff);
}
//
//
////
//// Compute the overlapsum cutoff for each position in a read
template <typename TCutOffMatrix, typename TPrefixLen, typename TReadLengthHist, typename TGenomeLen>
void ComputeCutoffOverlapSum(
TCutOffMatrix & thresholds,
TPrefixLen k,
TReadLengthHist &readLenHist,
TGenomeLen genomeLength,
FionaOptions & options)
{
unsigned maxReadLength = length(readLenHist) - 1;
String<double> expectedCorrectOverlapSum;
String<double> expectedFPOverlapSum;
precomputeOverlapCombinatorics(
expectedCorrectOverlapSum,
expectedFPOverlapSum,
maxReadLength - k - 1, // the maximal value of mnov is readlen-k
k,
options);
thresholds.resize(maxReadLength + 1, maxReadLength); // readLength, position
thresholds.clear();
for (unsigned lenError = 1; lenError <= maxReadLength; ++lenError)
{
if (readLenHist[lenError] == 0)
continue;
//std::cout << '.' << std::flush;
int stepSize = 1 + (lenError / 150);
SEQAN_OMP_PRAGMA(parallel for schedule(dynamic, 1))
for (int posError = 0; posError < (int)lenError / 2; ++posError)
{
double thresh = -1;
if (posError <= k || posError % stepSize == 0)
thresh = OddsOverlapSumCutoff(
posError,
1.0 / genomeLength,
lenError,
k,
options.errorrate,
options.wovsum,
expectedCorrectOverlapSum,
expectedFPOverlapSum,
readLenHist,
options);
thresholds(lenError, posError) = thresh;
thresholds(lenError, lenError - posError - 1) = thresh;
}
for (int posError = 1; posError < (int)lenError; ++posError)
{
if (thresholds(lenError, posError) == -1)
thresholds(lenError, posError) = thresholds(lenError, posError - 1);
}
}
// //for (int k = kmin; k <= kmax; k++)
// double expected = (double)readcount / genomelength;
// unsigned pad = readLen / 150 + 1;
// for (unsigned len = 1; len <= readLen; ++len)
// {
// //std::cerr << "Computing for length " << i << "expected is " << expected << std::endl;
// if (len >= readLen / 2 + 1)
// thresholds[len] = thresholds[readLen - len + 1];
// else {
// if (len == 1 || len % pad == 0u)
// thresholds[len] = OddsOverlapSumCutoff(len, expected, readLen, k, errorrate, w, matZerr, matZotherov, verbosity);
// else
// thresholds[len] = thresholds[len - 1];
// }
// }
}
/*estimated a median value for a given level*/
template < typename TIndex, class TSpec >
double medianLevel(Iter<TIndex, VSTree<TSpec> > iter){
double totalOccs = 0.0;
double sumMedian = 0.0;
double median = 0.0;
double mediumTotalOccs = 0.0;
std::map<unsigned, unsigned> vectorOccurrences;
goBegin(iter);
for (; !atEnd(iter); ++iter)
{
unsigned numOccs = countOccurrences(iter);
++vectorOccurrences[numOccs];
totalOccs += numOccs;
}
mediumTotalOccs = totalOccs / 2.0;
std::map<unsigned,unsigned>::iterator iterMap;
for (iterMap = vectorOccurrences.begin (); iterMap != vectorOccurrences.end (); ++iterMap)
{
sumMedian += iterMap->second*iterMap->first;
if (sumMedian >= mediumTotalOccs)
{
median = iterMap->first;
break;
}
}
return median;
}
template <typename TPercentage, typename TSize>
inline double probabilityOneError(TPercentage percentageErr, TSize repLen)
{
return 1.0 - pow(1.0 - percentageErr, (double)repLen);
}
//Compute the number of ways of placing at most e errors in a read of length l such that
//any interval of length k has at least one error
template <typename TMatrix>
void CombinatoricsNoSeed(TMatrix &m, int lread, int kmax, int nerrmax)
{
int m1 = 2*kmax-1 < lread ? (2*kmax-1) : lread ;
int i,k;
//Verify the size
//std::cerr << "resizing\n";
m.resize(nerrmax + 1, lread + 1);
m.clear();
for (i = 0; i <= lread; ++i)
for (k=0; k<= kmax; ++k)
m(k,i) = 0;
//std::cerr << "all values to 0\n";
for (i = 0; i <= lread; ++i)
m(0,i) = m(1,i) = 0;
for (i = 0; i < kmax; ++i)
m(1,i) = i;
for (i = kmax; i <= m1; ++i)
m(1, i) = 2 * kmax - i;
for (int ne = 2; ne <= nerrmax; ++ne)
{
for (k = 0; k < ne; ++k)
m(ne, k) = 0;
for (k = ne; k <= kmax; ++k)
m(ne, k) = static_cast<int64_t>(boost::math::binomial_coefficient<double>(k, ne));
int mpos = (ne + 1) * kmax;
for (k = mpos; k <= lread; ++k)
m(ne, k) = 0;
int mposlread = mpos < (lread +1) ? mpos : (lread+1);
for (k = kmax + 1; k < mposlread; ++k)
{
unsigned csum = 0;
for (int j = k-kmax; j<k; j++)
csum += m(ne-1, j);
m(ne,k) = csum;
}
}
//should print here for debug
// std::cerr << "Computed the Combinatorial matrix\nk = " << kmax << ", l = " << lread << std::endl;
// for (unsigned j = 1; j <= nerrmax; ++j){
// for (i = 1; i <= lread; ++i)
// std::cerr << "\t" << m(j,i);
// std::cerr << std::endl;
// }
}
//Expected number of correctable reads
//Expected number of uncorrectable reads
template <typename TUExpCounts, typename TPrefixLen, typename TErrorRate, typename TReadLen, typename TNReads>
void UncorrectableExpected(
TUExpCounts & UncorrExp,
TPrefixLen const kmin,
TPrefixLen const kmax,
TReadLen const lread,
TNReads const nreads,
TErrorRate const perr){
clear(UncorrExp);
resize(UncorrExp, kmax+1, 0.0);
//Proba place exactly i errors
String <double> pkerrs;
clear(pkerrs);
resize( pkerrs, kmax+1, 0.0);
for (int i =0; i<=kmax; ++i)
pkerrs[i] = pow(perr, (double)i) * pow(1.0 - perr, (double)(lread - i));
matrix <unsigned> MatNoSeed (kmax+1, lread+1);
for (int k = kmin; k <= kmax; k++){
CombinatoricsNoSeed(MatNoSeed, lread, k, k);
for (int nerr = 1; nerr < k; ++nerr){
UncorrExp[k] += MatNoSeed(nerr,lread) * pkerrs[nerr] * nreads;
}
}
}
template <typename TUExpCounts, typename TPrefixLen, typename TErrorRate, typename TNumRead>
void UncorrectableExpectedBases(
TUExpCounts & uncorrExp,
TPrefixLen const kmin,
TPrefixLen const kmax,
String<TNumRead> readLenHist,
TErrorRate const perr)
{
clear(uncorrExp);
resize(uncorrExp, kmax + 1, 0.0);
//Proba place exactly i errors
matrix<double> pkerrs(kmax + 1, length(readLenHist));
// precompute the probabilities to have k errors in a read of length readLen
SEQAN_OMP_PRAGMA(parallel for)
for (int readLen = 1; readLen < (int)length(readLenHist); ++readLen)
for (TPrefixLen k = 1; k <= kmax; ++k)
pkerrs(k, readLen) = pow(perr, (double)k) * pow(1.0 - perr, (double)(readLen - k));
// distribute the work (interval [kmin..kmax+1)) over different threads
Splitter<int> splitter(kmin, kmax + 1);
SEQAN_OMP_PRAGMA(parallel for num_threads(length(splitter)) schedule(static))
for (int i = 0; i < (int)length(splitter); ++i)
{
// add for each anchor k the number of uncorrectable reads
matrix<unsigned> matNoSeed;
for (int k = splitter[i]; k < splitter[i + 1]; ++k)
{
CombinatoricsNoSeed(matNoSeed, length(readLenHist) - 1, k, k);
for (unsigned readLen = 1; readLen < length(readLenHist); ++readLen)
{
TNumRead numReads = readLenHist[readLen];
if (numReads == 0)
continue;
for (int numErrors = 1; numErrors < k; ++numErrors)
uncorrExp[k] += matNoSeed(numErrors, readLen) * pkerrs(numErrors, readLen) * (double) numReads * (double) readLen;
}
}
}
}
//Expected number of destructible reads
template <typename TDestCounts, typename TPrefixLen, typename TErrorRate, typename TReadLen, typename TNReads, typename TGenomeLen>
void DestructibleExpected(
TDestCounts & DestrExp,
TPrefixLen const kmin,
TPrefixLen const kmax,
TReadLen const lread,
TNReads const nreads,
TErrorRate const perr,
TGenomeLen const genomelen){
clear(DestrExp);
resize(DestrExp, kmax+1, 0.0);
double muw = pow(4.0, kmin - 1.0);
for (int k = kmin; k <= kmax; ++k){
muw *= 4;
double qw = (1- pow(1-perr, (double)k))*(1-perr)*(1-pow(1-1.0/muw, (double)genomelen))* (3.0/4);
DestrExp[k] = (1- pow(1-qw, (double)(lread-k)))*pow(1-perr, (double)lread) * nreads;
}
}
//Expected number of destructible reads
template <typename TDestCounts, typename TPrefixLen, typename TErrorRate, typename TNumRead, typename TGenomeLen>
void DestructibleExpectedBases(
TDestCounts & destrExp,
TPrefixLen const kmin,
TPrefixLen const kmax,
String<TNumRead> readLenHist,
TErrorRate const perr,
TGenomeLen const genomelen)
{
clear(destrExp);
resize(destrExp, kmax + 1, 0.0);
SEQAN_OMP_PRAGMA(parallel for)
for (int k = kmin; k <= kmax; ++k)
{
double muw = pow(4.0, (double)k);
double qw = (1 - pow(1 - perr, (double)k)) * (1 - perr) * (1 - pow(1 - 1.0 / muw, (double)genomelen)) * 0.75;
for (unsigned readLen = 1; readLen < length(readLenHist); ++readLen)
{
uint64_t numReads = readLenHist[readLen];
if (numReads == 0)
continue;
destrExp[k] += (1 - pow(1 - qw, (double)(readLen - k))) * pow(1 - perr, (double)readLen) * (double) numReads * (double) readLen;
}
}
}
template <typename TDestCounts, typename TPrefixLen, typename TErrorRate, typename TReadLen, typename TNReads, typename TGenomeLen>
void DestructibleExpectedFiona(
TDestCounts & DestrExp,
TPrefixLen const kmin,
TPrefixLen const kmax,
TReadLen const /*lread*/,
TNReads const /*nreads*/,
TErrorRate const /*perr*/,
TGenomeLen const /*genomelen*/){
clear(DestrExp);
resize(DestrExp, kmax+1, 0.0);
// double muw = pow(4.0, kmin -1);
for (unsigned k = kmin; k <= kmax; ++k){
//This version should account for the fact that Fiona gets the best correction over the range of Ks
}
}
/*precomputation of thresholds for varying k*/
template <typename TThresholds, typename TExpectedValues, typename TStrictness, typename TErrorRate, typename TOddsError, typename TPrefixLen>
void ComputeCutoffErroneous(
TThresholds & thresholds,
TExpectedValues & ,
TStrictness const cutoff,
TErrorRate const,
TOddsError const,
TPrefixLen const kmin,
TPrefixLen const kmax,
FionaCount const)
{
clear(thresholds);
resize(thresholds, kmax+1, 0);
for (int k = kmin; k <= kmax; k++){
thresholds[k] = (int)cutoff;
}
}
//Fixed count mode
template <typename TThresholds, typename TExpectedValues, typename TStrictness, typename TErrorRate, typename TOddsError, typename TPrefixLen>
void ComputeCutoffErroneous(
TThresholds & thresholds,
TExpectedValues & expected,
TStrictness const,
TErrorRate const,
TOddsError const,
TPrefixLen const kmin,
TPrefixLen const kmax,
FionaExpected const)
{
clear(thresholds);
resize(thresholds, kmax+1, 0);
for (int k = kmin; k <= kmax; k++){
thresholds[k] = (int)expected[k];
}
}
//Poisson pvalue mode
template <typename TThresholds, typename TExpectedValues, typename TStrictness, typename TErrorRate, typename TOddsError, typename TPrefixLen>
void ComputeCutoffErroneous(
TThresholds & thresholds,
TExpectedValues & expected,
TStrictness const strictness,
TErrorRate const,
TOddsError const,
TPrefixLen const kmin,
TPrefixLen const kmax,
FionaPoisson const)
{
clear(thresholds);
resize(thresholds, kmax+1, 0);
for (int k = kmin; k <= kmax; k++){
thresholds[k] = qpois(strictness, expected[k]);
}
}
//Poisson sensitivity mode
template <typename TThresholds, typename TExpectedValues, typename TStrictness, typename TErrorRate, typename TOddsError, typename TPrefixLen>
void ComputeCutoffErroneous(
TThresholds & thresholds,
TExpectedValues & expected,
TStrictness const falsenegrate,
TErrorRate const errorrate,
TOddsError const,
TPrefixLen const kmin,
TPrefixLen const kmax,
FionaPoissonSens const)
{
clear(thresholds);
resize(thresholds, kmax+1, 0);
for (int k = kmin; k<= kmax; k++){
thresholds[k] = 1 + qpoismixerror(1-falsenegrate, expected[k], errorrate, k);
}
}
// Poisson Classification mode
// priorerror is the parameter for more stringent (>1) more loose (<1) error detection.
// oddserrorreads is the computed ratio of erroneous over correct reads
// value of 0 turns automatic prior computation of the amount of erroneous reads.
template <typename TThresholds, typename TExpectedValues, typename TStrictness, typename TErrorRate, typename TOddsError, typename TPrefixLen>
void ComputeCutoffErroneous(
TThresholds & thresholds,
TExpectedValues & expected,
TStrictness const priorerror,
TErrorRate const errorrate,
TOddsError const oddserrorreads,
TPrefixLen const kmin,
TPrefixLen const kmax,
FionaPoissonClassif const)
{
clear(thresholds);
resize(thresholds, kmax+1, 0);
for (int k = kmin; k<= kmax; k++){
thresholds[k] = PoisClassifCutoff(priorerror*oddserrorreads, expected[k], errorrate, k);
//(hugues) should we always add 1 just in case ?
//thresholds[k]++;
}
}
/*
* Linear Model fitting used for determination of number of Rounds by fitting
* log data to capture deviation from a exponential distribution
*/
struct LinearModel
{
double intercept;
double slope;
unsigned int numberObservations;
unsigned int numberPredictors;
};
/* compute a fitted value under a linear regression model */
template <typename LinearModel, typename TValue>
inline TValue fittedValue(
LinearModel const &linearModel,
TValue x)
{
return((TValue)(linearModel.intercept + (linearModel.slope * (double)x)));
}
/* use the standard maximum likelihood estimator for linear regression
* for datapoints x=(x_1, ..., x_n) and y=(y_1, .., y_n) */
template <typename LinearModel, typename TValue>
inline void linearRegression(
LinearModel &linearModel,
String<TValue> const &x,
String<TValue> const &y)
{
/* get the means first */
TValue meanX=0;
TValue meanY=0;
for(unsigned int i=0;i<length(x);i++)
{
meanX += x[i];
meanY += y[i];
}
meanX = meanX/(TValue)length(x);
meanY = meanY/(TValue)length(y);
/* use the standard maximum likelihood estimator for linear regression
* and compute first the slope than the intercept of the linear function */
TValue covarianceXY = 0;
TValue varianceX = 0;
for(unsigned int i=0;i<length(x);i++)
{
covarianceXY += (x[i] - meanX) * (y[i] - meanY);
varianceX += (x[i] - meanX) * (x[i] - meanX);
}
/* save the parameters in the model */
linearModel.slope = (varianceX == 0.0) ? std::numeric_limits<double>::infinity() : (double) covarianceXY/varianceX;
linearModel.intercept = (double) (meanY - ((TValue)linearModel.slope * meanX) );
linearModel.numberObservations = (unsigned int) length(x);
linearModel.numberPredictors = (unsigned int) 1;
}
/* compute R-Square (or Coefficient of Determination) for a set of values that
* have been fit using a linear regression model */
template <typename LinearModel, typename TValue>
inline TValue RSquare(
LinearModel const &linearModel,
String<TValue> const &x,
String<TValue> const &y)
{
/* get the mean of y */
TValue meanY=0;
for(unsigned int i=0;i<length(y);i++)
{
meanY += y[i];
}
meanY = meanY/(TValue)length(y);
/* R-Square is defined as 1 - SSerror/SStotal, where SSerror is the sum of residual errors
* and SStotal is the variance of the y values */
TValue SSerror = 0;
TValue SStotal =0;
for(unsigned int i=0;i<length(x);i++)
{
SStotal += (y[i] - meanY) * (y[i] - meanY);
SSerror += pow((y[i] - fittedValue(linearModel,x[i])), 2.0);
}
if (SStotal == 0.0)
return std::numeric_limits<TValue>::infinity();
return((TValue) ( 1- (SSerror/SStotal)));
}
/* compute the adjusted R-Square for a set of values that
* have been fit using a linear regression model */
template <typename LinearModel, typename TValue>
inline TValue adjustedRSquare(
LinearModel const &linearModel,
String<TValue> const &x,
String<TValue> const &y)
{
/* The adjusted R-Square value is nothing but the R-Square value corrected by the number
* of observed variables n and the number of predictors k
* AdjRSquare = 1 - (1-RSquare)*(n-1)/(n-k-1) */
TValue R_2 = RSquare(linearModel,x,y);
if (linearModel.numberObservations - linearModel.numberPredictors -1 == 0)
return std::numeric_limits<TValue>::infinity();
return( (TValue) (1 - (TValue)(1-R_2) * (TValue)(linearModel.numberObservations -1)/(TValue)(linearModel.numberObservations - linearModel.numberPredictors -1)));
}
template <typename TFragmentStore, typename TCorrection>
inline void _dumpCorrection(
TFragmentStore &store,
TCorrection const &correction,
unsigned errorReadId)
{
std::cerr << std::endl;
std::cerr << "error___read_id\t" << errorReadId << std::endl;
std::cerr << "error_pos \t" << correction.errorPos << std::endl;
std::cerr << "error_read length \t"<<length(store.readSeqStore[errorReadId])<<std::endl;
#ifndef FIONA_CONSENSUS_REDUCE_MEMORY
std::cerr << "correct_read_id\t" << correction.correctReadId << std::endl;
std::cerr << "correct_pos \t" << correction.correctPos << std::endl;
std::cerr << "correct_read length \t"<<length(store.readSeqStore[correction.correctReadId])<<std::endl;
#endif
std::cerr << "overlap \t" << correction.overlap << std::endl;
std::cerr << "indel_len \t" << (int)correction.indelLength << std::endl;
std::cerr << "error___read \t" << store.readSeqStore[errorReadId][correction.errorPos] << '\t';
#ifndef FIONA_CONSENSUS_REDUCE_MEMORY
for (unsigned i = 0; i < correction.correctPos; ++i)
std::cerr << ' ';
#endif
std::cerr << store.readSeqStore[errorReadId] << std::endl;
#ifndef FIONA_CONSENSUS_REDUCE_MEMORY
std::cerr << "correct_read \t" << store.readSeqStore[correction.correctReadId][correction.correctPos] << '\t';
for (unsigned i = 0; i < correction.errorPos; ++i)
std::cerr << ' ';
std::cerr << store.readSeqStore[correction.correctReadId] << std::endl;
#endif
}
/*change the erroneous nucleotide in all reads identify with errors*/
template <typename TFragmentStore, typename TCorrections>
void applyReadErrorCorrections(
TFragmentStore &store,
TCorrections const &corrections,
FionaOptions const & options)
{
typedef typename Value<TCorrections>::Type TCorrection;
int readCount = length(corrections);
// we have to make a temp-copy in order to use original (not corrected) reads for correction
StringSet<typename TFragmentStore::TReadSeq> originalReads;
resize(originalReads, length(store.readSeqStore), Exact());
SEQAN_OMP_PRAGMA(parallel for schedule(guided))
for (int readId = 0; readId < readCount; ++readId)
{
TCorrection const &corr = corrections[readId];
if (corr.overlap != 0 && corr.indelLength <= 0)
originalReads[corr.correctReadId] = store.readSeqStore[corr.correctReadId];
}
SEQAN_OMP_PRAGMA(parallel for)
for (int readId = 0; readId < readCount; ++readId)
{
#ifdef SEQAN_VERBOSE
std::cerr << "at readID: "<<readId<<std::endl;
#endif
TCorrection const &corr = corrections[readId];
if (corr.overlap == 0) continue;
if (readId == options.debugRead)
{
std::cerr << "BEFORE:" << std::endl;
_dumpCorrection(store, corr, readId);
}
std::ostringstream m;
if (strContains(toCString(store.readNameStore[readId]), "corrected"))
m << "\t";
else
m << " corrected:\t";
#ifdef SEQAN_VERBOSE
_dumpCorrection(store, corr, readId);
#endif
if (corr.indelLength == 0)
{
m << corr.errorPos << "(" << options.cycle <<',' <<corr.overlap << ","<< corr.correctReadId<<"):" << store.readSeqStore[readId][corr.errorPos] << "->" << originalReads[corr.correctReadId][corr.correctPos];
store.readSeqStore[readId][corr.errorPos] = originalReads[corr.correctReadId][corr.correctPos];
}
#ifdef FIONA_ALLOWINDELS
else if (corr.indelLength > 0)
{
m << corr.errorPos << "(" << options.cycle <<',' <<corr.overlap << ","<< corr.correctReadId<<"):-" << infix(store.readSeqStore[readId], corr.errorPos, corr.errorPos + corr.indelLength);
erase(store.readSeqStore[readId], corr.errorPos, corr.errorPos + corr.indelLength);
} else {
m << corr.errorPos << "(" << options.cycle <<',' <<corr.overlap << ","<< corr.correctReadId<<"):+" << infix(originalReads[corr.correctReadId], corr.correctPos, corr.correctPos + -corr.indelLength);
insert(store.readSeqStore[readId], corr.errorPos, infix(originalReads[corr.correctReadId], corr.correctPos, corr.correctPos + -corr.indelLength));
}
#endif
append(store.readNameStore[readId], m.str());
if (readId == options.debugRead)
{
std::cerr << "AFTER:" << std::endl;
_dumpCorrection(store, corr, readId);
}
#ifdef SEQAN_VERBOSE
std::cerr << "corrected:";
for (unsigned i = 0; i < corr.correctPos; ++i)
std::cerr << ' ';
std::cerr << store.readSeqStore[readId] << std::endl;
#endif
}
}
template <typename TObservedCount, typename TCutoffCount>
inline bool
potentiallyErroneousNode(TObservedCount observed, TCutoffCount cutoff)
{
return (long)observed < cutoff;
}
//template <typename TObserved, typename TExpected, typename TStrictness, typename TErrorRate, typename TPrefixLen>
//inline bool potentiallyErroneousNode(
// TObserved observed,
// TExpected expected,
// TStrictness strictness,
// TErrorRate,
// TPrefixLen,
// FionaPoisson const)
//{
// // compare the cumulative poisson distribution with the p-value (strictness)
// double negExp = exp(-expected);
// double pValue = 0.0;
// double pow = 1.0;
// double fact = 1.0;
//
// for (TObserved i = 0; i <= observed && pValue <= strictness; ++i, fact *= i){
// pValue += pow * negExp / fact;
// pow *= expected;
// }
// return pValue <= strictness;
//}
//
//template <typename TObserved, typename TExpected, typename TStrictness, typename TErrorRate, typename TPrefixLen>
//inline bool potentiallyErroneousNode(
// TObserved observed,
// TExpected expected,
// TStrictness,
// TErrorRate,
// TPrefixLen,
// FionaExpected const)
//{
// // compare the weight for a node with a cutoff given by the strictness param.
// return observed < expected;
//}
//
//template <typename TObserved, typename TExpected, typename TStrictness, typename TErrorRate, typename TPrefixLen>
//inline bool potentiallyErroneousNode(
// TObserved observed,
// TExpected,
// TStrictness cutoff,
// TErrorRate,
// TPrefixLen,
// FionaCount const)
//{
// // compare the weight for a node with a fixed cutoff
// return observed < cutoff;
//}
//
//
//
//template <typename TObserved, typename TExpected, typename TStrictness, typename TErrorRate, typename TPrefixLen>
//inline bool potentiallyErroneousNode(
// TObserved observed,
// TExpected expected,
// TStrictness falsenegrate,
// TErrorRate errorrate,
// TPrefixLen prefixlen,
// FionaPoissonSens const)
//{
// // Poisson based threshold, given a fixed percentage of missed errors (1 - min sensitivity)
// // consider only the cases with one and two errors
// // the average error rate and the expected value allow to compute the expected count for an error.
//
// //special case when current node count ==1, we always consider that as an error
// if(observed == (TObserved) 1) return true;
//
// double sensitivity = 1 - falsenegrate;
// double noerrlm2 = pow(1-errorrate, prefixlen - 2.0);
// double noerrlm1 = noerrlm2 * (1-errorrate);
// double errexp1err = expected * noerrlm1 * errorrate/3;
// double errexp2err = expected * noerrlm2 * (errorrate/3) *(errorrate/3);
// double perr1 = prefixlen * noerrlm1* errorrate ;
// double perr2 = (prefixlen * (prefixlen -1) / 2 ) * noerrlm2 * errorrate * errorrate;
// double sc = perr1 + perr2;
// perr1 /= (sc);
// perr2 /= (sc);
// double negExp1err = exp(-errexp1err); //
// double negExp2err = exp(-errexp2err);
// double probaerror = 0.0;
// double pow1err = 1.0;
// double pow2err = 1.0;
// double fact = 1.0;
// //std::cerr << "Level " << prefixlen << " and params for correc\n";
// //std::cerr << "Expected and comp: " << expected << " - " << errexp1err << " - " << errexp2err << "\n";
// //std::cerr << "the basic observed count: " << observed << ", perr is " << perr1 << " - " << perr2 << "\n";
// TObserved i = 0;
// for (i = 0; i <= observed && probaerror <= sensitivity; ++i, fact *= i){
// probaerror += perr1 * pow1err * negExp1err / fact;
// probaerror += perr2 * pow2err * negExp2err / fact;
// pow1err *= errexp1err;
// pow2err *= errexp2err;
// }
// //std::cerr << "Stopped at observed value **" << i-1 << "** for a sens. of " << probaerror << "and a thr at " << sensitivity << "\n";
// return probaerror <= sensitivity;
//}
//
//template <typename TObserved, typename TExpected, typename TStrictness, typename TErrorRate, typename TPrefixLen>
//inline bool potentiallyErroneousNode(
// TObserved observed,
// TExpected expected,
// TStrictness priorerror,//the a priori odds of errors pi_err/(1-pi_err) (default should be 1)
// TErrorRate errorrate,
// TPrefixLen prefixlen,
// FionaPoissonClassif const)
//{
// // Poisson based threshold, we compute the logodds of being an error vs a genuine read
// // consider only the cases with one and two errors
// // the average error rate and the expected value allow to compute the expected count for an error.
//
// //special case when current node count ==1, we always consider that as an error
// if(observed == (TObserved) 1) return true;
//
// double noerr = pow(1-errorrate, prefixlen);
// double noerrlm2 = pow(1-errorrate, prefixlen - 2.0);
// double noerrlm1 = noerrlm2 * (1-errorrate);
//// double errexpnoerr = expected * noerr;
//// double errexp1err = expected * noerrlm1 * (errorrate/3);
//// double errexp2err = expected * noerrlm2 * (errorrate/3) *(errorrate/3);
// double perr1 = prefixlen * noerrlm1* (errorrate) ;
// double perr2 = (prefixlen * (prefixlen -1) / 2 ) * noerrlm2 * (errorrate) *(errorrate);
// double sc = perr1 + perr2;
// perr1 /= (sc);
// perr2 /= (sc);
//// double negExpnoerr = exp(-errexpnoerr);
//// double negExp1err = exp(-errexp1err); //
//// double negExp2err = exp(-errexp2err);
//// double pow1err = 1.0;
//// double pow2err = 1.0;
//// double pownoerr = 1.0;
//// double fact = 1.0;
// double probaerror = 0.0;
// double probanoerror = 0.0;
// //std::cerr << "Level " << prefixlen << " and params for correc\n";
// //std::cerr << "Expected and comp: " << errexpnoerr << " - " << errexp1err << " - " << errexp2err << "\n";
// //std::cerr << "the basic observed count: " << observed << ", perr is " << perr1 << " - " << perr2 << "\n";
// //TObserved i = 0;
// probaerror = dpoismixerror( observed, expected, errorrate, prefixlen);
// probanoerror = dpois(observed, expected*noerr);
//// for (i = 0; i <= observed; ++i, fact *= i){
//// probaerror += perr1 * pow1err * negExp1err / fact;
//// probaerror += perr2 * pow2err * negExp2err / fact;
//// pow1err *= errexp1err;
//// pow2err *= errexp2err;
//// probanoerror += pownoerr * negExpnoerr / fact;
//// }
// //std::cerr << "Stopped at observed value **" << i-1 << "with proba of err " << probaerror << "and probanoerr " << probanoerr << "\n";
// return (log((probaerror)/ (probanoerror) * priorerror) > 0);
//}
struct Overlap // for each operation (substitution/deletion/insert) there is one Overlap entry
{
unsigned overlapSumLeft;
unsigned overlapSumRight;
unsigned readId; // the readId of one correct candidate
unsigned short correctPos; // the position of the correct base in this candidate (reads shouldn't be longer than 65536bp)
#ifdef FIONA_MAXIMIZE_SUPPORT
unsigned short _errorsRight; // temporary
unsigned support; // absolute number of reads supporting this operation (with minimal errors right of the anchor)
#endif
#ifdef FIONA_CONSENSUS
typedef ProfileChar<Dna5, unsigned short> TProfileValue;
typedef String<TProfileValue> TConsensus;
TConsensus consensus;
#endif
};
// this function is used to extend the read suffixes after a common seed with at most #maxErrors errors
template <typename TIter>
inline unsigned
_comparePrefixesWithEditDistance(
Range<TIter> seq1,
Range<TIter> seq2,
unsigned maxErrors)
{
typedef Range<TIter> TSeq;
typename Size<TSeq>::Type len1 = length(seq1);
typename Size<TSeq>::Type len2 = length(seq2);
PatternState_<TSeq, Myers<AlignTextBanded<FindPrefix, NMatchesAll_, NMatchesAll_>, True, void> > state;
state.maxErrors = maxErrors;
// state.leftClip = maxErrors / 2;
state.leftClip = maxErrors;
typename Iterator<TSeq, Rooted>::Type iter;
unsigned minErrors = maxErrors + 1;
if (len1 <= len2)
{
if (len1 == 0)
return 0;
seq2.end = seq2.begin + _min(len2, len1 + state.leftClip);
iter = begin(seq2, Rooted());
if (_patternInitSmallStateBanded(iter, seq1, state))
for (; !atEnd(iter) && _findMyersSmallPatternsBanded(iter, seq1, state, True()); goNext(iter))
if (minErrors > state.errors)
minErrors = state.errors;
}
else
{
seq1.end = seq1.begin + _min(len1, len2 + state.leftClip);
iter = begin(seq1, Rooted());
if (_patternInitSmallStateBanded(iter, seq2, state))
for (; !atEnd(iter) && _findMyersSmallPatternsBanded(iter, seq2, state, True()); goNext(iter))
if (minErrors > state.errors)
minErrors = state.errors;
}
return minErrors;
}
template <typename TIter>
inline unsigned
_comparePrefixesWithEditDistanceReverse(
Range<TIter> seq1,
Range<TIter> seq2,
unsigned maxErrors)
{
typedef Range<TIter> TSeq;
typename Size<TSeq>::Type len1 = length(seq1);
typename Size<TSeq>::Type len2 = length(seq2);
typedef ModifiedString<TSeq, ModReverse> TRev;
PatternState_<TRev, Myers<AlignTextBanded<FindPrefix, NMatchesAll_, NMatchesAll_>, True, void> > state;
state.maxErrors = maxErrors;
// state.leftClip = maxErrors / 2;
state.leftClip = maxErrors;
typename Iterator<TRev, Rooted>::Type iter;
unsigned minErrors = maxErrors + 1;
if (len1 <= len2)
{
if (len1 == 0)
return 0;
seq2.begin = seq2.end - _min(len2, len1 + state.leftClip);
TRev rseq1(seq1);
TRev rseq2(seq2);
iter = begin(rseq2, Rooted());
if (_patternInitSmallStateBanded(iter, rseq1, state))
for (; !atEnd(iter) && _findMyersSmallPatternsBanded(iter, rseq1, state, True()); goNext(iter))
if (minErrors > state.errors)
minErrors = state.errors;
}
else
{
seq1.begin = seq1.end - _min(len1, len2 + state.leftClip);
TRev rseq1(seq1);
TRev rseq2(seq2);
iter = begin(rseq1, Rooted());
if (_patternInitSmallStateBanded(iter, rseq2, state))
for (; !atEnd(iter) && _findMyersSmallPatternsBanded(iter, rseq2, state, True()); goNext(iter))
if (minErrors > state.errors)
minErrors = state.errors;
}
return minErrors;
}
//newfunction for traversing and filling the linked list with/*detect and repair the reads with errors*/
template <
int LOOP_LEVEL,
typename TTreeIterator,
typename TFragmentStore,
typename TCorrections,
typename TValueId,
typename TAlgorithm >
void traverseAndSearchCorrections(
TTreeIterator iter,
TFragmentStore &store,
String<TCorrections> & correctionList,
String<TValueId> &firstCorrectionForRead,
FionaOptions & options,
Tag<TAlgorithm> const,
unsigned readLength,
FionaResources &resources)
{
typedef typename Container<TTreeIterator>::Type TFionaIndex;
typedef typename Fibre<TFionaIndex, FibreText>::Type TReadSet;
typedef typename Fibre<TFionaIndex, FibreSA>::Type TSA;
typedef typename Infix<TSA const>::Type TOccs;
typedef typename Iterator<TOccs, Standard>::Type TOccsIterator;
typedef typename Value<TReadSet>::Type TRead;
typedef typename Value<TRead>::Type TValue;
typedef typename Iterator<TRead, Standard>::Type TReadIterator;
double start = omp_get_wtime();
TFionaIndex &index = container(static_cast<TTreeIterator&>(iter));
unsigned readCount = length(store.readSeqStore) / 2;
//for debugging of read data
String<TOccs, Array<4> > correctCandidates; // there are at most 4 correcting branches
Overlap bestCorrection[1+2*MAX_INDEL_LENGTH]; // for a given branch store for every indel-size the best correction
Dna5 correctSeq[MAX_INDEL_LENGTH];
const TValue unknownChar = unknownValue<TValue>();
//compute maximum allowed mismatches per read
//We allow up to maxAcceptedMismatches between two reads. The threshold is decided
//by controlling the proportion pNeig of the reads that are expected with that many mismatches (given the error rate)
unsigned replen_min = cargo(index).replen_min;
unsigned cycle = options.cycle;
float pNeig = 0.95f;
binomial Nmismatch(readLength, options.errorrate);
unsigned maxAcceptedMismatches = _max((unsigned) ceil(quantile(Nmismatch, pNeig)), 2u); //unlikely that 2 reads share the same error (weese:) don't understand the comment
// double oldAcceptedMismatches = (options.errorrate * readLength);
// std::cout << std::endl << "acceptedMismatches: " << maxAcceptedMismatches << " readLength " << readLength << " error " << options.errorrate << std::endl;
// std::cout << std::endl << "Old acceptedMismatches value: " << oldAcceptedMismatches << std::endl;
// for (goBegin(iter); !atEnd(iter); ) // do a DFS walk
while (!atEnd(iter)) // do a DFS walk
{
// if (value(iter).range.i1==1798 && value(iter).range.i2==1811 && value(iter).repLen==23)
// {
// std::cerr<<std::endl<<"START";
// std::cerr << representative(iter)<<std::endl;
// for(int i=0; i<countOccurrences(iter); ++i)
// std::cerr << getOccurrences(iter)[i] << '\t';
// std::cerr<<"END"<<std::endl;
// }
unsigned commonPrefix = parentRepLength(iter); // length of parent label
// if (seqan2::range(iter).i1==127 && prefix(representative(iter),commonPrefix) == "AAAAACAAAAACA")
// std::cout<<"HERE"<<std::endl;
if ((int)commonPrefix < options.fromLevel)
{
goNext(iter);
continue;
}
#ifdef FIONA_USE_SA
if ((int)commonPrefix > options.toLevel)
SEQAN_FAIL("how can that be?");
#endif
SEQAN_ASSERT_LT(commonPrefix + 1, length(options.expectedTheoretical));
// SEQAN_ASSERT_LEQ(options.fromLevel, (int)commonPrefix); // doesn't hold for the first node (=root node)
// only examine branches where the string depth is a multiple of depthSampleRate
TValue firstEdgeChar = parentEdgeFirstChar(iter);
bool skipNode = ((commonPrefix + cycle - replen_min) % options.depthSampleRate != 0);
bool leaveNodeRight = (int)commonPrefix >= options.toLevel || countOccurrences(iter) < 3 || firstEdgeChar == unknownChar;
#ifdef FIONA_USE_SA
if (!skipNode && isFirstChild(iter) && isLastChild(iter))
skipNode = true;
#endif
if (!skipNode && firstEdgeChar != unknownChar && // N is always an error
!potentiallyErroneousNode(countOccurrences(iter), options.errorCutoffs[commonPrefix+1])) //New test is easier
//!potentiallyErroneousNode(countOccurrences(iter), options.expectedTheoretical[commonPrefix+1], options.strictness, options.errorrate, commonPrefix + 1 ,alg))
{
skipNode = true;
}
// don't descent over repeats
if (!skipNode)
{
if (/*countOccurrences(iter) >= options.repeatCutoffs[repLength(iter)] &&*/
// isSelfRepetitive(representative(iter)))
isSelfRepetitive(infixWithLength(indexText(index), getOccurrence(iter), commonPrefix + 1)))
{
// anchor plus first edge char is repetitive -> skip the whole parent
skipNode = true;
leaveNodeRight = true;
}
}
if (skipNode)
{
if (leaveNodeRight)
goNextRight(iter);
else
goNext(iter);
continue;
}
++resources.investigatedNodes;
//
// get the id and position (suffix begin) for suspected nodes
// for which we can find a more optimal correction
//
TOccs errorCandidates = getOccurrences(iter);
/*copy the iterator for iterate over the siblings*/
// typename Iterator<TFionaIndex, TopDown<> >::Type iterSibling(index, nodeUp(iter));
TTreeIterator iterSibling(iter);
goUp(iterSibling);
//
// potential reads for make the correction,
// because at the same level, with the same prefix
//
clear(correctCandidates);
if (!goDown(iterSibling))
SEQAN_ASSERT_FAIL("going up and down failed!?");
if (LOOP_LEVEL != 0)
{
// pick potentially correct reads
unsigned long thickestBranchCount = length(errorCandidates);
TOccs thickestBranchOccs;
do
{
TValue siblingFirstEdgeChar = parentEdgeFirstChar(iterSibling);
if (siblingFirstEdgeChar != firstEdgeChar && siblingFirstEdgeChar != unknownChar)
{
unsigned long siblingOccCount = countOccurrences(iterSibling);
// record the thickest branch
if (thickestBranchCount < siblingOccCount)// && siblingOccCount < options.repeatCutoffs[commonPrefix+1])
{
thickestBranchCount = siblingOccCount;
thickestBranchOccs = getOccurrences(iterSibling);
}
if (!potentiallyErroneousNode(siblingOccCount, options.errorCutoffs[commonPrefix + 1]) &&
siblingOccCount < options.repeatCutoffs[commonPrefix+1])
//!potentiallyErroneousNode(countOccurrences(iterSibling), options.expectedTheoretical[commonPrefix + 1], options.strictness, options.errorrate,commonPrefix +1, alg))
{
// save the id and position(where the suffix begin in the reads) in the table of IDs correct
// also the number of occurrences
appendValue(correctCandidates, getOccurrences(iterSibling));
}
}
if (ordValue(siblingFirstEdgeChar) == 3) break; // we ignore the N-node right of the T
} while (goRight(iterSibling));
// if there aren't any, try the thickest branch
if (empty(correctCandidates) && thickestBranchCount > length(errorCandidates))
appendValue(correctCandidates, thickestBranchOccs);
}
// continue only if we have found a correct read
if (!empty(correctCandidates))
{
//std::cout << seqan2::range(iter) << '\t' << parentEdgeFirstChar(iter) << '\t' << prefix(representative(iter),commonPrefix) << '\t';
//for (unsigned j = 0; j < length(correctCandidates); ++j)
// std::cout << beginPosition(correctCandidates[j]) << ',' << endPosition(correctCandidates[j]) << '\t';
//std::cout << '\n';
double computeOverlapSumStart = omp_get_wtime();
// make the comarison between the substrings(the suffix after the position of error
TOccsIterator errorRead = begin(errorCandidates, Standard());
TOccsIterator errorReadEnd = end(errorCandidates, Standard());
for (; errorRead != errorReadEnd; ++errorRead)
{
unsigned errorReadId = (*errorRead).i1; //debug?
unsigned fwdReadId = errorReadId;
// swap to forward read ID because the allowed errors are only saved for the forward read IDs
if (fwdReadId >= readCount)
fwdReadId -= readCount;
//check here if the max number of corrections was made already
if (options.allowedCorrectionsPerRead[fwdReadId] == 0)
continue;
unsigned positionError = (*errorRead).i2 + commonPrefix;
#ifdef FIONA_MAX_CORRECTIONS_PER_BASE
lockReading(correctionListLock);
unsigned foundCorr = getFoundCorrections(correctionList, firstCorrectionForRead, errorReadId, positionError, store);
unlockReading(correctionListLock);
if (foundCorr >= FIONA_MAX_CORRECTIONS_PER_BASE)
continue;
#endif
TReadIterator itEBegin = begin(store.readSeqStore[errorReadId], Standard());
TReadIterator itEPrefixBegin = itEBegin + (*errorRead).i2;
TReadIterator itEEnd = end(store.readSeqStore[errorReadId], Standard());
if (LOOP_LEVEL == 1)
continue;
for (unsigned c = 0; c < length(correctCandidates); ++c)
{
TOccsIterator corrRead = begin(correctCandidates[c], Standard());
TOccsIterator corrReadEnd = end(correctCandidates[c], Standard());
/*
Here should go the new Branch and Bound algorithm that
looks if the current error pos has already a higher overlaps sum
than what is possible to achieve with an SA infix from correctCandidates
by considering the current strand. Although the Overlapsum might be
computed before the for loop with c
*/
/////////////////////////////////////////////////////////////////////////////////
// reset overlap sums
for (int i = 0; i < options.maxIndelLength * 2 + 1; ++i)
{
Overlap &ov = bestCorrection[i];
ov.overlapSumLeft = 0;
ov.overlapSumRight = 0;
#ifdef FIONA_MAXIMIZE_SUPPORT
ov.support = 0;
#endif
#ifdef FIONA_CONSENSUS
clear(ov.consensus);
resize(ov.consensus, (itEEnd - itEPrefixBegin) - commonPrefix + options.maxIndelLength + 1);
#endif
}
if (LOOP_LEVEL == 2)
continue;
// bool debug = (errorReadId == (unsigned int)options.debugRead || errorReadId-length(store.readSeqStore)/2 == (unsigned int)options.debugRead);
// if (debug)
// {
// std::cout<<"found"<<std::endl;
// }
for (; corrRead != corrReadEnd; ++corrRead)
{
/////////////////////////////////////////////////////////////////////////////////
// compare overlap left of the common prefix
//this part can be done without considering the type of indel
//if the left part has already too many errors no further investigation necessary
TReadIterator itE = itEBegin;
TReadIterator itCBegin = begin(store.readSeqStore[(*corrRead).i1], Standard());
TReadIterator itCLeft = itCBegin;
TReadIterator itCEnd = end(store.readSeqStore[(*corrRead).i1], Standard());
int delta = (*errorRead).i2 - (*corrRead).i2;
unsigned overlapLeft = positionError;
if (delta > 0)
{
// erroneous reads starts left of correct read
// EEEEEEEEEEEEEEE
// CCCCCCCCCCCCCCC
overlapLeft -= delta;
itE += delta;
}
else
{
// erroneous reads starts right or with correct read
// EEEEEEEEEEEEEEE
// CCCCCCCCCCCCCCC
itCLeft += -delta;
}
#ifdef FIONA_FIXED_OVERLAP_ERRORS
unsigned acceptedMismatchesLeft = maxAcceptedMismatches;
#else
// TOTAL NUMBER OF ERRORS IN THE OVERLAP
unsigned acceptedMismatchesLeft = std::max(2u, (unsigned)(options.overlap_errorrate * _min(itEEnd - itE, itCEnd - itCLeft)));
#endif
// COMPARE READ OVERLAPS WITH ERRORS
#ifdef FIONA_OVERLAP_WITH_EDIT_DISTANCE
// ALLOW INDELS
unsigned maxLen = _min((*errorRead).i2, (*corrRead).i2);
itE = itEPrefixBegin;
TReadIterator itC = itCBegin + (*corrRead).i2;
// if (debug)
// {
// #pragma omp critical
// {
// std::cout<< std::endl<< Range<TReadIterator>(itEBegin, itE) << std::endl;
// std::cout<< Range<TReadIterator>(itCBegin, itC) << std::endl<< std::endl;
// }
// }
for (; maxLen != 0; --maxLen)
{
--itC;
--itE;
#ifdef FIONA_MATCH_N
if (ordValue(*itE) == 4) continue;
#endif
if (*itE != *itC)
break;
}
unsigned errorsLeft =_comparePrefixesWithEditDistanceReverse(
Range<TReadIterator>(itEBegin, itE),
Range<TReadIterator>(itCBegin, itC),
acceptedMismatchesLeft);
// too many mismatches right of the common prefix?
if (acceptedMismatchesLeft < errorsLeft)
continue;
acceptedMismatchesLeft -= errorsLeft;
#else
for (; itE < itEPrefixBegin; ++itE, ++itCLeft)
{
#ifdef FIONA_MATCH_N
if (ordValue(*itE) == 4) continue;
#endif
if (*itE != *itCLeft)
if (--acceptedMismatchesLeft == std::numeric_limits<unsigned>::max()) break;
}
// too many mismatches left of the common prefix?
if (acceptedMismatchesLeft == std::numeric_limits<unsigned>::max())
continue;
#endif
if (overlapLeft > (maxAcceptedMismatches - acceptedMismatchesLeft)) // kann weg (immer true)
overlapLeft -= (maxAcceptedMismatches - acceptedMismatchesLeft);
// the position in the read until which there is the same prefix
unsigned positionCorrect = (*corrRead).i2 + commonPrefix;
if (LOOP_LEVEL == 3)
continue;
#ifdef FIONA_MAXIMIZE_SUPPORT
unsigned overallMinErrorsRight = acceptedMismatchesLeft + 1;
#endif
/////////////////////////////////////////////////////////////////////////////////
// compare overlap right of the common prefix by considering all types of allowed errors
for (int indel = -options.maxIndelLength; indel <= options.maxIndelLength; ++indel)
{
Overlap &overlap = bestCorrection[((indel >= 0)? indel * 2: -indel * 2 - 1)];
#ifdef FIONA_MAXIMIZE_SUPPORT
overlap._errorsRight = acceptedMismatchesLeft + 2; // initialize with "infinity"
#endif
itE = itEBegin + positionError;
TReadIterator itC = itCBegin + positionCorrect;
if (indel == 0)
{
// mismatch
++itE;
++itC;
}
else if (indel > 0)
{
// gap in correct read (must be deleted in err. read)
itE += indel;
if (itE + indel >= itEEnd || itC + indel >= itCEnd) continue;
}
else
{
// gap in erroneous read (must be filled with an insertion in err. read)
itC += -indel;
if (itC + -indel >= itCEnd || itC + -indel >= itCEnd) continue;
}
if (LOOP_LEVEL == 4)
continue;
// COMPARE READ OVERLAPS WITH ERRORS
unsigned rightOverlapLen = _min(itEEnd - itE, itCEnd - itC);
unsigned acceptedMismatches = acceptedMismatchesLeft;
unsigned errorsRight;
#ifdef FIONA_OVERLAP_WITH_EDIT_DISTANCE
// ALLOW INDELS
// first extend seed without errors
for (unsigned maxLen = rightOverlapLen; maxLen != 0; --maxLen, ++itE, ++itC)
{
#ifdef FIONA_MATCH_N
if (ordValue(*itE) == 4) continue;
#endif
if (*itE != *itC)
break;
}
// now continue with banded Myers
errorsRight =_comparePrefixesWithEditDistance(
Range<TReadIterator>(itE, itEEnd),
Range<TReadIterator>(itC, itCEnd),
acceptedMismatches);
// too many mismatches right of the common prefix?
if (acceptedMismatches < errorsRight)
continue;
acceptedMismatches -= errorsRight;
#else
// ALLOW ONLY MISMATCHES
// manually count mismatches
for (unsigned maxLen = rightOverlapLen; maxLen != 0; --maxLen, ++itE, ++itC)
{
#ifdef FIONA_MATCH_N
if (ordValue(*itE) == 4) continue;
#endif
if (*itE != *itC)
if (--acceptedMismatches == std::numeric_limits<unsigned>::max())
break;
}
// too many mismatches right of the common prefix?
if (acceptedMismatches == std::numeric_limits<unsigned>::max())
continue;
errorsRight = acceptedMismatchesLeft - acceptedMismatches;
#endif
#ifdef FIONA_MAXIMIZE_SUPPORT
overlap._errorsRight = errorsRight; // store number errors for this operation
if (overallMinErrorsRight > errorsRight) // update minimum over all operations
overallMinErrorsRight = errorsRight;
#else
ignoreUnusedVariableWarning(errorsRight);
#endif
// bool debug = (errorReadId == (unsigned int)options.debugRead || errorReadId-length(store.readSeqStore)/2 == (unsigned int)options.debugRead);
// if(debug)
// {
// std::cerr << "error_read \t" << indel << '\t' << suffix(store.readSeqStore[errorReadId],positionError) << '\t' << errorReadId << '\t' << (acceptedMismatchesLeft-acceptedMismatches) << '\n';
// std::cerr << "correct_read \t" << indel << '\t' << suffix(store.readSeqStore[(*corrRead).i1],positionCorrect) << '\t' << (*corrRead).i1 << '\n';
// //std::cerr << store.readSeqStore[(*corrRead).i1] << std::endl;
// }
// correction candidate
overlap.overlapSumLeft += overlapLeft;
int overlapRight = rightOverlapLen;
if (overlapRight + _min(indel,0) >= 0)
overlapRight += _min(indel,0); // hier immer indel laenge abziehen damit Mismatches nicht benachteiligt werden
if (indel == 0)
++overlapRight;
if (overlapRight >= (int)(acceptedMismatchesLeft - acceptedMismatches))
overlapRight -= (int)(acceptedMismatchesLeft - acceptedMismatches);
overlap.overlapSumRight += overlapRight;
overlap.readId = (*corrRead).i1;
overlap.correctPos = positionCorrect;
// if (debug)
// {
// std::cerr << "overlap \t" << overlapLeft << '+' << overlapRight << '\t' << indel << std::endl;
// }
#ifdef FIONA_CONSENSUS
// (only for mismatches/insertions) compute consensus of correct reads
// that fulfill the acceptedMismatch-critereon
if (indel <= 0)
{
// reset itC and repeat comparison to increase consensus counters
typename Iterator<Overlap::TConsensus, Standard>::Type itCons = begin(overlap.consensus, Standard());
// there are rightOverlapLen bases right of the error
itC = itCLeft + commonPrefix;
itCEnd = itC + rightOverlapLen;
// take the error (mismatch/gap in error read) into account for consensus computation
if (indel == 0)
++itCEnd;
else if (indel < 0)
itCEnd += -indel;
for (; itC < itCEnd; ++itC, ++itCons)
++(*itCons).count[ordValue(*itC)];
SEQAN_ASSERT_LEQ(itCons, end(overlap.consensus, Standard()));
}
#endif
}
#ifdef FIONA_MAXIMIZE_SUPPORT
// update support for all operations
for (int i = 0; i < options.maxIndelLength * 2 + 1; ++i)
{
Overlap &overlap = bestCorrection[i];
if (overlap._errorsRight == overallMinErrorsRight) // increase support for operation with minimal errors
++overlap.support;
}
#endif
}
#ifdef FIONA_MAXIMIZE_SUPPORT
// determine operation with maximal support
unsigned bestOperation = 0;
unsigned maxSupport = bestCorrection[0].support;
for (int i = 1; i < options.maxIndelLength * 2 + 1; ++i)
{
Overlap &overlap = bestCorrection[i];
if (maxSupport < overlap.support)
{
maxSupport = overlap.support;
bestOperation = i;
}
}
if (maxSupport == 0)
continue;
#endif
// try finding the best correction with the highest overlap sum
// here is where we start to differ as we record the Corrections in the new
// new linked list (correctionList) with CorrectionIndelPos structs
// but instead of choosing the Correction with the highest Overlapsum from each error type
// we treat each of theses cases by using addCorrectionEntry
bool strand = (errorReadId >= readCount);
#ifdef FIONA_MAXIMIZE_SUPPORT
int i = bestOperation;
#else
for (int i = 0; i < options.maxIndelLength * 2 + 1; ++i)
#endif
{
unsigned short overlapSum = bestCorrection[i].overlapSumLeft + bestCorrection[i].overlapSumRight;
if (overlapSum == 0)
continue;
//create variables to use addCorrectionEntry this is critical for OMP
signed char indel = ((i & 1) == 0)? i / 2: -((i + 1) / 2);
#ifdef FIONA_CONSENSUS
TReadIterator itE = itEPrefixBegin + commonPrefix;
typename Iterator<Overlap::TConsensus, Standard>::Type itCons = begin(bestCorrection[i].consensus, Standard());
if (indel == 0) // mismatch
{
// extract first consensus base
correctSeq[0] = *itCons;
if (strand)
correctSeq[0] = FunctorComplement<Dna5>()(correctSeq[0]);
++itE;
++itCons;
}
else if (indel > 0) // gap in correct read (must be deleted in err. read)
{
itE += indel;
}
else // gap in erroneous read (must be filled with an insertion in err. read)
{
SEQAN_ASSERT_LT(indel, 0);
// extract consensus bases to determine insert
if (strand)
{
for (int l = -indel; l > 0; ++itCons)
correctSeq[--l] = FunctorComplement<Dna5>()((Dna5)*itCons);
}
else
{
for (int l = 0; l < -indel; ++l, ++itCons)
correctSeq[l] = *itCons;
}
}
SEQAN_ASSERT_LEQ(itCons, end(bestCorrection[i].consensus, Standard()));
/* SEQAN_OMP_PRAGMA(critical(TestConsensusOverlapsum))
{
std::cout << "normCorrect: " << errorReadId<< " "<< positionError<< " " << overlapSum<< " " << options.overlapSumCutoffs[positionError+1]<< " " << cycle<< std::endl;
} */
// 1. add major mismatch/indel correction
SEQAN_OMP_PRAGMA(critical(addCorrection))
{
++resources.putCorrections;
addCorrectionEntry(
correctionList,
firstCorrectionForRead,
errorReadId,
bestCorrection[i].readId,
bestCorrection[i].correctPos,
positionError,
overlapSum,
strand,
indel,
store,
correctSeq);
}
if (indel == 0)
{
// 2. add minor consensus mismatch corrections
//bool debugConsensus = false;
for (; itE < itEEnd; ++itE, ++itCons)
{
unsigned maxBase = getMaxIndex(*itCons);
if (maxBase == 4) continue; // skip if N is the consensus base
unsigned frequency = (*itCons).count[maxBase];
if (frequency < 2) break; // at least 2 suffixes need to vote for that base
if ((*itCons).count[ordValue(*itE)] < frequency)
{
// TODO:
// (weese:) I'm not sure if we better scale the overlap-sum relative to the coverage at the anchor (front(consensus))
// or relative to the coverage at the current base (*itCons)
unsigned totalCounts = totalCount(*itCons);
if(totalCounts == 0)
continue;
//totalCount(*itCons /*front(consensus)*/));
unsigned consOverlapSum = (unsigned)((frequency * overlapSum) / totalCounts);
if(consOverlapSum >1) //penalize consensus correction by one to always to major correction first
--consOverlapSum;
//unsigned testOverlapSum = (unsigned)((frequency * overlapSum) / totalCount(front(itCons)));
/* SEQAN_OMP_PRAGMA(critical(TestConsensusOverlapsum))
{
std::cout << "overCorrect: " << errorReadId<< " "<< maxBase << " " <<itE-itEBegin<< " " << overlapSum << " " << consOverlapSum << " " << frequency <<" overcutoff: " << options.overlapSumCutoffs[itE-itEBegin+1]<< " " << cycle << std::endl;
} */
correctSeq[0] = (Dna5)maxBase;
if (strand)
correctSeq[0] = FunctorComplement<Dna5>()(correctSeq[0]);
SEQAN_OMP_PRAGMA(critical(addCorrection))
{
++resources.putCorrections;
addCorrectionEntry(correctionList,firstCorrectionForRead,errorReadId,bestCorrection[i].readId,bestCorrection[i].correctPos,itE-itEBegin,consOverlapSum,strand,indel,store,correctSeq);
}
//std::cout << "replace " << *itE << " at position " << (itE - itEBegin) << " in read " << errorReadId;
//std::cout << " by " << (Dna5)maxBase << " (support=" << (*itCons).count[maxBase] << ")" << std::endl;
//debugConsensus = true;
}
}//go over all positions in consensus
}//no indel
/*
if (debugConsensus)
{
for(int divider = 10; divider != 0; divider /= 10)
{
for(int xx=0; xx<positionError+1+indel; ++xx) std::cout << ' ';
for(unsigned xa=0; xa<length(bestCorrection[i].consensus); ++xa)
{
unsigned maxBase = getMaxIndex(bestCorrection[i].consensus[xa]);
if (bestCorrection[i].consensus[xa].count[maxBase] == 0) break;
std::cout << (bestCorrection[i].consensus[xa].count[maxBase] / divider) % 10;
}
std::cout << std::endl;
}
for(int xx=0; xx<indel; ++xx) std::cout << ' ';
std::cout << prefix(store.readSeqStore[errorReadId], positionError) << ' ';
for(unsigned xa=0; xa<length(bestCorrection[i].consensus); ++xa)
{
unsigned maxBase = getMaxIndex(bestCorrection[i].consensus[xa]);
if (bestCorrection[i].consensus[xa].count[maxBase] == 0) break;
std::cout << (Dna5)maxBase;
}
std::cout << std::endl;
std::cout << prefix(store.readSeqStore[errorReadId], positionError) << ' ';
for(int xy=0; xy<-indel; ++xy) std::cout << ' ';
std::cout << suffix(store.readSeqStore[errorReadId], positionError + _max(0, -indel)) << std::endl;
std::cout << std::endl;
}
*/
#else // FIONA_CONSENSUS
if (indel <= 0) //only get string if insertion in read or mismatch
getCorrectionString(correctSeq,indel,bestCorrection[i].readId,bestCorrection[i].correctPos,strand,store);
SEQAN_OMP_PRAGMA(critical(addCorrection))
{
/*std::ofstream myfile;
myfile.open ("EntryOutput.txt",std::ios::app);
myfile << "beforeEntry " << " "<< errorReadId<< " "<<bestCorrection[i].readId<< " "<<bestCorrection[i].correctPos<< " "<<positionError<< " "<<(int)indel << " " << overlapSum << " " <<representative(iter) <<"endEntry" << std::endl;
myfile.close();*/
++resources.putCorrections;
addCorrectionEntry(correctionList,firstCorrectionForRead,errorReadId,bestCorrection[i].readId,bestCorrection[i].correctPos,positionError,overlapSum,strand,indel,store,correctSeq);
}
#endif // FIONA_CONSENSUS
}
}//finished errorCandidate
}//finished analysis error read
options.timeComputeOverlapSum += (omp_get_wtime() - computeOverlapSumStart);
} // if (!empty(correctCandidates))
if (leaveNodeRight)
goNextRight(iter);
else
goNext(iter);
}
resources.cpuTime = omp_get_wtime() - start;
}
// CorrectionIndelPos
/*GC-content*/
/*fonction which allow to determine the frequency for each nucleotide*/
template < typename TFionaIndex, typename TSpec>
String<double, Array<5> >
determineFrequency(Iter< TFionaIndex, VSTree<TSpec> > iter)
{
/*calculate the frequency for each nucleotide*/
/*'A' = 0, 'C' = 1, 'G' = 2, 'T' = 3*/
String<double, Array<5> > frequency;
resize(frequency, 5, 0);
goBegin(iter);
// int position = 0;
/*nombre total nucleotides*/
double total = countOccurrences(iter);
/*the first is A (alphabetical ordre)*/
goDown(iter);
do {
frequency[ordValue(parentEdgeFirstChar(iter))] = countOccurrences(iter) / total;
} while (goRight(iter));
/*table of frequency for each nucleotide*/
return frequency;
}
/*construction Suffix Array */
template <typename TFragmentStore, typename TAlgorithm>
unsigned correctReads(
TFragmentStore & store,
FionaOptions & options,
Tag<TAlgorithm> const alg)
{
/*iterator with restrictions*/
typedef Iterator<TFionaIndex, TopDown<ParentLinks<Preorder> > >::Type TConstrainedIterator;
// append their reverse complements
unsigned readCount = length(store.readSeqStore);
if (options.verbosity >= 2)
std::cerr << "Add reverse complements: " << std::flush;
Dna5String tmp;
//if (options.genomeLength != 1)
//(Hugues) we need to get the reads and their reverse complements
//when estimating the error rates (but the letter substitutions should be reversed).
SEQAN_PROTIMESTART(timeRevComp);
for (unsigned i = 0; i < readCount; ++i)
{
tmp = store.readSeqStore[i];
reverseComplement(tmp, Serial());
appendValue(store.readSeqStore, tmp);
}
if (options.verbosity >= 2)
std::cerr << SEQAN_PROTIMEDIFF(timeRevComp) << " seconds." << std::endl;
/*table with the theoretical values*/
String<uint64_t> readLengthHist;
computeReadLengthHistogram(readLengthHist, store.readSeqStore);
unsigned maxReadLength = length(readLengthHist) - 1;
if (options.verbosity >= 2)
std::cerr << "Maximal read length:" << maxReadLength << std::endl;
double experrreads = expectedValueTheoretical(options.expectedTheoretical, readLengthHist, options.genomeLength, options.errorrate);
if (IsSameType<TAlgorithm, FionaExpected_>::VALUE)
{
String<double> sd;
standardDeviation(sd, store.readSeqStore, options.genomeLength);
/*The strictness value allows one to estimate the confidence intervall*/
for (unsigned i = 0; i < length(options.expectedTheoretical); ++i)
{
double expectedTemporary = options.expectedTheoretical[i] - options.strictness * sd[i];
/*If the connfidential intervall take value less than 1 ??? not sure for that*/
/*if(expectedTemporary < 1){
options.expectedTheoretical[i] = 1.1;
}else{*/
options.expectedTheoretical[i] = expectedTemporary;
//}
}
}
if (IsSameType<TAlgorithm, FionaCount_>::VALUE)
for (unsigned i = 0; i < length(options.expectedTheoretical); ++i)
options.expectedTheoretical[i] = options.strictness;
// std::cerr << " run the multiple-Correction-per-Round Fiona method " <<std::endl;
// the linked list for read corrections
String<CorrectionIndelPos> correctionList;
// the first correction occurrence (if any) for a read
// if no occurrence exists set the enrty to maxINt Value
String<unsigned int> firstCorrectionForRead; // should this really be always created anew for different cycles, could be created outside correctReads?
// we assume we work with three reads here
resize(firstCorrectionForRead, readCount, std::numeric_limits<unsigned>::max(), Exact());
// Determine the number of allowed corrections per round per read, depending on the read length and the
// configuration in options.relativeErrorsToCorrect. We set a hard lower limit of 2.
unsigned const MIN_ALLOWED_CORRECTIONS = 2;
if (options.limitCorrPerRound || length(options.allowedCorrectionsPerRead) == 0u)
{
resize(options.allowedCorrectionsPerRead, readCount, Exact());
for (unsigned i = 0; i < readCount; ++i)
{
unsigned readLength = length(store.readSeqStore[i]);
options.allowedCorrectionsPerRead[i] = _max((unsigned) ceil(options.relativeErrorsToCorrect * readLength), MIN_ALLOWED_CORRECTIONS);
}
}
/*
//copy Hugues code to get the allowed errors
binomial Nmismatch(maxReadLength, options.errorrate);
unsigned maxAcceptedMismatches = (unsigned) ceil(quantile(Nmismatch, 0.95));
if (maxAcceptedMismatches < 2)
maxAcceptedMismatches = 2; //unlikely that 2 reads share the same error
if (options.verbosity >= 3)
std::cerr << "Max number of corrections in a read: " << maxAcceptedMismatches << std::endl;
if (options.limitCorrPerRound)
clear(options.allowedCorrectionsPerRead);
resize(options.allowedCorrectionsPerRead, readCount, maxAcceptedMismatches, Exact());
*/
if (options.verbosity >= 2)
{
if (IsSameType<TAlgorithm, FionaExpected_>::VALUE)
std::cerr << std::endl << "Method with expected value for each level" << std::endl;
if (IsSameType<TAlgorithm, FionaPoisson_>::VALUE)
std::cerr << std::endl << "Method with p-value and Poisson distribution" << std::endl;
if (IsSameType<TAlgorithm, FionaPoissonSens_>::VALUE)
std::cerr << std::endl << "Method with sensitivity and Poisson distribution" << std::endl;
if (IsSameType<TAlgorithm, FionaCount_>::VALUE)
std::cerr << std::endl << "Method with fixed count for each level" << std::endl;
if (IsSameType<TAlgorithm, FionaPoissonClassif_>::VALUE)
std::cerr << std::endl << "Log-odds method assuming a Poisson coverage distribution" << std::endl;
}
///Give the set of cut-off for the various methods
double oddserrreads = (experrreads / (readCount - experrreads));
options.oddserrorreads = oddserrreads;
if (options.verbosity >= 2 && experrreads != 0)
{
std::cerr << "Error rate provided: " << options.errorrate << std::endl;
std::cerr << "Expected number of erroneous reads (percent): " << floor(experrreads) << " (" << floor(experrreads/readCount *100) << ")" << std::endl;
std::cerr << "Odds of erroneous/correct reads: " << oddserrreads << std::endl;
}
if (options.autolevel){
if (options.verbosity >= 2)
std::cerr << "Setting automatic from/to level with number of Correctables/Uncorrectables reads" << std::endl;
//std::cerr << "Computing the expected number of uncorrectable (Uk) and Destructible (Dk) reads" << std::endl;
//
// TODO(holtgrew): This logic is broken.
// float errrate = options.errorrate;
if (options.verbosity >= 2 && options.errorrate == 0)
{
std::cerr << "Error rate not given, set to default value of 1%" << std::endl;
// errrate = 0.01;
}
float minexpcov = 5.; //ask for mincov of 5, we could just do + 10
int toplevel = (int) (maxReadLength - minexpcov * options.genomeLength / readCount) - 1;
int mink = 5;
int maxk = std::min((int)maxReadLength - 2, 50);
toplevel = (toplevel > (int)maxReadLength) ? (int)maxReadLength : toplevel;
String<double> uncorrectables;
String<double> destructibles;
UncorrectableExpectedBases(uncorrectables, mink, maxk, readLengthHist, options.errorrate);
DestructibleExpectedBases(destructibles, mink, maxk, readLengthHist, options.errorrate, options.genomeLength);
if (options.verbosity >= 2)
{
std::cerr << "max. read length: " << maxReadLength << std::endl;
std::cerr << "k\tUncorrectable\tDestructible\tUc+Dc" << std::endl;
}
float TmpExp = uncorrectables[mink] + destructibles[mink];
unsigned HiTEC_mink = mink;
for (int i = mink + 1; i <= maxk; i++)
{
double tmp = uncorrectables[i] + destructibles[i];
if (options.verbosity >= 2)
std::cerr << i << "\t" << uncorrectables[i] << "\t" << destructibles[i] << "\t" << tmp << std::endl;
if (tmp < TmpExp)
{
HiTEC_mink = i;
TmpExp = tmp;
}
}
if (options.verbosity >= 1)
std::cerr << "Determination of minimum tree level according to HiTEC strategy." << std::endl;
double mink_genome = log(200.0 * options.genomeLength) / log(4.0);
options.fromLevel = (HiTEC_mink < mink_genome) ? HiTEC_mink : (int)mink_genome;
int upl = (options.fromLevel + 10) < (int)maxReadLength ? (options.fromLevel + 10) : (int)maxReadLength;
options.toLevel = upl; // OLD let to high toplevels: toplevel < upl ? upl : toplevel;
if (options.verbosity >= 1)
std::cerr << "The estimated top level is " << options.fromLevel << " and the down level is " << options.toLevel << std::endl;
}
if (options.verbosity >= 2)
{
std::cerr << "Expected coverage of k-mers before sequencing (k, coverage):" << std::endl;
for (int i = options.fromLevel; i<= options.toLevel; i++){
std::cerr << "(" << i << " , " << options.expectedTheoretical[i] << ") ";
}
std::cerr << std::endl;
}
ComputeCutoffErroneous(options.errorCutoffs, options.expectedTheoretical, options.strictness, options.errorrate, options.oddserrorreads, options.fromLevel, options.toLevel + 1, alg);
if (options.verbosity >= 2)
{
std::cerr << "Computed cutoffs for errors (level, cutoff):" << std::endl;
for (int i = options.fromLevel; i<= options.toLevel; i++)
std::cerr << "(" << i << " , " << options.errorCutoffs[i] << ") ";
std::cerr << std::endl;
}
//(Hugues) shouldn't we increment all automatics cutoffs by 1 for errors of one value (sensitivity + oddsratio ?)
if (options.errorrate != 0)
{
computeCutoffRepeats(options.repeatCutoffs, 1, options.expectedTheoretical, options.errorrate, options.fromLevel, options.toLevel + 1, options.genomeLength);
if (options.verbosity >= 2)
{
std::cerr << "Computed cutoffs for repeats (level, cutoff):" << std::endl;
for (int i = options.fromLevel; i<= options.toLevel; i++){
std::cerr << "(" << i << " , " << options.repeatCutoffs[i] << ") ";
}
std::cerr << std::endl;
}
}
else
{
resize(options.repeatCutoffs, options.toLevel + 2, std::numeric_limits<unsigned>::max());
}
if (options.verbosity >= 2)
std::cerr << std::endl;
if (options.errorrate != 0 && options.wovsum != 0)
{
SEQAN_PROTIMESTART(timeCutoffComp);
ComputeCutoffOverlapSum(options.overlapSumCutoffs, options.fromLevel, readLengthHist, options.genomeLength, options);
/*int hack[100] = { 876, 876, 873, 870, 866, 863, 859, 856, 852, 848, 843, 839, 834, 830, 842, 855, 867, 878, 890, 901, 911, 922, 932, 941, 950, 959, 968, 976, 984, 991, 998, 1005, 1011, 1017, 1023, 1028, 1033, 1038, 1042, 1046, 1049, 1053, 1055, 1058, 1060, 1062, 1063, 1064, 1065, 1065, 1065, 1065, 1064, 1063, 1062, 1060, 1058, 1055, 1053, 1049, 1046, 1042, 1038, 1033, 1028, 1023, 1017, 1011, 1005, 998, 991, 984, 976, 968, 959, 950, 941, 932, 922, 911, 901, 890, 878, 867, 855, 842, 830, 834, 839, 843, 848, 852, 856, 859, 863, 866, 870, 873, 876, 8763 };
for (unsigned i=0;i<100;++i)
options.overlapSumCutoffs(100, i) = hack[i];
*/
if (options.verbosity >= 2)
{
unsigned len = _min(100u, maxReadLength);
std::cerr << "Computed cutoffs for nb overlap bp (pos, cutoff)" << std::endl;
for (unsigned i = 0; i < len; ++i)
std::cerr << "(" << i + 1 << " , " << options.overlapSumCutoffs(len, i) << ") ";
std::cerr << std::endl;
std::cerr << "Time required for cutoffs computation: " << SEQAN_PROTIMEDIFF(timeCutoffComp) << " seconds." << std::endl;
}
}
else
{
options.overlapSumCutoffs.resize(length(readLengthHist), length(readLengthHist) - 1); // readLength, position
for (unsigned readLen = 0; readLen < length(readLengthHist); ++readLen)
for (unsigned pos = 0; pos < readLen; ++pos)
options.overlapSumCutoffs(readLen, pos) = 3; //default parameter is 3, that is 3 bp are needed to correct.
}
// std::ofstream pdist("proba_dist.txt");
// pdist << "count";
// for (int i = options.fromLevel ; i<= options.toLevel; i++)
// pdist << "\t" << i << ".expected.cov\t" << i << ".dpois\t" << i << ".dpoismix\t" << i << ".ppoismix\t";
// pdist << std::endl;
// for (int k = 0; k <= 50; k++){
// pdist << k ;
// for (int i = options.fromLevel; i<= options.toLevel; i++){
// double noerr = probabilityNoError(options.errorrate, i);
// pdist << "\t" << options.expectedTheoretical[i] << "\t" << dpois(k, options.expectedTheoretical[i] * noerr) << "\t" << dpoismixerror(k, options.expectedTheoretical[i], options.errorrate, i) << "\t" << 1-ppoismixerror(k, options.expectedTheoretical[i], options.errorrate, i) ;
// }
// pdist << std::endl;
// }
// pdist.close();
//exit(0);
options.timeComputeOverlapSum = 0;
if (options.verbosity >= 1)
std::cerr << "Searching..." << std::endl;
SEQAN_PROTIMESTART(search);
#ifndef FIONA_PARALLEL
// FIONA NON-PARALLEL SEARCH
// construct suffix array of the set of reads
if (options.verbosity >= 1)
std::cerr << "Construct suffix array" << std::endl;
SEQAN_PROTIMESTART(construct);
TFionaIndex myIndex(store.readSeqStore);
TConstrainedIterator myConstrainedIterator(myIndex);
/*calculate the frequency for each nucleotide, didn't use for the moment*/
/*'A' = 0, 'C' = 1, 'G' = 2, 'T' = 3*/
// String<double, Array<5> > frequency = determineFrequency(myConstrainedIterator);
if (options.verbosity >= 1)
std::cerr << "Time required for suffix array construction : " << SEQAN_PROTIMEDIFF(construct) << " seconds." << std::endl;
/*restrictions just for estimating the genome length if there is no data*/
#ifdef MEDIAN
unsigned level = fromLevel;
ofstream out("medianLevels.txt");
ofstream median("medianForEachLevel.txt");
#endif // #ifdef MEDIAN
if (options.genomeLength == 1)
{
if (options.verbosity >= 1)
{
std::cerr << "Generating Hugues' stats file." << std::endl;
std::cerr << "Between levels " << options.fromLevel << " and " << options.toLevel << std::endl;
}
std::ofstream stats("stats.txt");
Iterator<TFionaIndex, TopDown<ParentLinks<Preorder> > >::Type it(myIndex);
//change the iterator definition here
cargo(myIndex).replen_min = options.fromLevel;
cargo(myIndex).replen_max = options.toLevel;
//cargo(myIndex).frequency = frequency;
TConstrainedIterator myItStat(myIndex);
goBegin(myItStat);
CharString tmp;
//get the length of the reads.
unsigned readMaxLength = 0;
for (unsigned i = 0; i < readCount; ++i)
{
unsigned readLength = length(store.readSeqStore[i]);
readMaxLength = (readMaxLength < readLength) ? readLength : readMaxLength;
}
if (options.verbosity >= 1)
std::cerr << "Max observed read length : " << readMaxLength << std::endl;
//String<int> freq;
std::map < unsigned, std::vector <int> > freqpos; //
for (unsigned i = 0; i < 6; i++) freqpos[i].assign(readMaxLength, 0);
std::vector <int> freqmarginal(5, 0 );
//stats << "branch\tlength\ttreeDep\tletter\treadPos\tfreq" << std::endl;
stats << "prefix\ttreeDepth\treadPos\tna\tnc\tng\tnt\tnn\tntot\tnfather" << std::endl;
while (!atEnd(myItStat))
{
//unsigned ofs = parentRepLength(myItStat);
//tmp = parentEdgeLabel(myItStat);
CharString tmp2 = representative(myItStat);
unsigned cfather = countOccurrences(myItStat);
if (parentRepLength(myItStat) == 0) {
goNext(myItStat);
continue;}
//std::cerr << "******* Now in prefix : " << toCString(tmp) << " of the string: " << tmp2 << std::endl;
if (isLeaf(myItStat)){
// std::cerr << "which is a leaf, next one" << std::endl;
goNext(myItStat);
continue;
}
//copy the iterator to get all siblings
Iterator<TFionaIndex, TopDown<ParentLinks<Preorder> > >::Type it2(myItStat);
goDown(it2);
//goDown(it2);
unsigned let = 0;
//count each position and read.
do {
//Get count per letter per pos
/*'A' = 0, 'C' = 1, 'G' = 2, 'T' = 3 and 'N'= 4*/
//WE NEED TO GET THE VALUE OF LET HERE
for (unsigned j = 0; j < countOccurrences(it2); ++j)
{
unsigned readID = getOccurrences(it2)[j].i1 ;
unsigned rl = length(store.readSeqStore[readID]);
unsigned thei2 = getOccurrences(it2)[j].i2; //check i2
unsigned posInRead = (readID < readCount) ? thei2 : rl - thei2 - 1;
//unsigned posInRead = 0; // ofs + length(tmp); //changer ici, que vaut i2 ?
//std::cerr << "Looking at sequence repres: " << representative(it2) << std::endl ;
//std::cerr << "we have length=" << rl << " for read number " << readID << std::endl;
//std::cerr << " i2=" << thei2 << " or with dir access " << getOccurrences(it2)[j].i2 << std::endl;
//std::cerr <<"letter:" << let << " and with ofs " << ofs << " and length(tmp): " << length(tmp) << std::endl;
//if (length(freqpos[let]) <= posInRead)
// freqpos[let][posInRead + 1] = 0;
++freqpos[let][posInRead];
//cl = cl < posInRead ? posInRead : cl;
}
//we should check the letter here
++let;
} while( goRight(it2));
freqmarginal.assign(6,0);
for (unsigned i= 0; i < readMaxLength; ++i)
for (int cl=0; cl < 5; ++cl){
freqpos[5][i] += freqpos[cl][i];
freqmarginal[cl] += freqpos[cl][i];
}
for (int cl=0; cl < 5; ++cl)
freqmarginal[5] += freqmarginal[cl];
//also log the marginal, easier
stats << tmp2 << '\t' << nodeDepth(myItStat) << '\t' << -1 << '\t';
stats << freqmarginal[0] << '\t' << freqmarginal[1] << '\t';
stats << freqmarginal[2] << '\t' << freqmarginal[3] << '\t' << freqmarginal[4] << '\t' ;
stats << freqmarginal[5] << '\t' << cfather << std::endl;
for (unsigned cpos = 0; cpos < readMaxLength; ++cpos){
if (freqpos[5][cpos] > 0) {
stats << tmp2 << '\t' << nodeDepth(myItStat) << '\t' << cpos << '\t';
stats << freqpos[0][cpos] << '\t' << freqpos[1][cpos] << '\t';
stats << freqpos[2][cpos] << '\t' << freqpos[3][cpos] << '\t' << freqpos[4][cpos] << '\t' ;
stats << freqpos[5][cpos] << '\t' << cfather << std::endl;
}
}
for (unsigned i = 0; i < 6; i++) freqpos[i].assign(readMaxLength, 0);
goNext(myItStat);
}
stats.close();
if (options.verbosity >= 1)
std::cerr << " Done." << std::endl;
exit(0);
}
if (options.genomeLength == 0)
{
#ifdef MEDIAN
for (; level < toLevel; ++level)
{
//int logRation = (log10(static_cast<double>(length(setReads)/2))/(log10(4.0)));
//int l = logRation + 1;
//std::cerr << l << std::endl;
cargo(myIndex).replen_min = level;
cargo(myIndex).replen_max = level+2;
// cargo(myIndex).frequency = frequency;
double numOccs = 0.0;
median << level << " " << medianLevel(myConstrainedIterator) << std::endl;
goBegin(myConstrainedIterator);
while (!atEnd(myConstrainedIterator))
{
if (parentRepLength(myConstrainedIterator) > level)
{
numOccs = countOccurrences(myConstrainedIterator);
out << level << " " << numOccs << std::endl;
}
++myConstrainedIterator;
}
}
#else // #ifdef MEDIAN
//int logRation = log10(static_cast<double>(readCount)) / log10(4.0);
//int l = logRation + 1;
//std::cerr << l << std::endl;
cargo(myIndex).replen_min = options.fromLevel;
cargo(myIndex).replen_max = options.fromLevel + 2;
// cargo(myIndex).frequency = frequency;
double expectedValueGivenLevel = medianLevel(myConstrainedIterator);
// Compute mean read length as an estimate. This will be the read length for Illumina data and for now
// a good enough value for 454 data.
// TODO: Think of something more clever in the future.
uint64_t readLengthSum = 0;
for (unsigned i = 0; i < readCount; ++i)
readLengthSum += length(store.readSeqStore[i]);
unsigned readLength = readLengthSum / readCount;
if (options.verbosity >= 1)
std::cerr << "Average read length " << readLength << "\n";
/* a = readLength - path_label + 1 */
/*here plus 1 also because the level is between fromLevel and toLevel*/
double a = readLength - options.fromLevel + 2;
options.genomeLength = static_cast<int64_t>(readCount * a / expectedValueGivenLevel);
if (options.verbosity >= 1)
{
std::cerr << "Expected median coverage :" << expectedValueGivenLevel << " for k-mer of length:" << options.fromLevel << std::endl;
std::cerr << "The estimated genome length is " << options.genomeLength << std::endl;
}
#endif // #ifdef MEDIAN
}
/*restrictions for the searching levels*/
cargo(myIndex).replen_min = options.fromLevel;
cargo(myIndex).replen_max = options.toLevel;
// cargo(myIndex).frequency = frequency;
// cargo(myIndex).repeatCutoffs = options.repeatCutoffs;
/*the core of the correction method*/
FionaResources resources;
traverseAndSearchCorrections<-1>(myConstrainedIterator, store, correctionList, firstCorrectionForRead, options, alg,maxReadLength, resources);
if (options.verbosity >= 2)
std::cerr << "Time for searching between given levels: "<< SEQAN_PROTIMEDIFF(search) << " seconds." << std::endl
<< "Time for compute overlap sums: "<< options.timeComputeOverlapSum << " seconds." << std::endl;
#else // #ifndef FIONA_PARALLEL
// FIONA PARALLEL SEARCH
// construct q-gram index
// TFionaQgramIndex qgramIndex(store.readSeqStore);
TReadPrefixes prefixes;
unsigned cutLength = options.fromLevel - 5; // we only need suffixes of length >= fromLevel (and their q-gram anchor)
for (unsigned i = 0; i < length(store.readSeqStore); ++i)
if (length(store.readSeqStore[i]) >= (unsigned)options.fromLevel)
appendValue(prefixes, infix(store.readSeqStore[i], 0, length(store.readSeqStore[i]) - cutLength));
else
appendValue(prefixes, infix(store.readSeqStore[i], 0, 1)); // to short suffixes don't need to appear in the q-gram index
TFionaQgramIndex qgramIndex(prefixes);
cargo(qgramIndex).optionsPtr = &options;
String<uint64_t> packages;
SEQAN_PROTIMESTART(constructQgramExt);
if (options.verbosity >= 1)
std::cerr << "Construct external q-gram index ... " << std::flush;
#ifdef FIONA_INTERNAL_MEMORY
SEQAN_PROTIMESTART(countQgramInt);
if (options.verbosity >= 1)
std::cerr << std::endl << "Counting phase of internal q-gram index ... " << std::flush;
// 1. count q-grams
resize(indexDir(qgramIndex), _fullDirLength(qgramIndex), Exact());
_qgramClearDir(indexDir(qgramIndex), qgramIndex.bucketMap, Parallel());
_qgramCountQGrams(indexDir(qgramIndex), qgramIndex.bucketMap, indexText(qgramIndex), indexShape(qgramIndex), getStepSize(qgramIndex), Parallel());
_qgramDisableBuckets(qgramIndex);
typedef typename Fibre<TFionaQgramIndex, QGramDir>::Type TQGramDir;
typedef typename Value<TQGramDir>::Type TQGramDirValue;
typedef typename Size<TQGramDir>::Type TQGramDirSize;
TQGramDir origDir = indexDir(qgramIndex);
// 2. create super packages for multiple q-gram index creations
unsigned dirLen = length(origDir);
uint64_t numSuffixes = 0;
SEQAN_OMP_PRAGMA(parallel for reduction(+ : numSuffixes))
for (int i = 0; i < (int)dirLen; ++i)
if (origDir[i] != (TQGramDirValue)-1)
numSuffixes += origDir[i];
String<uint64_t> superPackages;
uint64_t sumSuffixes = 0;
uint64_t nextThresh = 0;
for (unsigned i = 0; i < dirLen; ++i)
{
if (nextThresh <= sumSuffixes)
{
appendValue(superPackages, i);
nextThresh = (length(superPackages) * numSuffixes) / (uint64_t)options.numSuperPackages;
}
if (origDir[i] != (TQGramDirValue)-1)
sumSuffixes += origDir[i];
}
if (options.verbosity >= 1)
std::cerr << "done. (" << SEQAN_PROTIMEDIFF(countQgramInt) << " seconds, " << sumSuffixes << " kmers)" << std::endl;
// 3. create partial q-gram index and iterate over its packages
for (unsigned superPackage = 0; superPackage < options.numSuperPackages; ++superPackage)
{
SEQAN_PROTIMESTART(fillQgramSAInt);
if (options.verbosity >= 1)
{
std::cerr << "Create partial internal q-gram index (" << superPackage + 1 << " of " << options.numSuperPackages << ", ";
std::cerr << "buckets " << superPackages[superPackage] << '-' << superPackages[superPackage+1] <<") ... " << std::flush;
}
// 4. keep only a portion of buckets with ids in [beginBucket..endBucket)
TQGramDir &dir = indexDir(qgramIndex);
dir = origDir;
TQGramDirSize beginBucket = superPackages[superPackage];
TQGramDirSize endBucket = superPackages[superPackage + 1];
for (TQGramDirSize i = 0; i < beginBucket; ++i)
dir[i] = (TQGramDirValue)-1;
for (TQGramDirSize i = endBucket; i < dirLen - 1; ++i)
dir[i] = (TQGramDirValue)-1;
resize(indexSA(qgramIndex), _qgramCummulativeSum(indexDir(qgramIndex), True(), True(), Unsigned<1>(), Parallel()), Exact());
_qgramFillSuffixArray(indexSA(qgramIndex), indexText(qgramIndex), indexShape(qgramIndex), indexDir(qgramIndex), qgramIndex.bucketMap, getStepSize(qgramIndex), True(), Parallel());
_qgramPostprocessBuckets(indexDir(qgramIndex), Parallel());
if (options.verbosity >= 1)
std::cerr << "done. (" << SEQAN_PROTIMEDIFF(fillQgramSAInt) << " seconds, " << back(indexDir(qgramIndex)) << " kmers, ";
#else
resize(indexSA(qgramIndex), _qgramQGramCount(qgramIndex), Exact());
resize(indexDir(qgramIndex), _fullDirLength(qgramIndex), Exact());
createQGramIndexExt(qgramIndex);
// createQGramIndexExtSA(qgramIndex); // alternative but (unfortunately) slower variant using a Mapper
resize(indexSA(qgramIndex), back(indexDir(qgramIndex)), Exact());
#endif
#if defined(FIONA_REDUCE_MEMORY) && !defined(FIONA_INTERNAL_MEMORY)
flush(indexSA(qgramIndex));
#endif
if (options.verbosity >= 1)
std::cerr << "done. (" << SEQAN_PROTIMEDIFF(constructQgramExt) << " seconds, " << back(indexDir(qgramIndex)) << " kmers, ";
#ifndef FIONA_INTERNAL_MEMORY
clear(indexText(qgramIndex));
#endif
// unsigned dirLen = length(indexDir(qgramIndex));
// SEQAN_PROTIMESTART(purgeNBuckets);
// typedef typename Fibre<TFionaIndex, FibreSA>::Type TSA;
// typedef typename Iterator<TSA, Standard>::Type TSAIter;
// TSAIter beginSA = begin(indexSA(qgramIndex), Standard());
// TSAIter srcIt = beginSA;
// TSAIter dstIt = beginSA;
// unsigned i;
// resize(maskedBuckets, dirLen - 1, false);
//
// // 1. mask k-mers with Ns
// for (i = 0; i < dirLen - 1; ++i)
// maskedBuckets[i] = hashContainsN(i);
//
// // 2. mask k-mers that are trivial repeats, e.g. X^k
// maskTrivialRepeats(maskedBuckets, indexShape(qgramIndex));
//
// // 3. mask k-mers from repeat regions
// maskRepeatBuckets(indexDir(qgramIndex));
//
// // 3. remove all masked k-mers from k-mer index
// std::cerr << "Purge repetitive k-mers ........... " << std::flush;
// for (i = 0; i < dirLen - 1; ++i)
// {
// uint64_t bucketLen = indexDir(qgramIndex)[i + 1] - indexDir(qgramIndex)[i];
// indexDir(qgramIndex)[i] = dstIt - beginSA;
// // copy bucket unless it is marked for removal
// if (!maskedBuckets[i])
// {
// if (dstIt != srcIt)
// std::copy(srcIt, srcIt + bucketLen, dstIt);
// dstIt += bucketLen;
// }
// srcIt += bucketLen;
// }
// indexDir(qgramIndex)[i] = dstIt - beginSA;
// resize(indexSA(qgramIndex), dstIt - beginSA);
// std::cerr << "done. (" << SEQAN_PROTIMEDIFF(purgeNBuckets) << " seconds)" << std::endl;
// distribute q-gram buckets over work packages
#ifdef FIONA_USE_SA
packages = indexDir(qgramIndex);
#else
unsigned dirLen = length(indexDir(qgramIndex));
uint64_t numPacks = options.packagesPerThread * omp_get_max_threads();
uint64_t numSuffixes = back(indexDir(qgramIndex));
uint64_t nextThresh = numSuffixes / numPacks;
appendValue(packages, 0);
for (unsigned i = 1; i < dirLen; ++i)
{
if (nextThresh <= indexDir(qgramIndex)[i])
{
appendValue(packages, indexDir(qgramIndex)[i]);
nextThresh = (length(packages) * numSuffixes) / numPacks;
}
}
#endif
if (options.verbosity >= 1)
std::cerr << length(packages) << " packages)" << std::endl;
// don't need the q-gram dir any more, from now we use packages (multiple q-gram buckets)
clear(indexDir(qgramIndex));
shrinkToFit(indexDir(qgramIndex));
unsigned finished = 0;
bool inTerm = isatty(fileno(stdout));
if (options.verbosity >= 1)
std::cerr << "Parallel suffix tree traversal .... ";
if (inTerm && options.verbosity >= 2)
std::cerr << " 0%";
if (options.verbosity >= 2)
std::cerr << std::flush;
//investigatedNodes=0;
//putCorrections=0;
String<FionaResources> resourcesPerPackage;
resize(resourcesPerPackage, length(packages) - 1, Exact());
#if defined(FIONA_REDUCE_MEMORY) && !defined(FIONA_INTERNAL_MEMORY)
flush(indexSA(qgramIndex));
FileMapping<File<> > mapping;
open(mapping, indexSA(qgramIndex).file);
#endif
double startTime = sysTime();
std::vector<double> done(omp_get_max_threads(), 0);
// this must be done before and here (out of the parallel section)
_refreshStringSetLimits(store.readSeqStore);
SEQAN_OMP_PRAGMA(parallel for schedule(dynamic,1))
for (int i = 1; i < (int)length(packages); ++i)
{
typedef uint64_t TFileSize;
SEQAN_OMP_PRAGMA(atomic)
++finished;
TFileSize bktBegin = packages[i-1];
TFileSize bktEnd = packages[i];
if (bktBegin + 3 >= bktEnd) // we need at least 3 suffixes to distinguish correct from incorrect bases
continue;
TFionaIndex myIndex(store.readSeqStore);
#if defined(FIONA_REDUCE_MEMORY) && !defined(FIONA_INTERNAL_MEMORY)
typedef Fibre<TFionaIndex, FibreSA>::Type TSA;
typedef typename Value<TSA>::Type TSAValue;
typedef typename Size<TSA>::Type TSASize;
TFileSize mapOfs = bktBegin & ~(TFileSize)0xfff;
TFileSize mapSize = (TFileSize)sizeof(TSAValue) * (bktEnd - mapOfs);
TSAValue *mapPtr = (TSAValue*)mapFileSegment(mapping, (TFileSize)sizeof(TSAValue) * mapOfs, mapSize, MAP_COPYONWRITE | MAP_RDWR);
indexSA(myIndex).begin = mapPtr + (bktBegin - mapOfs);
indexSA(myIndex).end = mapPtr + (bktEnd - mapOfs);
#else
indexSA(myIndex) = toRange(infix(indexSA(qgramIndex), bktBegin, bktEnd));
#endif
cargo(myIndex).replen_min = options.fromLevel;
cargo(myIndex).replen_max = options.toLevel;
// cargo(myIndex).repeatCutoffs = options.repeatCutoffs;
if (inTerm && options.verbosity >= 2)
{
SEQAN_OMP_PRAGMA(critical(progressOutput))
{
for (int u = 0; u <= omp_get_thread_num(); ++u)
std::cerr << '\n';
std::cerr << "thread " << omp_get_thread_num() << "\t: ";
std::cerr << prefix(suffix(store.readSeqStore, front(indexSA(myIndex))), QGRAM_LENGTH) << " - ";
std::cerr << prefix(suffix(store.readSeqStore, back(indexSA(myIndex))), QGRAM_LENGTH);
std::cerr << '\t' << (bktEnd - bktBegin) << " ";
std::cerr << (char)27 << '[' << (omp_get_thread_num() + 1) << 'F' << std::flush;
}
}
TConstrainedIterator myConstrainedIterator(myIndex);
#ifdef FIONA_USE_SA
// extend prefix sorting to the k-max
_refineQGramIndexBucket(
indexSA(myIndex),
indexText(myIndex),
QGRAM_LENGTH,
options.toLevel + 1); // sort by one more character, as the toLevel restriction is applied to the parentRepLength
value(myConstrainedIterator).range.i1 = 0;
_setSizeInval(value(myConstrainedIterator).range.i2);
value(myConstrainedIterator).parentRight = value(myConstrainedIterator).range.i2;
value(myConstrainedIterator).repLen = QGRAM_LENGTH;
value(myConstrainedIterator).lastChar = suffix(store.readSeqStore, front(indexSA(myIndex)))[QGRAM_LENGTH - 1];
#endif
FionaResources &resources = resourcesPerPackage[i - 1];
resources.bucketBegin = bktBegin;
resources.bucketEnd = bktEnd;
traverseAndSearchCorrections<-1>(myConstrainedIterator, store, correctionList, firstCorrectionForRead, options, alg, maxReadLength, resources);
/* if (options.loopLevel == 0)
traverseAndSearchCorrections<0>(myConstrainedIterator, store, correctionList, firstCorrectionForRead, options, alg, maxReadLength, resources);
if (options.loopLevel == 1)
traverseAndSearchCorrections<1>(myConstrainedIterator, store, correctionList, firstCorrectionForRead, options, alg, maxReadLength, resources);
if (options.loopLevel == 2)
traverseAndSearchCorrections<2>(myConstrainedIterator, store, correctionList, firstCorrectionForRead, options, alg, maxReadLength, resources);
if (options.loopLevel == 3)
traverseAndSearchCorrections<3>(myConstrainedIterator, store, correctionList, firstCorrectionForRead, options, alg, maxReadLength, resources);
if (options.loopLevel == 4)
traverseAndSearchCorrections<4>(myConstrainedIterator, store, correctionList, firstCorrectionForRead, options, alg, maxReadLength, resources);
if (options.loopLevel == 5)
traverseAndSearchCorrections<5>(myConstrainedIterator, store, correctionList, firstCorrectionForRead, options, alg, maxReadLength, resources);
*/
// traverseAndSearchCorrections(myConstrainedIterator, store, correctionList, firstCorrectionForRead, options, alg,readLength, resources);
// mmapAdvise(indexSA(qgramIndex), MAP_DONTNEED, bktBegin, bktEnd);
#if defined(FIONA_REDUCE_MEMORY) && !defined(FIONA_INTERNAL_MEMORY)
unmapFileSegment(mapping, mapPtr, mapSize);
#endif
if (inTerm && options.verbosity >= 2)
{
SEQAN_OMP_PRAGMA(critical(progressOutput))
{
std::cerr << "Parallel suffix tree traversal .... " << std::setw(3) << (100 * finished) / (length(packages) - 1) << '%' << std::flush;
for (int u = 0; u <= omp_get_thread_num(); ++u)
std::cerr << '\n';
std::cerr << "thread " << omp_get_thread_num() << "\t: done ";
std::cerr << (char)27 << '[' << (omp_get_thread_num() + 1) << 'F' << std::flush;
}
}
done[omp_get_thread_num()] = sysTime() - startTime;
}
if (options.verbosity >= 1)
{
for (unsigned i = 0; i < length(done); ++i)
std::cerr << "Thread " << i << " took " << done[i] << " wallclock seconds." << std::endl;
}
if (inTerm && options.verbosity >= 2)
{
std::cerr << "\b\b\b\b";
for (int u = 0; u <= omp_get_max_threads() + 1; ++u)
std::cerr << std::endl;
}
if (inTerm && options.verbosity >= 1)
std::cerr << "done. (" << SEQAN_PROTIMEDIFF(search) << " seconds)" << std::endl;
sort(resourcesPerPackage, Parallel());
if (inTerm && options.verbosity >= 2)
{
std::cerr << std::endl;
std::cerr << "kmerFirst\tkmerLast\ttime\t\tnodes\tcorrections\tsuffixes" << std::endl;
for (unsigned i = 0; i < 30; ++i)
{
FionaResources &resources = resourcesPerPackage[i];
std::cerr << prefix(suffix(store.readSeqStore, indexSA(qgramIndex)[resources.bucketBegin]), QGRAM_LENGTH) << '\t';
std::cerr << prefix(suffix(store.readSeqStore, indexSA(qgramIndex)[resources.bucketEnd - 1]), QGRAM_LENGTH) << '\t';
std::cerr << resources.cpuTime << '\t' << resources.investigatedNodes << '\t' << resources.putCorrections << '\t' << (resources.bucketEnd - resources.bucketBegin) << std::endl;
// std::cerr << investigatedNodes << " many error nodes have been investigated" <<std::endl;
// std::cerr << putCorrections << " many Corrections where found and potentially saved "<< std::endl;
}
std::cerr << std::endl;
}
#ifdef FIONA_INTERNAL_MEMORY
} // for-loop over all superpackages
#endif
#endif // #ifndef FIONA_PARALLEL
unsigned totalCorrections = 0;
//get the number of corrections from the next function as more than one correction
//per read might occur
totalCorrections = applyReadErrorCorrections(correctionList,firstCorrectionForRead,store,options);
unsigned readCorrections=0;
for (unsigned a = 0; a < length(firstCorrectionForRead); ++a)
{
if (firstCorrectionForRead[a] == std::numeric_limits<unsigned>::max()) continue;
++readCorrections;
}
if (options.verbosity >= 1)
std::cerr << "Total corrected reads number is "<< readCorrections << std::endl
<< "Number of total corrections is "<< totalCorrections << std::endl;
// remove reverse complements
resize(store.readSeqStore, readCount);
return totalCorrections;
}
// Write output and return 0 on success, a different value on errors. Update numCorrected to reflect the number of
// corrected reads.
template <typename TFragmentStore>
int writeOutput(unsigned & numCorrected, TFragmentStore const & store, FionaOptions const & options)
{
// Write out the corrected reads and stream through input file for getting the read ids.
SeqFileIn inFile;
std::cerr << "Opening input " << options.inputFilename << "\n";
if (!open(inFile, toCString(options.inputFilename)))
{
std::cerr << "ERROR: Could not open " << options.inputFilename << " for reading.\n";
return 1;
}
bool success;
SeqFileOut outFile;
if (options.outputFilename != "-")
success = open(outFile, toCString(options.outputFilename));
else
success = open(outFile, std::cout, Fasta());
std::cerr << "Opening output " << options.outputFilename << "\n";
if (!success)
{
std::cerr << "ERROR: Could not open " << options.outputFilename << " for writing.\n";
return 1;
}
// Buffer variables for FASTA id/sequence.
CharString id;
Dna5String seq2, seq;
numCorrected = 0;
// disable linebreak in output file
context(outFile).options.lineLength = 0;
for (unsigned i = 0; i < length(store.readSeqStore); ++i)
{
// Read record from input (for the id only).
readRecord(id, seq, inFile);
// Overwrite the sequence from the input file with the corrected read sequence.
seq = store.readSeqStore[i];
// Append correction information to the read id if we collected any.
if (options.appendCorrectionInfo)
{
append(id, store.readNameStore[i]);
// TODO(holtgrew): Value of numCorrected is not increased if options.appendCorrectionInfo is false.
numCorrected += !empty(store.readNameStore[i]);
}
// Trim leading and trailing Ns that could not be substituted.
if (options.trimNsOnOutput)
{
int beginPos = 0, endPos = length(seq);
for (; beginPos < (int)length(seq); ++beginPos)
if (seq[beginPos] != 'N')
break;
for (; endPos > 0; --endPos)
if (seq[endPos - 1] != 'N')
break;
if (beginPos > endPos)
endPos = beginPos;
if (options.appendCorrectionInfo && (beginPos != 0 || endPos != (int)length(seq)))
{
std::stringstream ss;
ss << " trimmed to [" << beginPos << ", " << endPos << ")";
append(id, ss.str().c_str());
}
seq2 = infix(seq, beginPos, endPos);
seq = seq2;
}
// Write out the FASTA record to the output file.
writeRecord(outFile, id, seq);
}
std::cerr << "Wrote " << length(store.readSeqStore) << " sequences\n";
return 0;
}
// Parse the command line and return the status of the parsing.
seqan2::ArgumentParser::ParseResult
parseCommandLine(FionaOptions & options, int argc, char const ** argv)
{
// Setup command line parser.
seqan2::ArgumentParser parser(FIONA_BINARY_NAME);
// Set short description, version, and date.
setShortDescription(parser, "Parallel and automatic read error correction");
setCategory(parser, "Error Correction");
setVersion(parser, SEQAN_APP_VERSION " [" SEQAN_REVISION "]");
setDate(parser, SEQAN_DATE);
// Define usage line and long description.
addUsageLine(parser,
"[\\fIOPTIONS\\fP] \\fB-g\\fP \\fIGENOME_LEN\\fP \\fIIN.{fq,fa}\\fP \\fIOUT.fa\\fP");
addDescription(parser,
"Fiona is a tool for the correction of NGS read data sets. It uses a novel "
"statistical approach for high quality and state-of-the art data structures "
"for low resource consumptions and features a good parallelization.");
addDescription(parser,
"You have to specify the approximate genome length of the donor in \\fIGENOME_LEN\\fP. "
"The reads are read from the file \\fIIN.{fq,fa}\\fP and are written to \\fIOUT.fa\\fP.");
// Fiona gets two parameters: The paths to the input and the output files.
addArgument(parser, seqan2::ArgParseArgument(seqan2::ArgParseArgument::INPUT_FILE, "IN"));
setValidValues(parser, 0, "fa fasta fq fastq");
setHelpText(parser, 0, "An input file with reads to be corrected.");
addArgument(parser, seqan2::ArgParseArgument(seqan2::ArgParseArgument::OUTPUT_FILE, "OUT"));
setValidValues(parser, 1, "fa fasta fq fastq");
setHelpText(parser, 1, "An output file to store the corrected reads.");
// General Options.
addOption(parser, seqan2::ArgParseOption("v", "verbose", "Verbose output."));
addOption(parser, seqan2::ArgParseOption("vv", "very-verbose", "More verbose output."));
addOption(parser, seqan2::ArgParseOption("", "correction-infos",
"Enable embedding of correction information in the output file."));
// Internal Options
addSection(parser, "Internal");
addOption(parser, seqan2::ArgParseOption("", "global-corr-limit", "Limit corrections globally and not per round."));
addOption(parser, seqan2::ArgParseOption("", "no-final-trim-ns", "Disable trimming of Ns at the end."));
// Dataset Properties.
addSection(parser, "Dataset Properties");
addOption(parser, seqan2::ArgParseOption("g", "genome-length", "Approximate length of the underlying genome.",
seqan2::ArgParseOption::INT64, "LEN"));
setMinValue(parser, "genome-length", "1");
setRequired(parser, "genome-length");
addOption(parser, seqan2::ArgParseOption("e", "error-rate",
"Approximate per-base error rate in the read set. A slight "
"overestimation gives better results.",
seqan2::ArgParseOption::DOUBLE, "ERATE"));
setMinValue(parser, "error-rate", "0");
setMaxValue(parser, "error-rate", "1");
setDefaultValue(parser, "error-rate", options.errorrate);
addOption(parser, seqan2::ArgParseOption("oe", "overlap-error-scale",
"The \\fIerror-rate\\fP is multiplied by this scale to define the error rate cutoff in the pairwise read overlap.",
seqan2::ArgParseOption::DOUBLE, "ERATE"));
setMinValue(parser, "overlap-error-scale", "0");
setDefaultValue(parser, "overlap-error-scale", "2");
// Tree Iteration Options.
addSection(parser, "Tree Iteration Options");
// TODO(holtgrew): The old help for --levels was "set to 0 <x> for auto HiTEC, 1 <x> for auto fiona".. Fix this here?
addOption(parser, seqan2::ArgParseOption("fl", "from-level",
"Set the lower bound on the level for suffix tree DFS. Use "
"\\fI0\\fP for both \\fIfrom-level\\fP and \\fIto-level\\fP "
"to get automatic level detection.",
seqan2::ArgParseOption::INTEGER, "LEVEL"));
setMinValue(parser, "from-level", "0");
setDefaultValue(parser, "from-level", options.fromLevel);
// TODO(holtgrew): The old help for --levels was "set to 0 <x> for auto HiTEC, 1 <x> for auto fiona".. Fix this here?
addOption(parser, seqan2::ArgParseOption("tl", "to-level",
"Set the upper bound on the level for suffix tree DFS. Use "
"\\fI0\\fP for both \\fIto-level\\fP and \\fIto-level\\fP "
"to get automatic level detection.",
seqan2::ArgParseOption::INTEGER, "LEVEL"));
setMinValue(parser, "to-level", "0");
setDefaultValue(parser, "to-level", options.toLevel);
addOption(parser, seqan2::ArgParseOption("dsr", "depth-sample-rate", "The depth sampling rate factor.",
seqan2::ArgParseOption::INTEGER, "NUM"));
setMinValue(parser, "depth-sample-rate", "1");
setDefaultValue(parser, "depth-sample-rate", options.depthSampleRate);
// Repeat Masking Options
addSection(parser, "Repeat Masking Options");
addOption(parser, seqan2::ArgParseOption("", "no-mask-repeats", "Turn off automatic repeat masking."));
//hideOption(parser, "no-mask-repeats");
addOption(parser, seqan2::ArgParseOption("krr", "kmer-repeat-ratio",
"The fraction of k-mers that are considered as repeats.",
seqan2::ArgParseOption::DOUBLE, "RATIO"));
setMinValue(parser, "kmer-repeat-ratio", "0");
setMaxValue(parser, "kmer-repeat-ratio", "1");
setDefaultValue(parser, "kmer-repeat-ratio", options.kmerAbundanceCutoff);
addOption(parser, seqan2::ArgParseOption("krsd", "kmer-repeat-std-dev",
"Multiples of standard deviation (for k-mer repeat cut-off).",
seqan2::ArgParseOption::DOUBLE, "SCALE"));
setMinValue(parser, "kmer-repeat-std-dev", "0");
setDefaultValue(parser, "kmer-repeat-std-dev", options.kmerStdDevCutOff);
// Correction Algorithm Options.
addSection(parser, "Correction Algorithm Options");
addOption(parser, seqan2::ArgParseOption("", "method", "Selects the correction method to use.",
seqan2::ArgParseOption::STRING, "NAME"));
setValidValues(parser, "method", "classifier control_fp control_fn expected count");
setDefaultValue(parser, "method", "classifier");
addOption(parser, seqan2::ArgParseOption("i", "iterations",
"Number of iterations. Use \\fI0\\fP for auto-detection.",
seqan2::ArgParseOption::INTEGER, "NUM"));
setMinValue(parser, "iterations", "0");
setDefaultValue(parser, "iterations", options.cycles);
addOption(parser, seqan2::ArgParseOption("f", "expected",
"Use expected value correction with the given strictness cutoff "
"for the \\fIexpected\\fP method.",
seqan2::ArgParseOption::DOUBLE, "CUTOFF"));
setMinValue(parser, "expected", "0");
setDefaultValue(parser, "expected", "1");
addOption(parser, seqan2::ArgParseOption("c", "count", "Use fixed count correction cutoff.",
seqan2::ArgParseOption::DOUBLE, "CUTOFF"));
setMinValue(parser, "count", "0");
setDefaultValue(parser, "count", "7");
addOption(parser, seqan2::ArgParseOption("or", "odds-ratio", "Odds-ratio for the \\fIclassifier\\fP method.",
seqan2::ArgParseOption::DOUBLE, "RATIO"));
setMinValue(parser, "odds-ratio", "0");
setDefaultValue(parser, "odds-ratio", "1");
addOption(parser, seqan2::ArgParseOption("p", "p-value", "The p value for the \\fIexpected\\fP mode. In "
"sensitivity mode, this is the false discovery rate.",
seqan2::ArgParseOption::DOUBLE, "P-VALUE"));
setMinValue(parser, "p-value", "0");
setDefaultValue(parser, "p-value", "1");
addOption(parser, seqan2::ArgParseOption("m", "mismatches", "The number of accepted mismatches per read.",
seqan2::ArgParseOption::INTEGER, "NUM"));
setMinValue(parser, "mismatches", "0");
setDefaultValue(parser, "mismatches", options.acceptedMismatches);
addOption(parser, seqan2::ArgParseOption("os", "overlap-sum",
"Filter on the number of overlapping bp needed to correct an "
"erroneous bp. A smaller value leads to lower sensitivity, a "
"higher value leads to higher sensitivity.",
seqan2::ArgParseOption::DOUBLE, "P-VALUE"));
setMinValue(parser, "overlap-sum", "0");
setMaxValue(parser, "overlap-sum", "1");
setDefaultValue(parser, "overlap-sum", options.wovsum);
#ifdef FIONA_ALLOWINDELS
addOption(parser, seqan2::ArgParseOption("id", "indel-length", "Maximal indel length. Use \\fI0\\fP for "
"correcting only substitutions and \\fI1\\fP for edit distance "
"corrections on Illumina reads.",
seqan2::ArgParseOption::INTEGER, "NUM"));
setMinValue(parser, "indel-length", "0");
{
std::stringstream tmp;
tmp << MAX_INDEL_LENGTH;
setMaxValue(parser, "indel-length", tmp.str().c_str());
}
setDefaultValue(parser, "indel-length", options.maxIndelLength);
#endif
// DEBUG Options
addOption(parser, seqan2::ArgParseOption("", "loop-level", "For time measurements.",
seqan2::ArgParseOption::INTEGER, "NUM"));
setDefaultValue(parser, "loop-level", options.loopLevel);
hideOption(parser, "loop-level");
addOption(parser, seqan2::ArgParseOption("", "debug-read", "Dump information for a read given by its id.",
seqan2::ArgParseOption::INTEGER, "ID"));
hideOption(parser, "debug-read");
addOption(parser, seqan2::ArgParseOption("", "corr-read", "Dump information for a correcting read.",
seqan2::ArgParseOption::INTEGER, "ID"));
hideOption(parser, "corr-read");
// Parallelization Options.
addSection(parser, "Parallelization Options");
addOption(parser, seqan2::ArgParseOption("nt", "num-threads", "Number of threads to use (default 1).",
seqan2::ArgParseArgument::INTEGER, "INT"));
setMinValue(parser, "num-threads", "1");
setDefaultValue(parser, "num-threads", options.numThreads);
#ifdef FIONA_INTERNAL_MEMORY
addOption(parser, seqan2::ArgParseOption("", "super-packages", "Number of internal q-gram index creation runs.",
seqan2::ArgParseArgument::INTEGER, "INT"));
setMinValue(parser, "super-packages", "1");
setDefaultValue(parser, "super-packages", options.numSuperPackages);
#endif
addOption(parser, seqan2::ArgParseOption("ppt", "packages-per-thread",
"Set the number of work packages per thread. More packages result "
"lower memory consumption but possibly a longer running time.",
seqan2::ArgParseArgument::INTEGER, "INT"));
setMinValue(parser, "packages-per-thread", "1");
setDefaultValue(parser, "packages-per-thread", options.packagesPerThread);
// Documentation on the correction methods.
addTextSection(parser, "Method Description");
addText(parser, "The \\fB--method\\fP parameter can be used to select one of the following methods to decide on the coverage cutoff");
addListItem(parser, "\\fIclassifier\\fP (default)", "Default method, all k-mers are modeled as a mixture of Poisson distributions. Detect k-mers with errors using a naive bayes classifier (parameters: \\fB--error-rate\\fP, \\fB--odds-ratio\\fP)");
addListItem(parser, "\\fIcontrol_fp\\fP (type I mode)", "The cutoff is set to control the probability of a false positive detection for each k, using the Poisson distribution for the reads without errors. (parameter: FP probability \\fB--p-value\\fP)");
addListItem(parser, "\\fIcontrol_fn\\fP (type II mode)", "The cutoff is set to control the probability of a false negative detection (parameters: FN proba or 1-FN proba through \\fB--error-rate\\fP)");
addListItem(parser, "\\fIexpected\\fP", "The cutoff is set to lambda-alpha*lambda^2, where lambda is the expected coverage of reads before sequencing.");
addListItem(parser, "\\fIcount\\fP", "The cutoff is set manually with \\fB--count\\fP and the same for all values of k.");
// Usage Examples.
addTextSection(parser, "Examples");
addText(parser,
"Most users will only have to specify the genome length using the mandatory \\fB-g\\fP parameter and "
"enable multi-threading using the \\fB-nt\\fP option. For best performance, use as many threads "
"as you have (virtual) cores in your machine.");
std::string toolName = "\\fB" FIONA_BINARY_NAME "\\fP";
addListItem(parser, toolName + " \\fB-g\\fP 4639675 IN.fq OUT.fq",
"Correct reads in \\fIIN.fq\\fP with one thread and write the results to \\fIOUT.fq\\fP. "
"The estimated genome length fits for E.coli.");
addListItem(parser, toolName + " \\fB-nt\\fP 16 \\fB-g\\fP 4639675 IN.fq OUT.fq",
"Same as above, but use \\fI16\\fP threads.");
addListItem(parser, toolName + " \\fB-id\\fP 0 \\fB-g\\fP 4639675 IN.fq OUT.fq",
"Sequential correction that corrects only mismatches no indels.");
addListItem(parser, toolName + " \\fB-e\\fP 0.02 \\fB-g\\fP 4639675 IN.fq OUT.fq",
"Sequential correction using an expected base error rate of 2%.");
// Environment Variables.
addTextSection(parser, "Environment Variables.");
addText(parser,
"Fiona uses the \\fBTMPDIR\\fP environment variable for creating temporary files. If not set then "
"\\fI/tmp\\fP is used which is fine for desktop settings. In a compute server/data center setup, "
"ask your administrator for the appropriate value.");
// Parse command line.
seqan2::ArgumentParser::ParseResult res = parse(parser, argc, argv);
// Only extract options if the program will continue after parseCommandLine().
if (res != seqan2::ArgumentParser::PARSE_OK)
return res;
// Extract Argument and Option Value
getArgumentValue(options.inputFilename, parser, 0);
getArgumentValue(options.outputFilename, parser, 1);
if (isSet(parser, "verbose"))
options.verbosity = 1;
if (isSet(parser, "very-verbose"))
options.verbosity = 2;
options.trimNsOnOutput = !isSet(parser, "no-final-trim-ns");
options.limitCorrPerRound = !isSet(parser, "global-corr-limit");
seqan2::CharString tmp;
getOptionValue(tmp, parser, "method");
options.method = methodForName(tmp);
// The option member strictness is double-typed and stores the cutoff-like values. We branch here between the
// different methods and get the appropriate option into strictness.
switch (options.method)
{
case EXPECTED:
getOptionValue(options.strictness, parser, "expected");
break;
case COUNT:
getOptionValue(options.strictness, parser, "count");
break;
case CONTROL_FP:
getOptionValue(options.strictness, parser, "p-value");
break;
case CONTROL_FN:
// Empty on purpose, --error-rate is always interpreted.
break;
case CLASSIFIER:
getOptionValue(options.strictness, parser, "odds-ratio");
break;
}
double overlapErrorScale = 2;
getOptionValue(options.errorrate, parser, "error-rate");
getOptionValue(overlapErrorScale, parser, "overlap-error-scale");
options.overlap_errorrate = overlapErrorScale * options.errorrate;
options.appendCorrectionInfo = isSet(parser, "correction-infos");
getOptionValue(options.fromLevel, parser, "from-level");
getOptionValue(options.toLevel, parser, "to-level");
getOptionValue(options.packagesPerThread, parser, "packages-per-thread");
getOptionValue(options.wovsum, parser, "overlap-sum");
getOptionValue(options.genomeLength, parser, "genome-length");
getOptionValue(options.acceptedMismatches, parser, "mismatches");
getOptionValue(options.cycles, parser, "iterations");
getOptionValue(options.loopLevel, parser, "loop-level");
getOptionValue(options.kmerAbundanceCutoff, parser, "kmer-repeat-ratio");
getOptionValue(options.kmerStdDevCutOff, parser, "kmer-repeat-std-dev");
getOptionValue(options.depthSampleRate, parser, "depth-sample-rate");
#ifdef FIONA_ALLOWINDELS
getOptionValue(options.maxIndelLength, parser, "indel-length");
#endif
getOptionValue(options.numThreads, parser, "num-threads");
#ifdef FIONA_INTERNAL_MEMORY
getOptionValue(options.numSuperPackages, parser, "super-packages");
#endif
getOptionValue(options.debugRead, parser, "debug-read");
getOptionValue(options.corrRead, parser, "corr-read");
// Check Arguments.
if (options.packagesPerThread >= _intPow((unsigned)ValueSize<Dna5>::VALUE, QGRAM_LENGTH))
{
std::cerr << "warning: packages-per-thread parameter is decreased to " << _intPow((unsigned)ValueSize<Dna5>::VALUE, QGRAM_LENGTH) - 1 << std::endl;
// nothing more needs to be done, the parameter is implicitly decreased
}
return seqan2::ArgumentParser::PARSE_OK;
}
int main(int argc, const char* argv[])
{
// Declare options variable and parse command line.
FionaOptions options;
seqan2::ArgumentParser::ParseResult parseRes = parseCommandLine(options, argc, argv);
// If parsing was not successful then exit with code 1 if there were errors. Otherwise, exit with code 0 (e.g. help
// was printed).
if (parseRes != seqan2::ArgumentParser::PARSE_OK)
return parseRes == seqan2::ArgumentParser::PARSE_ERROR;
// Set number of threads to use from the command line.
#if defined(_OPENMP)
omp_set_num_threads(options.numThreads);
#endif
if (options.verbosity >= 1)
std::cerr << "FIONA - Read Correction\n"
<< "=======================\n\n";
bool autoCycles = (options.cycles == 0 || options.cycles == 1000);
bool bestExpFit = (options.cycles == 0);
if (autoCycles) options.cycles = MAX_NUM_ROUND;
if (options.verbosity >= 1)
printOptions(std::cerr, options);
SEQAN_PROTIMESTART(correction);
// Load original set of reads without read names. When collecting correction information for debugging, we will
// collect the correction string in the readNameStore and allocate space for this below. When writing out, we will
// stream through the input file again and get the read ids from there.
TFionaFragStore store;
if (options.verbosity >= 1)
std::cerr << "Loading reads from " << options.inputFilename << "\n";
if (!loadReadsNoNames(store, options.inputFilename, options))
{
std::cerr << "Failed to open reads file " << options.inputFilename << "\n"
<< "Exiting ...\n";
return 1;
}
else
{
if (options.verbosity >= 1)
std::cerr << "Loaded " << length(store.readSeqStore) << " reads (" << SEQAN_PROTIMEDIFF(correction) << ".\n";
}
// If we collect correction information in the sequence ids/headers then we need to allocate space for them in the
// readNameStore.
if (options.appendCorrectionInfo)
resize(store.readNameStore, length(store.readSeqStore), Exact());
if (options.verbosity >= 1)
std::cerr << "Done loading " << length(store.readSeqStore) << " sequences with a total of " << lengthSum(store.readSeqStore) << " nucleotides.\n";
/* //DEBUG Corrrection Indel Pos
//check the new CorrectionIndelPos struct and the linked list
String<CorrectionIndelPos> correctionList;
String<unsigned int> firstCorrectionForRead;
// append reverse complements of reads
unsigned readCount = length(store.readSeqStore);
Dna5String tmp;
for (unsigned i = 0; i < readCount; ++i)
{
tmp = store.readSeqStore[i];
reverseComplement(tmp);
appendValue(store.readSeqStore, tmp);
}
_testCorrectionStruct(correctionList,firstCorrectionForRead,store);
/// for debugging output vorziehen:
// write in file all input reads with the corrected one
std::ofstream out(toCString(getArgumentValue(parser, 1)));
int numCorrected = 0;
for (unsigned i = 0; i < length(store.readNameStore); ++i)
{
// to give the number of reads corrected for several iteration
if (strContains(toCString(store.readNameStore[i]), "corrected"))
++numCorrected;
out << '>' << store.readNameStore[i] << std::endl;
out << store.readSeqStore[i] << std::endl;
}
///DEBUG END
exit(0);
*/
// initialise the top and down level by using the log4 from the total number of reads
// Done in the CorrectRead function at every round now (in case the error rate would change automatically)
// if (options.fromLevel == 0)
// {
// int logRation = static_cast<int>(log10(static_cast<double>(length(store.readSeqStore))) / log10(4.0));
// options.fromLevel = logRation + 2;
// options.toLevel = options.fromLevel + 10;
// std::cerr << "The estimated top level is " << options.fromLevel << " and the down level is " << options.toLevel << std::endl;
// }
#ifndef FIONA_NOERROROPTIMIZATION
if (options.verbosity >= 1)
std::cerr << "Use normal full optimization"<<std::endl;
#endif
if (options.verbosity >= 1)
std::cerr << "Building external index with Qgram length " << QGRAM_LENGTH << std::endl;
options.autolevel = (options.fromLevel <= 1);
//if (autoCycles) options.cycles = 20;
String<double> logCorrections;
String<double> roundsDone;
double lastAdjRSquare = 0;
unsigned nfamprev = 0;
if (options.verbosity >= 1)
{
std::cerr << "number iters: " << options.cycles << std::endl;
std::cerr << "\n"
"__RUNNING READ CORRECTION________________________________________\n";
}
for (options.cycle = 1; options.cycle <= options.cycles; ++options.cycle)
{
if (options.verbosity >= 1)
{
std::cerr << std::endl << "Cycle "<< options.cycle;
if (!autoCycles) std::cerr << " of " << options.cycles;
std::cerr << std::endl;
}
unsigned numCorrected = 0;
nfamprev = nfamilies;
nfamilies = 0;
switch (options.method)
{
case CONTROL_FP:
// use of p-value like a limit
numCorrected = correctReads(store, options, FionaPoisson());
break;
case COUNT:
numCorrected = correctReads(store, options, FionaCount());
break;
case CONTROL_FN:
numCorrected = correctReads(store, options, FionaPoissonSens());
break;
case CLASSIFIER:
numCorrected = correctReads(store, options, FionaPoissonClassif());
break;
case EXPECTED:
// use an expected value for a certain level
numCorrected = correctReads(store, options, FionaExpected());
break;
}
//Todo (Hugues) adjust error rate estimate between rounds
//
if (options.verbosity >= 1)
std::cerr << std::endl << "Number of families at nodes:" << nfamilies << std::endl;
if (options.verbosity >= 1 && options.cycle > 1)
std::cerr << std::endl << "Relative change: " << ((float) (nfamprev - nfamilies)) / (nfamprev == 0u ? 1 : nfamprev) << std::endl;
// if (options.acceptedMismatches > 0) --options.acceptedMismatches;
// TODO maybe to stop if there is not reads corrected in the cycle before
// if so after each iteration must save the ID for the reads which are corrected
// thus we can also show the total number of reads that are corrected at the final stage
//if (autoCycles)
//{
resize(logCorrections, options.cycle);
resize(roundsDone, options.cycle);
logCorrections[options.cycle-1] = (double)log((double)numCorrected);
roundsDone[options.cycle-1] = (double)options.cycle;
if (options.cycle >= 1)
{
//compute adjusted R-Square after fitting model
LinearModel linearModel;
linearRegression(linearModel,roundsDone,logCorrections);
double adjRSquare = adjustedRSquare(linearModel,roundsDone,logCorrections);
if (options.verbosity >= 2)
std::cerr << "The adjusted R^2 in cycle " << options.cycle << " is " << adjRSquare << "\n";
if (autoCycles)
{
//do another round if adjusted R square value is better than 0.95
if (!bestExpFit && options.cycle > 3)
{
if (adjRSquare <= 0.95)
{
if (options.verbosity >= 2)
std::cerr <<std::endl<<"Stopped at cycle: "<< options.cycle <<" with adjustedRSquare : "<< adjRSquare <<std::endl;
++options.cycle;
break;
}
}
else
{
if (adjRSquare < lastAdjRSquare)
{
if (options.verbosity >= 2)
std::cerr <<std::endl<<"Stopped at cycle: "<< options.cycle <<" with adjustedRSquare (previous): "<< adjRSquare <<" ("<<lastAdjRSquare <<")"<<std::endl;
++options.cycle;
break;
}
else
{
lastAdjRSquare=adjRSquare;
}
}
}
}
//}
}
// Write out corrected reads.
unsigned numCorrected = 0;
int res = writeOutput(numCorrected, store, options);
if (res != 0)
return res;
if (options.verbosity >= 1 && options.cycles > 1)
std::cerr << "Total number reads corrected for " << options.cycle-1 << " cycles is " << numCorrected << std::endl;
// struct rusage usage;
// getrusage(RUSAGE_SELF, &usage);
if (options.verbosity >= 1)
{
std::cerr << std::endl;
std::cerr << "Time required for execution: " << SEQAN_PROTIMEDIFF(correction) << " seconds." << std::endl;
// std::cerr << "Peak resident memory usage: " << usage.ru_maxrss / (1024*1024) << " Mb." << std::endl;
}
return 0;
}
|