File: genomic_variants.cpp

package info (click to toggle)
seqan2 2.5.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 228,748 kB
  • sloc: cpp: 257,602; ansic: 91,967; python: 8,326; sh: 1,056; xml: 570; makefile: 229; awk: 51; javascript: 21
file content (941 lines) | stat: -rw-r--r-- 47,085 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
// ==========================================================================
//                         Mason - A Read Simulator
// ==========================================================================
// Copyright (c) 2006-2026, Knut Reinert, FU Berlin
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above copyright
//       notice, this list of conditions and the following disclaimer in the
//       documentation and/or other materials provided with the distribution.
//     * Neither the name of Knut Reinert or the FU Berlin nor the names of
//       its contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL KNUT REINERT OR THE FU BERLIN BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
// DAMAGE.
//
// ==========================================================================
// Author: Manuel Holtgrewe <manuel.holtgrewe@fu-berlin.de>
// ==========================================================================

#include "genomic_variants.h"

std::ostream & operator<<(std::ostream & out, SnpRecord const & record)
{
    out << "SnpRecord(" << record.haplotype << ", " << record.rId << ", " << record.pos
        << ", " << record.to << ")";
    return out;
}

std::ostream & operator<<(std::ostream & out, SmallIndelRecord const & record)
{
    out << "SnpRecord(" << record.haplotype << ", " << record.rId << ", " << record.pos
        << ", " << record.size << ", " << record.seq << ")";
    return out;
}

int StructuralVariantRecord::endPosition() const
{
    if (pos == -1)
        return std::numeric_limits<int>::max();

    switch (kind)
    {
        case INDEL:
            if (size > 0)
                return pos;
            else
                return pos - size; // for deletions, size is negative!
        case INVERSION:
            return pos + size;
        case TRANSLOCATION:
            return targetPos;
        case DUPLICATION:
            return targetPos;
        default:
            return -1;
    }
}

bool StructuralVariantRecord::nearBreakend(int query) const
{
    if (pos == -1)
        return false;  // invalid/sentinel has no breakends

    switch (kind)
    {
        case INDEL:
            if (size > 0)
                return (query == pos || query == pos + 1);
            else
                return (query == pos || query == pos + 1 ||
                        query == pos - size || query == pos - size + 1);
        case INVERSION:
            return (query == pos || query == pos + 1 ||
                    query == pos + size || query == pos + size + 1);
        case TRANSLOCATION:
            return (query == pos || query == pos + 1 ||
                    query == targetPos || query == targetPos + 1);
        case DUPLICATION:
            return (query == pos || query == pos + 1 ||
                    query == targetPos || query == targetPos + 1);
        default:
            return false;
    }
}

std::ostream & operator<<(std::ostream & out, StructuralVariantRecord const & record)
{
    char const * kind;
    switch (record.kind)
    {
        case StructuralVariantRecord::TRANSLOCATION:
            kind = "TRANSLOCATION";
            break;
        case StructuralVariantRecord::INDEL:
            kind = "INDEL";
            break;
        case StructuralVariantRecord::INVERSION:
            kind = "INVERSION";
            break;
        case StructuralVariantRecord::DUPLICATION:
            kind = "DUPLICATION";
            break;
        default:
            kind = "INVALID";
            break;
    }
    out << "StructuralVariantRecord(kind=" << kind << ", haplotype=" << record.haplotype
        << ", rId=" << record.rId << ", pos=" << record.pos << ", size=" << record.size
        << ", targetRId=" << record.targetRId << ", targetPos=" << record.targetPos
        << ", seq=\"" << record.seq << "\")";
    return out;
}

// ----------------------------------------------------------------------------
// Function VariantMaterializer::_runImpl()
// ----------------------------------------------------------------------------

int VariantMaterializer::_runImpl(
        seqan2::Dna5String * resultSeq,
        PositionMap * posMap,
        MethylationLevels * resultLvls,
        std::vector<SmallVarInfo> & varInfos,
        std::vector<std::pair<int, int> > & breakpoints,
        seqan2::Dna5String const * ref,
        MethylationLevels const * refLvls,
        int haplotypeId)
{
    breakpoints.clear();
    clear(*resultSeq);
    if (resultLvls)
        resultLvls->clear();

    // Apply small variants.  We get a sequence with the small variants and a journal of the difference to contig.
    seqan2::Dna5String seqSmallVariants;
    TJournalEntries journal;
    MethylationLevels levelsSmallVariants;  // only used if revLevels != 0
    MethylationLevels * smallLvlsPtr = refLvls ? &levelsSmallVariants : 0;
    std::vector<SmallVarInfo> smallVarInfos;
    if (_materializeSmallVariants(seqSmallVariants, journal, smallLvlsPtr, smallVarInfos, *ref, *variants,
                                  refLvls, haplotypeId) != 0)
        return 1;

    // Build position map for large variant -> small variant and small variant <-> reference position mapping.
    posMap->reinit(journal);  // build mapping from small variant to reference positions

    // Apply structural variants and build the interval tree of posMap
    if (_materializeLargeVariants(*resultSeq, resultLvls, varInfos, breakpoints, *posMap, journal, seqSmallVariants,
                                  smallVarInfos, *variants, smallLvlsPtr, haplotypeId) != 0)
        return 1;

    // Sort resulting variant infos.
    std::sort(varInfos.begin(), varInfos.end());

    // std::sort(breakpoints.begin(), breakpoints.end());
    // std::cout << "SV Breakpoints\n";
    // for (unsigned i = 0; i < breakpoints.size(); ++i)
    //     std::cout << "  " << breakpoints[i] << "\n";

    // Copy out SV breakpoints.
    posMap->svBreakpoints.insert(breakpoints.begin(), breakpoints.end());

    return 0;
}

// ----------------------------------------------------------------------------
// Function VariantMaterializer::_materializeSmallVariants()
// ----------------------------------------------------------------------------

int VariantMaterializer::_materializeSmallVariants(
        seqan2::Dna5String & seq, // resulting sequence, original sequence with small variants applied
        TJournalEntries & journal,
        MethylationLevels * levelsSmallVariants,
        std::vector<SmallVarInfo> & smallVarInfos,
        seqan2::Dna5String const & contig, // contig == original sequence
        Variants const & variants,
        MethylationLevels const * levels,
        int hId)
{
    if (methSimOptions)
    {
        SEQAN_ASSERT_EQ(methSimOptions->simulateMethylationLevels, (levelsSmallVariants != 0));
        SEQAN_ASSERT_EQ(methSimOptions->simulateMethylationLevels, (levels != 0));
    }

    // Clear journal and output methylation levels.
    reinit(journal, length(contig));
    if (levelsSmallVariants)
        levelsSmallVariants->clear();
    // Store variation points with a flag whether it is a SNP (true) or a breakpoint (false).
    seqan2::String<std::pair<int, bool> > varPoints;

    // Fors this, we have to iterate in parallel over SNP and small indel records.
    //
    // Current index in snp/small indel array.
    unsigned snpsIdx = 0;
    unsigned smallIndelIdx = 0;
    // Current SNP record, default to sentinel.
    SnpRecord snpRecord;
    snpRecord.rId = std::numeric_limits<int>::max();
    if (snpsIdx < length(variants.snps))
        snpRecord = variants.snps[snpsIdx++];
    // Current small indel record, default to sentinel.
    SmallIndelRecord smallIndelRecord;
    smallIndelRecord.rId = std::numeric_limits<int>::max();
    if (smallIndelIdx < length(variants.smallIndels))
        smallIndelRecord = variants.smallIndels[smallIndelIdx++];
    // Track last position from contig appended to seq so far.
    int lastPos = 0;
    if (verbosity >= 3)
        std::cerr << __LINE__ << "\tlastPos == " << lastPos << "\n";

    // TODO(holtgrew): Extract contig building into their own functions.
    if (verbosity >= 2)
        std::cerr << "building output\n";
    while (snpRecord.rId != std::numeric_limits<int>::max() || smallIndelRecord.rId != std::numeric_limits<int>::max())
    {
        // TODO(holtgrew): Extract SNP and small indel handling into their own functions.
        if (snpRecord.getPos() < smallIndelRecord.getPos())  // process SNP records
        {
            if (snpRecord.haplotype == hId)  // Ignore all but the current contig.
            {
                if (verbosity >= 3)
                    std::cerr << __LINE__ << "\tappend(seq, infix(contig, " << lastPos << ", " << snpRecord.pos << ")\n";
                // Append interim sequence and methylation levels->
                append(seq, infix(contig, lastPos, snpRecord.pos));
                if (methSimOptions && methSimOptions->simulateMethylationLevels)
                {
                    append(levelsSmallVariants->forward, infix(levels->forward, lastPos, snpRecord.pos + 1));
                    append(levelsSmallVariants->reverse, infix(levels->reverse, lastPos, snpRecord.pos + 1));
                    appendValue(varPoints, std::make_pair((int)length(seq), true));      // variation points before/after SNP
                    appendValue(varPoints, std::make_pair((int)length(seq) + 1, true));
                }

                SEQAN_ASSERT_GEQ(snpRecord.pos, lastPos);
                if (verbosity >= 3)
                    std::cerr << __LINE__ << "\tappendValue(seq, " << snpRecord.to << "')\n";
                appendValue(seq, snpRecord.to);
                lastPos = snpRecord.pos + 1;
                if (verbosity >= 3)
                    std::cerr << __LINE__ << "\tlastPos == " << lastPos << "\n";

                // Register SNP as small variant info.
                smallVarInfos.push_back(SmallVarInfo(SmallVarInfo::SNP, length(seq) - 1, 1));
            }

            if (snpsIdx >= length(variants.snps))
                snpRecord.rId = std::numeric_limits<int>::max();
            else
                snpRecord = variants.snps[snpsIdx++];
        }
        else
        {
            if (smallIndelRecord.haplotype == hId)  // Ignore all but the current contig.
            {
                if (smallIndelRecord.size > 0)
                {
                    if (verbosity >= 3)
                        std::cerr << __LINE__ << "\tappend(seq, infix(contig, " << lastPos << ", " << smallIndelRecord.pos << ")\n";

                    // Simulate methylation levels for insertion.
                    MethylationLevels lvls;
                    if (methSimOptions && methSimOptions->simulateMethylationLevels)
                    {
                        MethylationLevelSimulator methSim(*rng, *methSimOptions);
                        methSim.run(lvls, smallIndelRecord.seq);
                    }

                    // Append interim sequence and methylation levels->
                    append(seq, infix(contig, lastPos, smallIndelRecord.pos));
                    if (methSimOptions && methSimOptions->simulateMethylationLevels)
                    {
                        append(levelsSmallVariants->forward, infix(levels->forward, lastPos, smallIndelRecord.pos));
                        append(levelsSmallVariants->reverse, infix(levels->reverse, lastPos, smallIndelRecord.pos));
                        appendValue(varPoints, std::make_pair((int)length(seq), false));  // variation point before insertion
                    }

                    SEQAN_ASSERT_GEQ(smallIndelRecord.pos, lastPos);
                    if (verbosity >= 3)
                        std::cerr << __LINE__ << "\tappend(seq, \"" << smallIndelRecord.seq << "\")\n";
                    // Register insertion as small variant info.
                    for (unsigned i = 0; i < length(smallIndelRecord.seq); ++i)
                        smallVarInfos.push_back(SmallVarInfo(SmallVarInfo::INS, length(seq) + i, 1));
                    // Append novel sequence and methylation levels->
                    append(seq, smallIndelRecord.seq);
                    if (methSimOptions && methSimOptions->simulateMethylationLevels)
                    {
                        append(levelsSmallVariants->forward, lvls.forward);
                        append(levelsSmallVariants->reverse, lvls.reverse);
                        appendValue(varPoints, std::make_pair((int)length(seq), false));  // variation point after insertion
                    }
                    lastPos = smallIndelRecord.pos;
                    recordInsertion(journal, hostToVirtualPosition(journal, smallIndelRecord.pos),
                                    0, smallIndelRecord.size);
                    if (verbosity >= 3)
                        std::cerr << __LINE__ << "\tlastPos == " << lastPos << "\n";
                }
                else  // deletion
                {
                    if (verbosity >= 3)
                        std::cerr << __LINE__ << "\tappend(seq, infix(contig, " << lastPos << ", " << smallIndelRecord.pos << ")\n";
                    // Append interim sequence and methylation levels->
                    append(seq, infix(contig, lastPos, smallIndelRecord.pos));  // interim chars
                    if (methSimOptions && methSimOptions->simulateMethylationLevels)
                    {
                        appendValue(varPoints, std::make_pair((int)length(seq), false));  // variation point at deletion
                        append(levelsSmallVariants->forward, infix(levels->forward, lastPos, smallIndelRecord.pos));
                        append(levelsSmallVariants->reverse, infix(levels->reverse, lastPos, smallIndelRecord.pos));
                    }

                    lastPos = smallIndelRecord.pos - smallIndelRecord.size;
                    SEQAN_ASSERT_LT(lastPos, (int)length(contig));
                    recordErase(journal,
                                hostToVirtualPosition(journal, smallIndelRecord.pos),
                                hostToVirtualPosition(journal, smallIndelRecord.pos - smallIndelRecord.size));
                    if (verbosity >= 3)
                        std::cerr << __LINE__ << "\tlastPos == " << lastPos << "\n";

                    // Register deletion as small variant info.
                    smallVarInfos.push_back(SmallVarInfo(SmallVarInfo::DEL, length(seq), -smallIndelRecord.size));
                }
            }

            if (smallIndelIdx >= length(variants.smallIndels))
                smallIndelRecord.rId = std::numeric_limits<int>::max();
            else
                smallIndelRecord = variants.smallIndels[smallIndelIdx++];
        }
    }
    // Insert remaining characters.
    if (verbosity >= 3)
        std::cerr << __LINE__ << "\tappend(seq, infix(contig, " << lastPos << ", " << length(contig) << ")\n";
    append(seq, infix(contig, lastPos, length(contig)));

    if (methSimOptions && methSimOptions->simulateMethylationLevels)
    {
        append(levelsSmallVariants->forward, infix(levels->forward, lastPos, length(contig)));
        append(levelsSmallVariants->reverse, infix(levels->reverse, lastPos, length(contig)));

        SEQAN_ASSERT_EQ(length(seq), length(levelsSmallVariants->forward));
        SEQAN_ASSERT_EQ(length(seq), length(levelsSmallVariants->reverse));

        fixVariationLevels(*levelsSmallVariants, *rng, seq, varPoints, *methSimOptions);
    }

    return 0;
}

// ----------------------------------------------------------------------------
// Function VariantMaterializer::_materializeLargeVariants()
// ----------------------------------------------------------------------------

int VariantMaterializer::_materializeLargeVariants(
        seqan2::Dna5String & seq, // final result sequence
        MethylationLevels * levelsLargeVariants,
        std::vector<SmallVarInfo> & varInfos,
        std::vector<std::pair<int, int> > & breakpoints,
        PositionMap & positionMap,
        TJournalEntries const & journal, // built over contig
        seqan2::Dna5String const & contig, // sequence after applying small variants
        std::vector<SmallVarInfo> const & smallVarInfos,
        Variants const & variants,
        MethylationLevels const * levels,
        int hId)
{
    if (methSimOptions)
    {
        SEQAN_ASSERT_EQ(methSimOptions->simulateMethylationLevels, (levelsLargeVariants != 0));
        SEQAN_ASSERT_EQ(methSimOptions->simulateMethylationLevels, (levels != 0));
    }

    // We will record all intervals for the positionMap.svIntervalTree in this String.
    seqan2::String<GenomicInterval> intervals;

    // Clear output methylation levels->
    if (levelsLargeVariants)
        levelsLargeVariants->clear();
    // Store variation points.  We reuse the fixVariationLevels() function from small indel/snp simulation and thus
    // have to store a bool that is always set to false.
    seqan2::String<std::pair<int, bool> > varPoints;

    // Track last position from contig appended to seq so far.
    int lastPos = 0;
    if (verbosity >= 3)
        std::cerr << __LINE__ << "\tlastPos == " << lastPos << "\n";

    // Pointer to the current small variant to write out translated to varInfo.
    std::vector<SmallVarInfo>::const_iterator itSmallVar = smallVarInfos.begin();

    // Number of bytes written out so far/current position in variant.
    unsigned currentPos = 0;

    for (unsigned i = 0; i < length(variants.svRecords); ++i)
    {
        if (variants.svRecords[i].haplotype != hId)  // Ignore all but the current contig.
            continue;
        // We obtain a copy of the current SV record since we translate its positions below.
        StructuralVariantRecord svRecord = variants.svRecords[i];

        // Translate positions and lengths of SV record.
        if (verbosity >= 2)
            std::cerr << "  Translating SvRecord\n  " << svRecord << '\n';
        // Avoid computing this for both size and position adjustment.
        int const virtualPos = hostToVirtualPosition(journal, svRecord.pos);
        // We do not need to adjust the sizes for insertions.
        if (svRecord.kind != StructuralVariantRecord::INDEL || svRecord.size < 0)
        {
            // Use absolute value for size. Deletions have a negative size, we want the position after the variant.
            int const virtualEndPos = hostToVirtualPosition(journal, svRecord.pos + std::abs(svRecord.size));
            // The size of the variant in the contig:
            //   * contig is the sequence that already has small variants applied, e.g. small deletions are removed.
            //   * journal is built over contig.
            //   * hostToVirtualPosition maps the reference position to the contig position.
            //   * Variants may overlap.
            // Example for overlapping:
            //   * Large deletion at position 10, size 50.
            //   * Small deletion at position 20, size 10.
            //   * Small insertion at position 30, size 5.
            // The small deletion and insertion were already applied to contig via _materializeSmallVariants.
            // Because 10 bases were already deleted, the size would be 40 for the large deletion.
            // Together with the small insertion, the size would then be 45.
            int const virtualSize = virtualEndPos - virtualPos;
            // Keep sign of size, i.e. negative for deletions.
            svRecord.size = (svRecord.size < 0 ? -1 : 1) * virtualSize;
        }
        // Adjust position after size. The original position is needed for adjusting the size.
        svRecord.pos = virtualPos;
        SEQAN_ASSERT_LT(svRecord.pos, (int)length(contig));
        if (svRecord.targetPos != -1)
            svRecord.targetPos = hostToVirtualPosition(journal, svRecord.targetPos);
        if (verbosity >= 2)
            std::cerr << "  => " << svRecord << '\n';

        // Copy out small variant infos for interim chars.
        for (; itSmallVar != smallVarInfos.end() && itSmallVar->pos < svRecord.pos; ++itSmallVar)
        {
            int offset = (int)currentPos - lastPos;
            varInfos.push_back(*itSmallVar);
            varInfos.back().pos += offset;
        }

        // Copy from contig to seq with SVs.
        if (verbosity >= 3)
            std::cerr << __LINE__ << "\tappend(seq, infix(contig, " << lastPos << ", " << svRecord.pos << ") (interim)\n";
        append(seq, infix(contig, lastPos, svRecord.pos));  // interim chars
        if (methSimOptions && methSimOptions->simulateMethylationLevels)
        {
            append(levelsLargeVariants->forward, infix(levels->forward, lastPos, svRecord.pos));
            append(levelsLargeVariants->reverse, infix(levels->reverse, lastPos, svRecord.pos));
            appendValue(varPoints, std::make_pair((int)length(seq), false));
        }
        if (currentPos != length(seq))
            appendValue(intervals, GenomicInterval(currentPos, length(seq), lastPos, svRecord.pos,
                                                   '+', GenomicInterval::NORMAL));
        currentPos = length(seq);
        switch (svRecord.kind)
        {
            case StructuralVariantRecord::INDEL:
                {
                    if (svRecord.size > 0)  // insertion
                    {
                        SEQAN_ASSERT_EQ((int)length(svRecord.seq), svRecord.size);

                        // Simulate methylation levels for insertion.
                        MethylationLevels lvls;
                        if (methSimOptions && methSimOptions->simulateMethylationLevels)
                        {
                            MethylationLevelSimulator methSim(*rng, *methSimOptions);
                            methSim.run(lvls, svRecord.seq);
                        }

                        // Append novel sequence and methylation levels.
                        append(seq, svRecord.seq);
                        if (methSimOptions && methSimOptions->simulateMethylationLevels)
                        {
                            append(levelsLargeVariants->forward, lvls.forward);
                            append(levelsLargeVariants->reverse, lvls.reverse);
                            appendValue(varPoints, std::make_pair((int)length(seq), false));  // variation point after insertion
                        }
                        if (currentPos != length(seq))
                            appendValue(intervals, GenomicInterval(currentPos, length(seq), -1, -1,
                                                                   '+', GenomicInterval::INSERTED));
                        if (verbosity >= 3)
                            std::cerr << "append(seq, svRecord.seq (length == " << length(svRecord.seq) << ") " << __LINE__ << " (insertion)\n";
                        lastPos = svRecord.pos;
                        SEQAN_ASSERT_LT(lastPos, (int)length(contig));

                        // Copy out breakpoints.
                        breakpoints.push_back(std::make_pair(currentPos, variants.posToIdx(Variants::SV, i)));
                        breakpoints.push_back(std::make_pair((int)length(seq), variants.posToIdx(Variants::SV, i)));

                        currentPos = length(seq);
                    }
                    else  // deletion
                    {
                        // skip forward in contig (which does not contain deletion)
                        lastPos = svRecord.pos - svRecord.size; // svRecord.size is negative
                        SEQAN_ASSERT_LT(lastPos, (int)length(contig));

                        // Copy out breakpoint.
                        breakpoints.push_back(std::make_pair(currentPos, variants.posToIdx(Variants::SV, i)));
                    }
                }
                break;
            case StructuralVariantRecord::INVERSION:
                {
                    unsigned oldLen = length(seq);
                    append(seq, infix(contig, svRecord.pos, svRecord.pos + svRecord.size));
                    if (methSimOptions && methSimOptions->simulateMethylationLevels)
                    {
                        appendValue(varPoints, std::make_pair((int)length(seq), false));  // variation point at deletion
                        append(levelsLargeVariants->forward, infix(levels->reverse, svRecord.pos, svRecord.pos + svRecord.size));
                        reverse(infix(levelsLargeVariants->forward, oldLen, length(levelsLargeVariants->forward)));
                        append(levelsLargeVariants->reverse, infix(levels->forward, svRecord.pos, svRecord.pos + svRecord.size));
                        reverse(infix(levelsLargeVariants->reverse, oldLen, length(levelsLargeVariants->reverse)));
                    }
                    if (currentPos != length(seq))
                        appendValue(intervals, GenomicInterval(currentPos, length(seq), svRecord.pos, svRecord.pos + svRecord.size,
                                                               '-', GenomicInterval::INVERTED));

                    // Copy out small variant infos for inversion.
                    for (; itSmallVar != smallVarInfos.end() && itSmallVar->pos < svRecord.pos + svRecord.size; ++itSmallVar)
                    {
                        varInfos.push_back(*itSmallVar);
                        varInfos.back().pos = currentPos + svRecord.size - (varInfos.back().pos - lastPos);
                    }

                    if (verbosity >= 3)
                        std::cerr << "append(seq, infix(contig, " << svRecord.pos << ", " << svRecord.pos + svRecord.size << ") " << __LINE__ << " (inversion)\n";
                    reverseComplement(infix(seq, oldLen, length(seq)));
                    lastPos = svRecord.pos + svRecord.size;
                    SEQAN_ASSERT_LT(lastPos, (int)length(contig));

                    // Copy out breakpoints.
                    breakpoints.push_back(std::make_pair(currentPos, variants.posToIdx(Variants::SV, i)));
                    breakpoints.push_back(std::make_pair((int)length(seq), variants.posToIdx(Variants::SV, i)));

                    currentPos = length(seq);
                }
                break;
            case StructuralVariantRecord::TRANSLOCATION:
                {
                    SEQAN_ASSERT_GEQ(svRecord.targetPos, svRecord.pos + svRecord.size);
                    append(seq, infix(contig, svRecord.pos + svRecord.size, svRecord.targetPos));
                    if (methSimOptions && methSimOptions->simulateMethylationLevels)
                    {
                        appendValue(varPoints, std::make_pair((int)length(seq), false));
                        append(levelsLargeVariants->forward, infix(levels->forward, svRecord.pos + svRecord.size, svRecord.targetPos));
                        append(levelsLargeVariants->reverse, infix(levels->reverse, svRecord.pos + svRecord.size, svRecord.targetPos));
                    }
                    if (currentPos != length(seq))
                        appendValue(intervals, GenomicInterval(currentPos, length(seq), svRecord.pos + svRecord.size, svRecord.targetPos,
                                                               '+', GenomicInterval::NORMAL));
                    unsigned tmpCurrentPos = length(seq);
                    append(seq, infix(contig, svRecord.pos, svRecord.pos + svRecord.size));
                    if (methSimOptions && methSimOptions->simulateMethylationLevels)
                    {
                        appendValue(varPoints, std::make_pair((int)length(seq), false));
                        append(levelsLargeVariants->forward, infix(levels->forward, svRecord.pos, svRecord.pos + svRecord.size));
                        append(levelsLargeVariants->reverse, infix(levels->reverse, svRecord.pos, svRecord.pos + svRecord.size));
                    }
                    if (tmpCurrentPos != length(seq))
                        appendValue(intervals, GenomicInterval(tmpCurrentPos, length(seq), svRecord.pos, svRecord.pos + svRecord.size,
                                                               '+', GenomicInterval::NORMAL));
                    if (verbosity >= 3)
                        std::cerr << "append(seq, infix(contig, " << svRecord.pos + svRecord.size << ", " << svRecord.targetPos << ") " << __LINE__ << " (translocation)\n"
                                  << "append(seq, infix(contig, " << svRecord.pos << ", " << svRecord.pos + svRecord.size << ") " << __LINE__ << "\n";
                    lastPos = svRecord.targetPos;
                    SEQAN_ASSERT_LT(lastPos, (int)length(contig));

                    // Copy out small variant infos for translocation, shift left to right and righ to left but keep
                    // center intact.
                    for (; itSmallVar != smallVarInfos.end() && itSmallVar->pos < svRecord.pos; ++itSmallVar)
                    {
                        int offset = (int)currentPos - lastPos;
                        varInfos.push_back(*itSmallVar);
                        varInfos.back().pos += offset;

                        int bpLeft = svRecord.pos + svRecord.size;
                        int bpRight = svRecord.targetPos;
                        if (itSmallVar->pos < bpLeft)
                            varInfos.back().pos -= (svRecord.targetPos - svRecord.pos);
                        else if (itSmallVar->pos >= bpRight)
                            varInfos.back().pos += (svRecord.targetPos - svRecord.pos);
                    }

                    // Copy out breakpoints.
                    breakpoints.push_back(std::make_pair(currentPos, variants.posToIdx(Variants::SV, i)));
                    breakpoints.push_back(std::make_pair(currentPos + svRecord.targetPos - svRecord.pos - svRecord.size, variants.posToIdx(Variants::SV, i)));
                    breakpoints.push_back(std::make_pair((int)length(seq), variants.posToIdx(Variants::SV, i)));

                    currentPos = length(seq);
                }
                break;
            case StructuralVariantRecord::DUPLICATION:
                {
                    append(seq, infix(contig, svRecord.pos, svRecord.pos + svRecord.size));
                    SEQAN_ASSERT_GEQ(svRecord.targetPos, svRecord.pos + svRecord.size);
                    if (methSimOptions && methSimOptions->simulateMethylationLevels)  // first copy
                    {
                        appendValue(varPoints, std::make_pair((int)length(seq), false));
                        append(levelsLargeVariants->forward, infix(levels->forward, svRecord.pos, svRecord.pos + svRecord.size));
                        append(levelsLargeVariants->reverse, infix(levels->reverse, svRecord.pos, svRecord.pos + svRecord.size));
                    }
                    if (currentPos != length(seq))
                        appendValue(intervals, GenomicInterval(currentPos, length(seq), svRecord.pos, svRecord.pos + svRecord.size,
                                                               '+', GenomicInterval::DUPLICATED));
                    unsigned tmpCurrentPos = length(seq);
                    append(seq, infix(contig, svRecord.pos + svRecord.size, svRecord.targetPos));
                    if (methSimOptions && methSimOptions->simulateMethylationLevels)
                    {
                        appendValue(varPoints, std::make_pair((int)length(seq), false));
                        append(levelsLargeVariants->forward, infix(levels->forward, svRecord.pos + svRecord.size, svRecord.targetPos));
                        append(levelsLargeVariants->reverse, infix(levels->reverse, svRecord.pos + svRecord.size, svRecord.targetPos));
                    }
                    if (tmpCurrentPos != length(seq))
                        appendValue(intervals, GenomicInterval(tmpCurrentPos, length(seq), svRecord.pos + svRecord.size, svRecord.targetPos,
                                                               '+', GenomicInterval::NORMAL));
                    tmpCurrentPos = length(seq);
                    append(seq, infix(contig, svRecord.pos, svRecord.pos + svRecord.size));
                    if (methSimOptions && methSimOptions->simulateMethylationLevels)  // second copy
                    {
                        appendValue(varPoints, std::make_pair((int)length(seq), false));
                        append(levelsLargeVariants->forward, infix(levels->forward, svRecord.pos, svRecord.pos + svRecord.size));
                        append(levelsLargeVariants->reverse, infix(levels->reverse, svRecord.pos, svRecord.pos + svRecord.size));
                    }
                    if (tmpCurrentPos != length(seq))
                        appendValue(intervals, GenomicInterval(tmpCurrentPos, length(seq), svRecord.pos, svRecord.pos + svRecord.size,
                                                               '+', GenomicInterval::NORMAL));
                    if (verbosity >= 3)
                        std::cerr << "append(seq, infix(contig, " << svRecord.pos << ", " << svRecord.pos + svRecord.size << ") " << __LINE__ << " (duplication)\n"
                                  << "append(seq, infix(contig, " << svRecord.pos + svRecord.size << ", " << svRecord.targetPos << ") " << __LINE__ << "\n"
                                  << "append(seq, infix(contig, " << svRecord.pos << ", " << svRecord.pos + svRecord.size << ") " << __LINE__ << "\n";
                    lastPos = svRecord.targetPos;
                    SEQAN_ASSERT_LT(lastPos, (int)length(contig));

                    // Write out small variant infos for duplication.
                    for (; itSmallVar != smallVarInfos.end() && itSmallVar->pos < svRecord.pos + svRecord.size; ++itSmallVar)
                    {
                        int offset = (int)currentPos - lastPos;
                        varInfos.push_back(*itSmallVar);
                        varInfos.back().pos += offset;

                        if (itSmallVar->pos < svRecord.pos + svRecord.size)
                        {
                            varInfos.push_back(*itSmallVar);
                            varInfos.back().pos += (svRecord.targetPos - svRecord.pos);
                        }
                    }

                    // Copy out breakpoints.
                    breakpoints.push_back(std::make_pair(currentPos, variants.posToIdx(Variants::SV, i)));
                    breakpoints.push_back(std::make_pair(currentPos + svRecord.pos + svRecord.size - svRecord.pos, variants.posToIdx(Variants::SV, i)));
                    breakpoints.push_back(std::make_pair(currentPos + svRecord.pos + svRecord.size - svRecord.pos + svRecord.targetPos - (svRecord.pos + svRecord.size), variants.posToIdx(Variants::SV, i)));
                    breakpoints.push_back(std::make_pair((int)length(seq), variants.posToIdx(Variants::SV, i)));

                    currentPos = length(seq);
                }
                break;
            default:
                return 1;
        }
    }
    if (verbosity >= 3)
        std::cerr << "append(seq, infix(contig, " << lastPos << ", " << length(contig) << ") "
                  << __LINE__ << " (last interim)\n";
    append(seq, infix(contig, lastPos, length(contig)));
    if (methSimOptions && methSimOptions->simulateMethylationLevels)
    {
        append(levelsLargeVariants->forward, infix(levels->forward, lastPos, length(contig)));
        append(levelsLargeVariants->reverse, infix(levels->reverse, lastPos, length(contig)));

        SEQAN_ASSERT_EQ(length(seq), length(levelsLargeVariants->forward));
        SEQAN_ASSERT_EQ(length(seq), length(levelsLargeVariants->reverse));

        fixVariationLevels(*levelsLargeVariants, *rng, seq, varPoints, *methSimOptions);
    }
    if (currentPos != length(seq))
        appendValue(intervals, GenomicInterval(currentPos, length(seq), lastPos, length(contig),
                                               '+', GenomicInterval::NORMAL));

    // Copy out small variant infos for trailing characters.
    for (; itSmallVar != smallVarInfos.end(); ++itSmallVar)
    {
        int offset = (int)currentPos - lastPos;
        varInfos.push_back(*itSmallVar);
        varInfos.back().pos += offset;
    }

    // Build the interval trees of the positionMap.
    seqan2::String<PositionMap::TInterval> svIntervals, svIntervalsSTL;
    for (unsigned i = 0; i < length(intervals); ++i)
        appendValue(svIntervals, PositionMap::TInterval(
                intervals[i].svBeginPos, intervals[i].svEndPos, intervals[i]));
    for (unsigned i = 0; i < length(intervals); ++i)
        if (intervals[i].smallVarBeginPos != -1)  // ignore insertions
            appendValue(svIntervalsSTL, PositionMap::TInterval(
                    intervals[i].smallVarBeginPos, intervals[i].smallVarEndPos, intervals[i]));
    createIntervalTree(positionMap.svIntervalTree, svIntervals);
    createIntervalTree(positionMap.svIntervalTreeSTL, svIntervalsSTL);

    return 0;
}

// --------------------------------------------------------------------------
// Function PositionMap::overlapsWithBreakpoint()
// --------------------------------------------------------------------------

bool PositionMap::overlapsWithBreakpoint(int svBeginPos, int svEndPos) const
{
    std::set<std::pair<int, int> >::const_iterator it = svBreakpoints.upper_bound(std::make_pair(svBeginPos, std::numeric_limits<int>::max()));
    return (it != svBreakpoints.end() && it->first < svEndPos);
}

// --------------------------------------------------------------------------
// Function PositionMap::getGenomicInterval()
// --------------------------------------------------------------------------

GenomicInterval PositionMap::getGenomicInterval(int svPos) const
{
    seqan2::String<GenomicInterval> intervals;
    findIntervals(intervals, svIntervalTree, svPos);
    SEQAN_ASSERT_EQ(length(intervals), 1u);
    return intervals[0];
}

// --------------------------------------------------------------------------
// PositionMap::getGenomicIntervalSmallVarPos()
// --------------------------------------------------------------------------

// Returns the GenomicInterval on the sequence using a position on the small var reference.
GenomicInterval PositionMap::getGenomicIntervalSmallVarPos(int smallVarPos) const
{
    seqan2::String<GenomicInterval> intervals;
    findIntervals(intervals, svIntervalTreeSTL, smallVarPos);
    return intervals[0];
}

// --------------------------------------------------------------------------
// Function PositionMap::toSmallVarInterval()
// --------------------------------------------------------------------------

std::pair<int, int> PositionMap::toSmallVarInterval(int svBeginPos, int svEndPos) const
{
    SEQAN_ASSERT(!overlapsWithBreakpoint(svBeginPos, svEndPos));
    GenomicInterval gi = getGenomicInterval(svBeginPos);
    if (gi.kind == GenomicInterval::INSERTED)
    {
        // novel sequence, cannot be projected
        return std::make_pair(-1, -1);
    }
    if (gi.kind != GenomicInterval::INVERTED)
    {
        // forward
        return std::make_pair(gi.smallVarBeginPos + (svBeginPos - gi.svBeginPos),
                              gi.smallVarBeginPos + (svEndPos - gi.svBeginPos));
    }
    else
    {
        // reverse
        return std::make_pair(gi.smallVarBeginPos + (gi.svEndPos - svBeginPos),
                              gi.smallVarBeginPos + (gi.svEndPos - svEndPos));
    }

    return std::make_pair(-1, -1);  // cannot reach here
}

// --------------------------------------------------------------------------
// Function PositionMap::smallVarToLargeVarInterval()
// --------------------------------------------------------------------------

std::pair<int, int> PositionMap::smallVarToLargeVarInterval(int beginPos, int endPos) const
{
    // SEQAN_ASSERT(!overlapsWithBreakpoint(svBeginPos, svEndPos));
    GenomicInterval gi = getGenomicIntervalSmallVarPos(beginPos);
    SEQAN_ASSERT_NEQ(gi.kind, GenomicInterval::INSERTED);

    if (gi.kind != GenomicInterval::INVERTED)
    {
        // forward
        return std::make_pair(gi.svBeginPos + (beginPos - gi.smallVarBeginPos),
                              gi.svBeginPos + (endPos - gi.smallVarBeginPos));
    }
    else
    {
        // reverse
        return std::make_pair(gi.svBeginPos + (gi.svEndPos - beginPos),
                              gi.svBeginPos + (gi.svEndPos - endPos));
    }

    return std::make_pair(-1, -1);  // cannot reach here
}

// --------------------------------------------------------------------------
// Function PositionMap::orignalToSmallVarInterval()
// --------------------------------------------------------------------------

std::pair<int, int> PositionMap::originalToSmallVarInterval(int beginPos, int endPos) const
{
    // TODO(holtgrew): Project to the left at the end.

    // Get anchor gaps objects from anchors.
    TGaps refGaps(seqan2::Nothing(), refGapAnchors);
    TGaps smallVarGaps(seqan2::Nothing(), smallVarGapAnchors);

    // Translate begin and end position.
    int beginPos2 = toViewPosition(refGaps, beginPos);
    int beginPos3 = toSourcePosition(smallVarGaps, beginPos2);
    int endPos2 = toViewPosition(refGaps, endPos);
    int endPos3 = toSourcePosition(smallVarGaps, endPos2);
    return std::make_pair(beginPos3, endPos3);
}

// --------------------------------------------------------------------------
// Function PositionMap::toOriginalInterval()
// --------------------------------------------------------------------------

std::pair<int, int> PositionMap::toOriginalInterval(int smallVarBeginPos, int smallVarEndPos) const
{
    // TODO(holtgrew): Project to the left at the end.

    // Get anchor gaps objects from anchors.
    TGaps refGaps(seqan2::Nothing(), refGapAnchors);
    TGaps smallVarGaps(seqan2::Nothing(), smallVarGapAnchors);

    // Translate begin and end position.
    int smallVarBeginPos2 = toViewPosition(smallVarGaps, smallVarBeginPos);
    int smallVarBeginPos3 = toSourcePosition(refGaps, smallVarBeginPos2);
    int smallVarEndPos2 = toViewPosition(smallVarGaps, smallVarEndPos);
    int smallVarEndPos3 = toSourcePosition(refGaps, smallVarEndPos2);
    return std::make_pair(smallVarBeginPos3, smallVarEndPos3);
}

// --------------------------------------------------------------------------
// Function PositionMap::reinit()
// --------------------------------------------------------------------------

void PositionMap::reinit(TJournalEntries const & journal)
{
    // Reset the interval tree and breakpoints.
    // TODO(holtgrew): Better API support for IntervalTree?
    svIntervalTree = TIntervalTree();
    svIntervalTreeSTL = TIntervalTree();
    svBreakpoints.clear();
    clear(refGapAnchors);
    clear(smallVarGapAnchors);

    // Convert the journal to two gaps.
    //
    // Get anchor gaps objects from anchors.
    typedef seqan2::Iterator<TGaps, seqan2::Standard>::Type TGapsIter;
    TGaps refGaps(seqan2::Nothing(), refGapAnchors);
    TGapsIter itRef = begin(refGaps, seqan2::Standard());
    TGaps smallVarGaps(seqan2::Nothing(), smallVarGapAnchors);
    TGapsIter itVar = begin(smallVarGaps, seqan2::Standard());

    // Iterate over the journal.
    typedef seqan2::Iterator<TJournalEntries const, seqan2::Standard>::Type TJournalEntriesIt;
    TJournalEntriesIt it = begin(journal, seqan2::Standard());
    SEQAN_ASSERT_NEQ(it->segmentSource, seqan2::SOURCE_NULL);
    SEQAN_ASSERT_EQ(it->virtualPosition, 0u);

    unsigned lastRefPos = std::numeric_limits<unsigned>::max();  // Previous position from reference.
    for (; it != end(journal, seqan2::Standard()); ++it)
    {
        SEQAN_ASSERT_NEQ(it->segmentSource, seqan2::SOURCE_NULL);
        // The segment is from the reference.
        if (it->segmentSource == seqan2::SOURCE_ORIGINAL)
        {
            // There is a gap at the beginning of the reference.
            if (lastRefPos == std::numeric_limits<unsigned>::max() && it->physicalPosition != 0)
            {
                // Insert gaps in reference.
                insertGaps(itRef, it->physicalPosition);
                // Jump to position after gaps in reference.
                itRef += it->physicalPosition;
                // Jump over characters in variant.
                itVar += it->physicalPosition;
            }

            // There is a gap in the variant.
            if (it->physicalPosition > lastRefPos)
            {
                // How many gaps.
                int len = it->physicalPosition - lastRefPos;
                // Insert gaps in variant.
                insertGaps(itVar, len);
                // Jump over characters in reference.
                itRef += len;
                // Jump to position after gaps in variant.
                itVar += len;
            }

            // This is a common segment. Advance both reference and variant.
            itRef += it->length;
            itVar += it->length;

            // The end of the common segment is the last reference position.
            lastRefPos = it->physicalPosition + it->length;
        }
        else // The segment is from the variant.
        {
            // Insert gaps in reference.
            insertGaps(itRef, it->length);
            // Jump to position after gaps in reference.
            itRef += it->length;
            // Jump over characters in variant.
            itVar += it->length;
        }
    }

    // std::cerr << "--> done\n";

    // typedef seqan2::Gaps<seqan2::CharString, seqan2::AnchorGaps<TGapAnchors> > TGaps2;
    // seqan2::CharString seqH;
    // seqan2::CharString seqV;
    // for (unsigned i = 0; i < 1000; ++i)
    // {
    //     appendValue(seqH, 'X');
    //     appendValue(seqV, 'X');
    // }
    // TGaps2 gapsH(seqH, refGapAnchors);
    // TGaps2 gapsV(seqV, smallVarGapAnchors);

    // std::cerr << "REF\t" << gapsH << "\n"
    //           << "VAR\t" << gapsV << "\n";
}