1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
|
// ==========================================================================
// Mason - A Read Simulator
// ==========================================================================
// Copyright (c) 2006-2026, Knut Reinert, FU Berlin
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of Knut Reinert or the FU Berlin nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL KNUT REINERT OR THE FU BERLIN BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
// DAMAGE.
//
// ==========================================================================
// Author: Manuel Holtgrewe <manuel.holtgrewe@fu-berlin.de>
// ==========================================================================
// Simulate sequencing process on fragments.
// ==========================================================================
#include <seqan/basic.h>
#include <seqan/sequence.h>
#include <seqan/seq_io.h>
#include <seqan/arg_parse.h>
#include "mason_types.h"
#include "mason_options.h"
#include "sequencing.h"
// ==========================================================================
// Classes
// ==========================================================================
// ==========================================================================
// Functions
// ==========================================================================
// --------------------------------------------------------------------------
// Function parseCommandLine()
// --------------------------------------------------------------------------
seqan2::ArgumentParser::ParseResult
parseCommandLine(MasonFragmentSequencingOptions & options, int argc, char const ** argv)
{
// Setup ArgumentParser.
seqan2::ArgumentParser parser("mason_frag_sequencing");
// Set short description, version, and date.
setShortDescription(parser, "Fragment Sequencing Simulation");
setDateAndVersion(parser);
setCategory(parser, "Simulators");
// Define usage line and long description.
addUsageLine(parser, "[\\fIOPTIONS\\fP] \\fB-i\\fP \\fIIN.fa\\fP \\fB-o\\fP \\fIOUT.{fa,fq}\\fP "
"[\\fB-or\\fP \\fIOUT2.{fa,fq}\\fP]");
addDescription(parser,
"Given a FASTA file with fragments, simulate sequencing thereof.");
addDescription(parser,
"This program is a more lightweight version of mason_sequencing without support for the "
"application of VCF and fragment sampling. Output of SAM is also not available. However, "
"it uses the same code for the simulation of the reads as the more powerful mason_simulator.");
addDescription(parser,
"You can use mason_frag_sequencing if you want to implement you rown fragmentation behaviour, e.g. "
"if you have implemented your own bias models.");
// Add option and text sections.
options.addOptions(parser);
options.addTextSections(parser);
// Parse command line.
seqan2::ArgumentParser::ParseResult res = seqan2::parse(parser, argc, argv);
// Only extract options if the program will continue after parseCommandLine()
if (res != seqan2::ArgumentParser::PARSE_OK)
return res;
options.getOptionValues(parser);
return seqan2::ArgumentParser::PARSE_OK;
}
// --------------------------------------------------------------------------
// Function trimAfterSpace()
// --------------------------------------------------------------------------
void trimAfterSpace(seqan2::CharString & s)
{
unsigned i = 0;
for (; i < length(s); ++i)
if (isspace(s[i]))
break;
resize(s, i);
}
// --------------------------------------------------------------------------
// Function main()
// --------------------------------------------------------------------------
// Program entry point.
int main(int argc, char const ** argv)
{
// Parse the command line.
MasonFragmentSequencingOptions options;
seqan2::ArgumentParser::ParseResult res = parseCommandLine(options, argc, argv);
if (res != seqan2::ArgumentParser::PARSE_OK)
return res == seqan2::ArgumentParser::PARSE_ERROR;
std::cerr << "MASON SEQUENCING SIMULATOR\n"
<< "==========================\n\n";
// Print the command line arguments back to the user.
if (options.verbosity > 0)
{
std::cerr << "__OPTIONS____________________________________________________________________\n"
<< '\n';
options.print(std::cerr);
}
std::cerr << "\n__PREPARATION________________________________________________________________\n"
<< "\n";
// Open fragments FASTA file.
std::cerr << "Opening fragments " << options.inputFileName << " ...";
seqan2::SeqFileIn inFragments;
if (!open(inFragments, toCString(options.inputFileName)))
{
std::cerr << " ERROR\n"
<< "Could not open " << options.inputFileName << "\n";
return 1;
}
std::cerr << " OK\n";
// Open reads output file.
std::cerr << "Opening output file (L) " << options.outFileNameLeft << " ...";
seqan2::SeqFileOut outReads;
if (!open(outReads, toCString(options.outFileNameLeft)))
{
std::cerr << " ERROR\n"
<< "Could not open " << options.outFileNameLeft << "\n";
return 1;
}
std::cerr << " OK\n";
// Open output file for the right reads.
seqan2::SeqFileOut outReadsRight;
if (!empty(options.outFileNameRight))
{
std::cerr << "Opening output file (R) " << options.outFileNameRight << " ...";
if (!open(outReadsRight, toCString(options.outFileNameRight)))
{
std::cerr << " ERROR\n"
<< "Could not open " << options.outFileNameRight << "\n";
return 1;
}
std::cerr << " OK\n";
}
// Configure output streams to write out each sequence in a single line.
context(outReads).options.lineLength = 0;
context(outReads).options.lineLength = 0;
// Perform genome simulation.
std::cerr << "\n__SIMULATING READS___________________________________________________________\n"
<< "\n"
<< "Simulating reads ...";
TRng rng(options.seed);
TRng ignoredMethRng(0);
// Create sequencing simulator.
SequencingSimulatorFactory simFactory(rng, ignoredMethRng, options.seqOptions, options.illuminaOptions,
options.rocheOptions, options.sangerOptions);
std::unique_ptr<SequencingSimulator> sim = simFactory.make();
// Buffers for reading in fragments.
seqan2::CharString fragId;
seqan2::Dna5String fragSeq;
// Buffers for simulated reads.
seqan2::Dna5String seqL, seqR;
seqan2::CharString qualsL, qualsR;
// The information for storing the simulation info.
SequencingSimulationInfo simInfoL, simInfoR;
// We will use these string streams to generate the read identifier strings.
std::stringstream ssL, ssR;
for (unsigned readId = 1; !atEnd(inFragments); ++readId)
{
// Reset the string streams.
ssL.str("");
ssL.clear();
ssR.str("");
ssR.clear();
// Read fragment to simulate from.
readRecord(fragId, fragSeq, inFragments);
// Trim fragment identifier after first whitespace.
trimAfterSpace(fragId);
if (empty(options.outFileNameRight)) // Single-end sequencing.
{
sim->simulateSingleEnd(seqL, qualsL, simInfoL, infix(fragSeq, 0, length(fragSeq)));
ssL << options.seqOptions.readNamePrefix << readId;
if (options.seqOptions.embedReadInfo)
{
ssL << ' ';
simInfoL.serialize(ssL);
ssL << " FRAG_ID=" << fragId;
}
writeRecord(outReads, ssL.str(), seqL, qualsL);
}
else // Paired sequencing.
{
sim->simulatePairedEnd(seqL, qualsL, simInfoL, seqR, qualsR, simInfoR, infix(fragSeq, 0, length(fragSeq)));
ssL << options.seqOptions.readNamePrefix << readId;
ssR << options.seqOptions.readNamePrefix << readId;
if (options.seqOptions.embedReadInfo)
{
ssL << ' ';
simInfoL.serialize(ssL);
ssL << " FRAG_ID=" << fragId;
ssR << ' ';
simInfoR.serialize(ssR);
ssR << " FRAG_ID=" << fragId;
}
// std::cerr << seqL << "\t" << qualsL << "\n"
// << seqR << "\t" << qualsR << "\n\n";
writeRecord(outReads, ssL.str(), seqL, qualsL);
writeRecord(outReadsRight, ssR.str(), seqR, qualsR);
}
}
std::cerr << " OK\n";
std::cerr << "\nDONE.\n";
return 0;
}
|