File: mason_splicing.cpp

package info (click to toggle)
seqan2 2.5.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 228,748 kB
  • sloc: cpp: 257,602; ansic: 91,967; python: 8,326; sh: 1,056; xml: 570; makefile: 229; awk: 51; javascript: 21
file content (478 lines) | stat: -rw-r--r-- 18,829 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
// ==========================================================================
//                         Mason - A Read Simulator
// ==========================================================================
// Copyright (c) 2006-2026, Knut Reinert, FU Berlin
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above copyright
//       notice, this list of conditions and the following disclaimer in the
//       documentation and/or other materials provided with the distribution.
//     * Neither the name of Knut Reinert or the FU Berlin nor the names of
//       its contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL KNUT REINERT OR THE FU BERLIN BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
// DAMAGE.
//
// ==========================================================================
// Author: Manuel Holtgrewe <manuel.holtgrewe@fu-berlin.de>
// ==========================================================================
// Compute transcripts from a genome and a GFF/GTF file.  Optionally, you
// can apply a VCF file to the genome before splicing.
//
// Transcripts must not span structural variants.
// ==========================================================================

// Note: We treat all given variants as phased.

#include <seqan/arg_parse.h>
#include <seqan/basic.h>
#include <seqan/seq_io.h>
#include <seqan/sequence.h>
#include <seqan/vcf_io.h>
#include <seqan/gff_io.h>

#include "vcf_materialization.h"
#include "mason_options.h"
#include "mason_types.h"

// ==========================================================================
// Classes
// ==========================================================================

// --------------------------------------------------------------------------
// Class MyGffRecord
// --------------------------------------------------------------------------

// Subclass of GffRecord that has an rID member.

class MyGffRecord : public seqan2::GffRecord
{
public:
    int rID;

    static const int INVALID_IDX;

    MyGffRecord() : seqan2::GffRecord(), rID(std::numeric_limits<int>::max())
    {}
};

const int MyGffRecord::INVALID_IDX = std::numeric_limits<int>::max();

// --------------------------------------------------------------------------
// Class SplicingInstruction
// --------------------------------------------------------------------------

// Represents one exon.

struct SplicingInstruction
{
    // ID of the transcript that this instruction belongs to.
    int transcriptID;
    // Begin and end position of the exon.
    int beginPos, endPos;
    // The strand of the instruction '-' or '+'.
    char strand;

    SplicingInstruction() : transcriptID(-1), beginPos(-1), endPos(-1), strand('.')
    {}

    SplicingInstruction(int transcriptID, int beginPos, int endPos, char strand) :
            transcriptID(transcriptID), beginPos(beginPos), endPos(endPos), strand(strand)
    {}

    bool operator<(SplicingInstruction const & other) const
    {
        return std::make_pair(transcriptID, std::make_pair(beginPos, std::make_pair(endPos, strand))) <
                std::make_pair(other.transcriptID,
                               std::make_pair(other.beginPos, std::make_pair(other.endPos, other.strand)));
    }
};

bool differentTranscript(SplicingInstruction const & lhs, SplicingInstruction const & rhs)
{
    return lhs.transcriptID != rhs.transcriptID;
}

// --------------------------------------------------------------------------
// Class MasonSplicingApp
// --------------------------------------------------------------------------

class MasonSplicingApp
{
public:
    // The configuration to use.
    MasonSplicingOptions const & options;

    // The random number generation.
    TRng rng;

    // Materialization of VCF.
    VcfMaterializer vcfMat;

    // Input GFF/GTF stream.
    seqan2::GffFileIn gffFileIn;

    // Output sequence stream.
    seqan2::SeqFileOut seqFileOut;

    MasonSplicingApp(MasonSplicingOptions const & _options) :
            options(_options), rng(options.seed),
            vcfMat(rng, toCString(options.matOptions.fastaFileName), toCString(options.matOptions.vcfFileName))
    {}

    int run()
    {
        // Intialization
        std::cerr << "__INITIALIZATION_____________________________________________________________\n"
                  << "\n";

        std::cerr << "Opening files...";
        try
        {
            vcfMat.init();

            if (!open(seqFileOut, toCString(options.outputFileName)))
                throw MasonIOException("Could not open output file.");

            if (!open(gffFileIn, toCString(options.inputGffFile)))
                throw MasonIOException("Could not open GFF/GTF file.");
        }
        catch (MasonIOException & e)
        {
            std::cerr << "\nERROR: " << e.what() << "\n";
            return 1;
        }
        std::cerr << " OK\n";

        // Perform genome simulation.
        std::cerr << "\n__COMPUTING TRANSCRIPTS______________________________________________________\n"
                  << "\n";

        // Read first GFF record.
        MyGffRecord record;
        _readFirstRecord(record);
        if (record.rID == std::numeric_limits<int>::max())
            return 0;  // at end, could not read any, done

        // Transcript names.
        typedef seqan2::StringSet<seqan2::CharString> TNameStore;
        typedef seqan2::NameStoreCache<TNameStore> TNameStoreCache;
        TNameStore transcriptNames;
        TNameStoreCache transcriptNamesCache(transcriptNames);

        // The splicing instructions for the current contig.
        std::vector<SplicingInstruction> splicingInstructions;

        // Materialized sequence.
        seqan2::Dna5String seq;
        // Tanscript ids, used as a buffer below.
        seqan2::String<unsigned> transcriptIDs;

        // Read GFF/GTF file contig by contig (must be sorted by reference name).  For each contig, we all recors,
        // create simulation instructions and then build the transcripts for each haplotype.
        while (record.rID != std::numeric_limits<int>::max())  // sentinel, at end
        {
            seqan2::CharString refName = record.ref;
            std::cerr << "Splicing for " << refName << " ...";

            // Read GFF records for this contig.
            MyGffRecord firstGffRecord = record;
            while (record.rID == firstGffRecord.rID)
            {
                if (empty(options.gffType) || (record.type == options.gffType))
                {
                    // Make transcript names known to the record.
                    _appendTranscriptNames(transcriptIDs, transcriptNames, transcriptNamesCache, record);
                    // Add the splicing instructions for this record to the list for this contig.
                    for (unsigned i = 0; i < length(transcriptIDs); ++i)
                        splicingInstructions.push_back(SplicingInstruction(transcriptIDs[i], record.beginPos,
                                                                           record.endPos, record.strand));
                }

                if (atEnd(gffFileIn))
                {
                    record.rID = std::numeric_limits<int>::max();
                    break;
                }

                readRecord(record, gffFileIn);
                // Translate ref to idx from VCF.
                unsigned idx = 0;
                if (!getIdByName(idx, vcfMat.faiIndex, record.ref))
                    throw MasonIOException("Reference name from GFF/GTF not in VCF!");
                record.rID = idx;
            }

            // ---------------------------------------------------------------
            // Process the splicing instructions.
            // ---------------------------------------------------------------

            // First, sort them.
            std::sort(splicingInstructions.begin(), splicingInstructions.end());

            // Materialize all haplotypes of this contig
            int rID = 0, hID = 0;  // reference and haplotype id
            // Get index of the gff record's reference in the VCF file.
            unsigned idx = 0;
            if (!getIdByName(idx, vcfMat.faiIndex, refName))
            {
                std::stringstream ss;
                ss << "Reference from GFF file " << refName << " unknown in FASTA/FAI file.";
                throw MasonIOException(ss.str());
            }
            rID = idx;

            vcfMat.currRID = rID - 1;
            std::vector<SmallVarInfo> varInfos;  // small variants for counting in read alignments
            std::vector<std::pair<int, int> > breakpoints;  // unused/ignored
            while (vcfMat.materializeNext(seq, varInfos, breakpoints, rID, hID))
            {
                std::cerr << " (allele " << (hID + 1) << ")";
                if (rID != (int)idx)
                    break;  // no more haplotypes for this reference
                _performSplicing(splicingInstructions, seq, transcriptNames, hID, vcfMat);
            }

            std::cerr << " DONE.\n";

            // ---------------------------------------------------------------
            // Handle contig switching.
            // ---------------------------------------------------------------

            // Check that the input GFF file is clustered (weaker than sorted) by reference name.
            if (record.rID < firstGffRecord.rID)
                throw MasonIOException("GFF file not sorted or clustered by reference.");
            // Reset transcript names and cache.
            clear(transcriptNames);
            refresh(transcriptNamesCache);
            // Flush splicing instructions.
            splicingInstructions.clear();
        }

        std::cerr << "\nDone splicing FASTA.\n";

        return 0;
    }

    // Perform splicing of transcripts.
    void _performSplicing(std::vector<SplicingInstruction> const & instructions,
                          seqan2::Dna5String const & seq,
                          seqan2::StringSet<seqan2::CharString> const & tNames,
                          int hID,  // -1 in case of no variants
                          VcfMaterializer const & vcfMat)
    {
        typedef std::vector<SplicingInstruction>::const_iterator TIter;
        TIter it = instructions.begin();
        TIter itEnd = std::adjacent_find(it, instructions.end(), differentTranscript);
        if (itEnd != instructions.end())
            ++itEnd;

        seqan2::Dna5String transcript, buffer;

        do
        {
            clear(transcript);

            bool onBreakpoint = false;
            int tID = it->transcriptID;
            for (; it != itEnd; ++it)
            {
                // Convert from original coordinate system to coordinate system with SVs.
                std::pair<int, int> smallVarInt = vcfMat.posMap.originalToSmallVarInterval(
                        it->beginPos, it->endPos);
                GenomicInterval gi = vcfMat.posMap.getGenomicIntervalSmallVarPos(smallVarInt.first);
                SEQAN_ASSERT_GT(smallVarInt.second, 0);
                GenomicInterval giR = vcfMat.posMap.getGenomicIntervalSmallVarPos(smallVarInt.second - 1);
                bool overlapsWithBreakpoint = (gi != giR);
                std::pair<int, int> largeVarInt = vcfMat.posMap.smallVarToLargeVarInterval(
                        smallVarInt.first, smallVarInt.second);

                // Transcripts with exons overlapping breakpoints are not written out.
                if (overlapsWithBreakpoint)
                {
                    onBreakpoint = true;
                    break;
                }

                // Append buffer to transcript in original state or reverse-complemented.
                buffer = infix(seq, largeVarInt.first, largeVarInt.second);
                if (it->strand != gi.strand)
                    reverseComplement(buffer);
                append(transcript, buffer);
            }

            if (onBreakpoint)
            {
                std::cerr << "\nWARNING: Exon lies on breakpoint!\n";
                while (it != instructions.end() && it->transcriptID == tID)
                    ++it;
            }
            else
            {
                std::stringstream ss;
                ss << tNames[tID];
                if (!empty(options.matOptions.vcfFileName))
                    ss << options.haplotypeNameSep << (hID + 1);
                writeRecord(seqFileOut, ss.str(), transcript);
            }

            // Search next range.
            itEnd = std::adjacent_find(it, instructions.end(), differentTranscript);
            if (itEnd != instructions.end())
                ++itEnd;
        }
        while (it != instructions.end());
    }

    // Append the transcript names for the given record.
    void _appendTranscriptNames(seqan2::String<unsigned> & tIDs,  // transcript ids to write out
                                seqan2::StringSet<seqan2::CharString> & contigNames,
                                seqan2::NameStoreCache<seqan2::StringSet<seqan2::CharString> > & cache,
                                MyGffRecord const & record)
    {
        clear(tIDs);

        seqan2::CharString groupNames;
        for (unsigned i = 0; i < length(record.tagNames); ++i)
            if (record.tagNames[i] == options.gffGroupBy)
                groupNames = record.tagValues[i];
        if (empty(groupNames))
            return;  // Record has no group names.

        // Write out the ids of the transcripts that the record belongs to as indices in contigNames.
        unsigned idx = 0;
        seqan2::StringSet<seqan2::CharString> ss;
        strSplit(ss, groupNames, seqan2::EqualsChar<','>());
        for (unsigned i = 0; i < length(ss); ++i)
        {
            if (empty(ss[i]))
                continue;
            if (!getIdByName(idx, cache, ss[i]))
            {
                appendValue(tIDs, length(contigNames));
                appendName(cache, ss[i]);
            }
            else
            {
                appendValue(tIDs, idx);
            }
        }
    }

    void _readFirstRecord(MyGffRecord & record)
    {
        record.rID = record.INVALID_IDX;  // uninitialized

        bool found = false;
        while (!found && !atEnd(gffFileIn))
        {
            readRecord(record, gffFileIn);

            // Translate ref to idx from VCF.
            unsigned idx = 0;
            if (!getIdByName(idx, vcfMat.faiIndex, record.ref))
                throw MasonIOException("Reference name from GFF/GTF not in VCF!");
            record.rID = idx;

            if (empty(options.gffType) || (options.gffType == record.type))
            {
                found = true;
                break;
            }
        }
        if (!found)
            record.rID = std::numeric_limits<int>::max();
    }
};

// ==========================================================================
// Functions
// ==========================================================================

// --------------------------------------------------------------------------
// Function parseCommandLine()
// --------------------------------------------------------------------------

seqan2::ArgumentParser::ParseResult
parseCommandLine(MasonSplicingOptions & options, int argc, char const ** argv)
{
    // Setup ArgumentParser.
    seqan2::ArgumentParser parser("mason_splicing");
    // Set short description, version, and date.
    setShortDescription(parser, "Generating Transcripts");
    setDateAndVersion(parser);
    setCategory(parser, "Simulators");

    // Define usage line and long description.
    addUsageLine(parser,
                 "[OPTIONS] \\fB-ir\\fP \\fIIN.fa\\fP \\fB-ig\\fP \\fIIN.gff\\fP [\\fB-iv\\fP \\fIIN.vcf\\fP] \\fB-o\\fP \\fIOUT.fa\\fP");
    addDescription(parser,
                   "Create transcripts from \\fIIN.fa\\fP using the annotations from \\fIIN.gff\\fP.  The resulting "
                   "transcripts are written to \\fIOUT.fa\\fP.");
    addDescription(parser,
                   "You can pass an optional VCF file \\fIIN.vcf\\fP and the transcripts will be created from the "
                   "haplotypes stored in the VCF file.");

    // Add option and text sections.
    options.addOptions(parser);
    options.addTextSections(parser);

    // Parse command line.
    seqan2::ArgumentParser::ParseResult res = seqan2::parse(parser, argc, argv);

    // Only extract  options if the program will continue after parseCommandLine()
    if (res != seqan2::ArgumentParser::PARSE_OK)
        return res;

    options.getOptionValues(parser);

    return seqan2::ArgumentParser::PARSE_OK;
}

// --------------------------------------------------------------------------
// Function main()
// --------------------------------------------------------------------------

// Program entry point.

int main(int argc, char const ** argv)
{
    // Parse the command line.
    MasonSplicingOptions options;
    seqan2::ArgumentParser::ParseResult res = parseCommandLine(options, argc, argv);

    // If there was an error parsing or built-in argument parser functionality
    // was triggered then we exit the program.  The return code is 1 if there
    // were errors and 0 if there were none.
    if (res != seqan2::ArgumentParser::PARSE_OK)
        return res == seqan2::ArgumentParser::PARSE_ERROR;

    std::cerr << "MASON SPLICING\n"
              << "==============\n\n";

    // Print the command line arguments back to the user.
    if (options.verbosity > 0)
    {
        std::cerr << "__OPTIONS____________________________________________________________________\n"
                  << "\n";
        options.print(std::cerr);
    }

    MasonSplicingApp app(options);
    return app.run();
}