File: sequencing.h

package info (click to toggle)
seqan2 2.5.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 228,748 kB
  • sloc: cpp: 257,602; ansic: 91,967; python: 8,326; sh: 1,056; xml: 570; makefile: 229; awk: 51; javascript: 21
file content (646 lines) | stat: -rw-r--r-- 23,829 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
// ==========================================================================
//                         Mason - A Read Simulator
// ==========================================================================
// Copyright (c) 2006-2026, Knut Reinert, FU Berlin
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above copyright
//       notice, this list of conditions and the following disclaimer in the
//       documentation and/or other materials provided with the distribution.
//     * Neither the name of Knut Reinert or the FU Berlin nor the names of
//       its contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL KNUT REINERT OR THE FU BERLIN BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
// DAMAGE.
//
// ==========================================================================
// Author: Manuel Holtgrewe <manuel.holtgrewe@fu-berlin.de>
// ==========================================================================
// Simulator for the sequencing process.
// ==========================================================================

#ifndef APPS_MASON2_SEQUENCING_H_
#define APPS_MASON2_SEQUENCING_H_

#include <stdexcept>
#include <random>

#include <seqan/bam_io.h>
#include <seqan/seq_io.h>
#include <seqan/modifier.h>
#include <seqan/sequence.h>

#include "mason_options.h"
#include "methylation_levels.h"

// ===========================================================================
// Class IlluminaSequencingOptions
// ===========================================================================

class IlluminaModel
{
public:
    // Probabilities for a mismatch at a given position.
    seqan2::String<double> mismatchProbabilities;

    // Standard deviations for the normal distributions of base qualities for the mismatch case.
    seqan2::String<double> mismatchQualityMeans;
    // Standard deviations for the normal distributions of base qualities for the mismatch case.
    seqan2::String<double> mismatchQualityStdDevs;

    // Standard deviations for the normal distributions of base qualities for the non-mismatch case.
    seqan2::String<double> qualityMeans;
    // Standard deviations for the normal distributions of base qualities for the non-mismatch case.
    seqan2::String<double> qualityStdDevs;

    IlluminaModel()
    {}
};

// ===========================================================================
// Class ThresholdMatrix
// ===========================================================================

class ThresholdMatrix
{
public:
    // The scaling parameter k.
    double _k;
    // Whether or not to use the sqrt for the std deviation computation.
    bool _useSqrt;
    // Mean of the log normally distributed noise.
    double _noiseMu;
    // Standard deviation of the log normally distributed noise.
    double _noiseSigma;
    // The edge length of the matrix.
    mutable unsigned _size;
    // The data of the matrix.
    mutable seqan2::String<double> _data;

    ThresholdMatrix()
            : _k(0), _useSqrt(false), _noiseMu(0), _noiseSigma(0), _size(0)
    {}

    ThresholdMatrix(double k, bool useSqrt, double noiseMu, double noiseSigma)
            : _k(k), _useSqrt(useSqrt), _noiseMu(noiseMu), _noiseSigma(noiseSigma), _size(0)
    {}

    inline double
    computeThreshold(unsigned r1, unsigned r2) const
    {
        if (r1 > r2)
            return computeThreshold(r2, r1);
        // The epsilon we use for convergence detection.
        const double EPSILON = 0.00001;

        // In i, we will count the number of iterations so we can limit the maximal
        // number of iterations.
        [[maybe_unused]] unsigned i = 0;

        // f1 is the density function for r1 and f2 the density function for r2.

        // Pick left such that f1(left) > f2(left).
        double left = r1;
        if (left == 0) left = 0.23;
        while (dispatchDensityFunction(r1, left) <= dispatchDensityFunction(r2, left))
            left /= 2.0;
        // And pick right such that f1(right) < f2(right).
        double right = r2;
        if (right == 0) right = 0.5;
        while (dispatchDensityFunction(r1, right) >= dispatchDensityFunction(r2, right))
            right *= 2.;

        // Now, search for the intersection point.
        while (true)
        {
            SEQAN_ASSERT_LT_MSG(i, 1000u, "Too many iterations (%u)! r1 = %u, r2 = %u.", i, r1, r2);
            i += 1;

            double center = (left + right) / 2;
            double fCenter1 = dispatchDensityFunction(r1, center);
            double fCenter2 = dispatchDensityFunction(r2, center);
            double delta = fabs(fCenter1 - fCenter2);
            if (delta < EPSILON)
                return center;

            if (fCenter1 < fCenter2)
                right = center;
            else
                left = center;
        }
    }

    inline void
    extendThresholds(unsigned dim) const
    {
        // Allocate new data array for matrix.  Then compute values or copy
        // over existing ones.
        seqan2::String<double> newData;
        resize(newData, dim * dim);
        for (unsigned i = 0; i < dim; ++i) {
            for (unsigned j = 0; j < dim; ++j) {
                if (i == j)
                    continue;
                if (i < _size && j < _size)
                    newData[i * dim + j] = _data[i * _size + j];
                else
                    newData[i * dim + j] = computeThreshold(i, j);
            }
        }
        // Update matrix.
        assign(_data, newData);
        _size = dim;
    }

    inline double
    getThreshold(unsigned r1, unsigned r2) const
    {
        if (_size <= r1 || _size <= r2)
            extendThresholds(std::max(r1, r2) + 1);
        return _data[r1 * _size + r2];
    }

    inline void
    setK(double k)
    {
        _k = k;
    }

    inline void
    setUseSqrt(bool useSqrt)
    {
        _useSqrt = useSqrt;
    }

    inline void
    setNoiseMu(double mu)
    {
        _noiseMu = mu;
    }

    inline void
    setNoiseSigma(double sigma)
    {
        _noiseSigma = sigma;
    }

    inline void
    setNoiseMeanStdDev(double mean, double stdDev)
    {
        auto tmp = seqan2::cvtLogNormalDistParam(mean, stdDev);
        _noiseMu = tmp.m();
        _noiseSigma = tmp.s();
    }

    inline double
    normalDensityF(double x, double mu, double sigma) const
    {
        const double PI = 3.14159265;
        double sigma2 = sigma * sigma;
        return exp(- (x - mu) * (x - mu) / (2 * sigma2)) / sqrt(2 * PI * sigma2);
    }

    inline double
    lognormalDensityF(double x, double mu, double sigma) const
    {
        if (x <= 0)
            return 0;
        const double PI = 3.14159265;
        double sigma2 = sigma * sigma;
        double log_mu2 = (log(x) - mu) * (log(x) - mu);
        return exp(-log_mu2 / (2 * sigma2)) / (x * sigma * sqrt(2 * PI));
    }

    inline double
    dispatchDensityFunction(unsigned r, double x) const
    {
        if (r == 0) {
            return lognormalDensityF(x, _noiseMu, _noiseSigma);
        } else {
            double rd = static_cast<double>(r);
            return normalDensityF(x, rd, (_useSqrt ? sqrt(rd) : rd));
        }
    }
};

// ===========================================================================
// Class Roche454Model
// ===========================================================================

// Stores the threshold matrix.

class Roche454Model
{
public:
    ThresholdMatrix thresholdMatrix;
};

// ============================================================================
// Tags, Classes, Enums
// ============================================================================

typedef seqan2::Dna5String TRead;
typedef seqan2::CharString TQualities;
typedef std::mt19937 TRng;
typedef seqan2::Infix<seqan2::Dna5String const>::Type TFragment;
typedef seqan2::String<seqan2::CigarElement<> > TCigarString;

// ----------------------------------------------------------------------------
// Class SequencingSimulationInfo
// ----------------------------------------------------------------------------

// Composition of verbose information for sequencing simulation.
//
// Objects of this type store information such as the CIGAR string and the original sampled sequence for debug and
// evaluation purposes.

struct SequencingSimulationInfo
{
    // Originally sampled sequence, that together with the errors introduced by sequencing gives the read sequence.
    TRead sampleSequence;

    // The CIGAR string, MXID for matches, mismatches, insertions, deletions with respect to the reference.
    TCigarString cigar;

    // Whether or not this comes from the forward strand.
    bool isForward;

    // The contig and haplotype ID.
    int rID, hID;

    // The begin position of the sequence.
    int beginPos;

    // Number of bases covering SNPs and overlapping with indels.
    int snpCount, indelCount;

    SequencingSimulationInfo() : isForward(false), rID(-1), hID(-1), beginPos(-1), snpCount(0), indelCount(0)
    {}

    // Returns number in reference covered by this read.
    int lengthInRef() const
    {
        int result = 0;
        for (unsigned i = 0; i < length(cigar); ++i)
            if (cigar[i].operation == 'M' || cigar[i].operation == 'M' || cigar[i].operation == 'D')
                result += cigar[i].count;
        return result;
    }

    template <typename TStream>
    void serialize(TStream & stream) const
    {
        stream << "SEQUENCE=" << rID << " HAPLOTYPE=" << hID << " BEGIN_POS=" << beginPos
               << " SAMPLE_SEQUENCE=" << sampleSequence << " CIGAR=";
        for (unsigned i = 0; i < length(cigar); ++i)
            stream << cigar[i].count << cigar[i].operation;
        stream << " STRAND=" << (isForward ? 'F' : 'R');
        stream << " NUM_SNPS=" << snpCount << " NUM_INDELS=" << indelCount;
    }
};

// ----------------------------------------------------------------------------
// Class SequencingSimulator
// ----------------------------------------------------------------------------

// Responsible for the simulation of sequencing.
//
// We pick the read length independently of the error since the sequencing simulator might have context dependent
// errors.

class SequencingSimulator
{
public:
    // Sequencing direction from left or right side.
    enum Direction
    {
        LEFT,
        RIGHT
    };

    static Direction direction(Direction s)
    {
        return (s == LEFT) ? RIGHT : LEFT;
    }

    // Strand for sequencing.
    enum Strand
    {
        FORWARD,
        REVERSE
    };

    static Strand toggle(Strand s)
    {
        return (s == FORWARD) ? REVERSE : FORWARD;
    }

    // The random number generators for sequences and methylation/BS-treatment simulation.
    TRng & rng;
    TRng & methRng;
    // Overall sequencing options.
    SequencingOptions const * seqOptions;

    // Buffer for the materialization of BS-seq treated fragments.
    seqan2::Dna5String methFrag;

    SequencingSimulator(TRng & rng, TRng & methRng, SequencingOptions const & _options) :
            rng(rng), methRng(methRng), seqOptions(&_options)
    {}

    virtual ~SequencingSimulator() = 0;

    // Pick read length for the fragment to be simulated.
    virtual unsigned readLength() = 0;

    // Simulate paired-end sequencing from a fragment.
    //
    // If BS-seq is enabled in seqOptions->bsSeqOptions then levels must be != 0.
    void simulatePairedEnd(TRead & seqL, TQualities & qualsL, SequencingSimulationInfo & infoL,
                           TRead & seqR, TQualities & qualsR, SequencingSimulationInfo & infoR,
                           TFragment const & frag,
                           MethylationLevels const * levels = 0);

    // Simulate single-end sequencing from a fragment.
    //
    // If BS-seq is enabled in seqOptions->bsSeqOptions then levels must be != 0.
    void simulateSingleEnd(TRead & seq, TQualities & quals, SequencingSimulationInfo & info,
                           TFragment const & frag,
                           MethylationLevels const * levels = 0);

    // Actually simulate read and qualities from fragment and direction forward/reverse strand.
    //
    // seq -- target sequence of the read to simulate
    // quals -- target qualities of the read to simulate
    // frag -- source fragment
    // strand -- the strand of the fragment, coordinates are relative to forward and will be affected by this flag
    // dir -- whether this is the left or right read
    virtual void simulateRead(TRead & seq, TQualities & quals, SequencingSimulationInfo & info,
                              TFragment const & frag, Direction dir, Strand strand) = 0;

private:
    // Simulate BS-seq treatment on forward/reverse strand of frag with the given methylation levels.
    //
    // The result is a DNA string with the translations.
    void _simulateBSTreatment(seqan2::Dna5String & methFragment,
                              TFragment const & frag,
                              MethylationLevels const & levels,
                              bool reverse);

    // Implementation of the single-end and paired-end sequencing.  The functions without an underscore forward here.
    void _simulatePairedEnd(TRead & seqL, TQualities & qualsL, SequencingSimulationInfo & infoL,
                            TRead & seqR, TQualities & qualsR, SequencingSimulationInfo & infoR,
                            TFragment const & frag, bool isForward);

    // Simulate single-end sequencing from a fragment.
    //
    // If BS-seq is enabled in seqOptions->bsSeqOptions then levels must be != 0.
    void _simulateSingleEnd(TRead & seq, TQualities & quals, SequencingSimulationInfo & info,
                            TFragment const & frag, bool isForward);
};

inline SequencingSimulator::~SequencingSimulator() {}

// ----------------------------------------------------------------------------
// Class IlluminaSequencingSimulator
// ----------------------------------------------------------------------------

// Illumina read simulation.

class IlluminaSequencingSimulator : public SequencingSimulator
{
public:
    // Configuration for Illumina sequencing.
    IlluminaSequencingOptions illuminaOptions;

    // Storage for the Illumina simulation.
    std::unique_ptr<IlluminaModel> model;

    IlluminaSequencingSimulator(TRng & rng, TRng & methRng, SequencingOptions const & seqOptions,
                                IlluminaSequencingOptions const & illuminaOptions);

    // Pick read length for the fragment to be simulated.
    virtual unsigned readLength()
    {
        return illuminaOptions.readLength;
    }

    // Actually simulate read and qualities from fragment and direction forward/reverse strand.
    virtual void simulateRead(TRead & seq, TQualities & quals, SequencingSimulationInfo & info,
                              TFragment const & frag, Direction dir, Strand strand);

private:
    // Initialize the model.
    void _initModel();

    // Simulate PHRED qualities from the CIGAR string.
    void _simulateQualities(TQualities & quals, TCigarString const & cigar);

    // Simulate CIGAR string.  We can do this with position specific parameters only and thus independent of any
    // context.
    void _simulateCigar(TCigarString & cigar);
};

// ----------------------------------------------------------------------------
// Class Roche454SequencingSimulator
// ----------------------------------------------------------------------------

// 454 read simulation.

class Roche454SequencingSimulator : public SequencingSimulator
{
public:
    // Configuration for Roche454 sequencing.
    Roche454SequencingOptions roche454Options;

    // Precomputed model data for 454 Sequencing.
    std::unique_ptr<Roche454Model> model;

    Roche454SequencingSimulator(TRng & rng, TRng & methRng,
                                SequencingOptions const & seqOptions,
                                Roche454SequencingOptions const & roche454Options);

    // Initialize the threshold matrix.
    void _initModel();

    // Pick read length for the sequence to be sampled from fragments.
    virtual unsigned readLength();

    // Actually simulate read and qualities from fragment and direction forward/reverse strand.
    virtual void simulateRead(TRead & seq, TQualities & quals, SequencingSimulationInfo & info,
                              TFragment const & frag, Direction dir, Strand strand);
};

// ----------------------------------------------------------------------------
// Class SangerSequencingSimulator
// ----------------------------------------------------------------------------

// Sanger read simulation.

class SangerSequencingSimulator : public SequencingSimulator
{
public:
    // Configuration for Sanger sequencing.
    SangerSequencingOptions sangerOptions;

    SangerSequencingSimulator(TRng & rng, TRng & methRng,
                              SequencingOptions const & seqOptions,
                              SangerSequencingOptions const & sangerOptions) :
            SequencingSimulator(rng, methRng, seqOptions), sangerOptions(sangerOptions)
    {}

    // Pick read length for the sequence to be sampled from fragments.
    virtual unsigned readLength();

    // Actually simulate read and qualities from fragment and direction forward/reverse strand.
    virtual void simulateRead(TRead & seq, TQualities & quals, SequencingSimulationInfo & info,
                              TFragment const & frag, Direction dir, Strand strand);

    // Simulate CIGAR string.  We can do this with position specific parameters only and thus independent of any
    // context.
    void _simulateCigar(TCigarString & cigar, unsigned sampleLength);

    void _simulateQualities(TQualities & quals, TCigarString const & cigar, unsigned sampleLength);
};

// ----------------------------------------------------------------------------
// Class SequencingSimulatorFactory
// ----------------------------------------------------------------------------

// Factory for SequencingSimulator objects.op

class SequencingSimulatorFactory
{
public:
    TRng & rng;
    TRng & methRng;

    SequencingOptions const & seqOptions;
    IlluminaSequencingOptions const & illuminaOptions;
    Roche454SequencingOptions const & roche454Options;
    SangerSequencingOptions const & sangerOptions;

    SequencingSimulatorFactory(TRng & rng, TRng & methRng,
                               SequencingOptions const & seqOptions,
                               IlluminaSequencingOptions const & illuminaOptions,
                               Roche454SequencingOptions const & roche454Options,
                               SangerSequencingOptions const & sangerOptions) :
            rng(rng), methRng(methRng), seqOptions(seqOptions), illuminaOptions(illuminaOptions),
            roche454Options(roche454Options), sangerOptions(sangerOptions)
    {}

    std::unique_ptr<SequencingSimulator> make();
};

// ============================================================================
// Metafunctions
// ============================================================================

// ============================================================================
// Functions
// ============================================================================

// ----------------------------------------------------------------------------
// Function appendOrientation()
// ----------------------------------------------------------------------------

// Returns (a, b) where a is the difference in resulting read length and b is the difference in used up input/reference
// sequence length.

inline std::pair<int, int> appendOperation(TCigarString & cigar, char op)
{
    // Canceling out of events.  This can only happen if the CIGAR string is not empty.
    if (!empty(cigar) && ((back(cigar).operation == 'I' && op == 'D') ||
                          (back(cigar).operation == 'D' && op == 'I')))
    {
        if (back(cigar).count > 1)
            back(cigar).count -= 1;
        else
            eraseBack(cigar);
        return (op == 'D') ? std::make_pair(-1, 0) : std::make_pair(0, -1);
    }

    // No canceling out of events.  The read length increases by one if the operation is no deletion and one base of
    // input sequence is used up if the operation is not an insertion.
    if (!empty(cigar) && back(cigar).operation == op)
        back(cigar).count += 1;
    else
        appendValue(cigar, seqan2::CigarElement<>(op, 1));
    return std::make_pair((op != 'D'), (op != 'I'));
}

// ---------------------------------------------------------------------------
// Function _simulateSequence()
// ---------------------------------------------------------------------------

// Simulate the characters that polymorphisms turn into and inserted characters.
//
// Through the usage of ModifiedString, we will always go from the left to the right end.
template <typename TFrag>
void _simulateSequence(TRead & read, TRng & rng, TFrag const & frag,
                       TCigarString const & cigar)
{
    clear(read);

    typedef typename seqan2::Iterator<TFrag>::Type TFragIter;
    TFragIter it = begin(frag, seqan2::Standard());

    // Insertions can be any of ACGT.
    std::uniform_int_distribution<unsigned short> dna_dist_insertion{0, 3};
    // Substitutions can be any of ACGT except the original character.
    // We draw from [0, 2] and add 1 if the drawn value is >= the original character.
    // |   | 0 | 1 | 2 | <- dna_dist_substitution
    // | 0 | 1 | 2 | 3 |
    // | 1 | 0 | 2 | 3 |
    // | 2 | 0 | 1 | 3 |
    // | 3 | 0 | 1 | 2 |
    //   ^
    // OrdVal(*it)
    std::uniform_int_distribution<unsigned short> dna_dist_substitution{0, 2};

    for (unsigned i = 0; i < length(cigar); ++i)
    {
        switch (cigar[i].operation)
        {
            case 'D':
                it += cigar[i].count;
                break;
            case 'M':
                for (unsigned j = 0; j < cigar[i].count; ++j, ++it)
                    appendValue(read, *it);
                break;
            case 'I':
                for (unsigned j = 0; j < cigar[i].count; ++j)
                    appendValue(read, seqan2::Dna5(dna_dist_insertion(rng)));
                break;
            case 'X':
                for (unsigned j = 0; j < cigar[i].count; ++j)
                {
                    auto new_rank = dna_dist_substitution(rng);
                    new_rank += (new_rank >= ordValue(*it));
                    appendValue(read, seqan2::Dna5(new_rank));
                }
                it += cigar[i].count;
                break;
            default:
                SEQAN_FAIL("Invalid CIGAR operation!");
        }
    }
}

#endif  // #ifndef APPS_MASON2_SEQUENCING_H_