1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
// ==========================================================================
// Mason - A Read Simulator
// ==========================================================================
// Copyright (c) 2006-2026, Knut Reinert, FU Berlin
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of Knut Reinert or the FU Berlin nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL KNUT REINERT OR THE FU BERLIN BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
// DAMAGE.
//
// ==========================================================================
// Author: Manuel Holtgrewe <manuel.holtgrewe@fu-berlin.de>
// ==========================================================================
#include "sequencing.h"
// Maximal homopolymer length we will observe.
const unsigned MAX_HOMOPOLYMER_LEN = 40;
// ---------------------------------------------------------------------------
// Constructor Roche454SequencingSimulator::Roche454SequencingSimulator()
// ---------------------------------------------------------------------------
Roche454SequencingSimulator::Roche454SequencingSimulator(
TRng & rng,
TRng & methRng,
SequencingOptions const & seqOptions,
Roche454SequencingOptions const & roche454Options) :
SequencingSimulator(rng, methRng, seqOptions), roche454Options(roche454Options), model(new Roche454Model())
{
_initModel();
}
// ---------------------------------------------------------------------------
// Function Roche454SequencingSimulator::_initModel()
// ---------------------------------------------------------------------------
// Initialize the threshold matrix.
void Roche454SequencingSimulator::_initModel()
{
model->thresholdMatrix.setK(roche454Options.k);
model->thresholdMatrix.setUseSqrt(roche454Options.sqrtInStdDev);
model->thresholdMatrix.setNoiseMeanStdDev(roche454Options.backgroundNoiseMean, roche454Options.backgroundNoiseStdDev);
}
// ---------------------------------------------------------------------------
// Function Roche454SequencingSimulator::readLength()
// ---------------------------------------------------------------------------
unsigned Roche454SequencingSimulator::readLength()
{
if (roche454Options.lengthModel == Roche454SequencingOptions::UNIFORM)
{
// Pick uniformly.
double minLen = roche454Options.minReadLength;
double maxLen = roche454Options.maxReadLength;
std::uniform_real_distribution<double> dist(minLen, maxLen);
double len = dist(rng);
return static_cast<unsigned>(round(len));
}
else
{
// Pick normally distributed.
std::normal_distribution<double> dist(roche454Options.meanReadLength,
roche454Options.stdDevReadLength);
double len = dist(rng);
return static_cast<unsigned>(round(len));
}
}
// ---------------------------------------------------------------------------
// Function Roche454SequencingSimulator::simulateRead()
// ---------------------------------------------------------------------------
void Roche454SequencingSimulator::simulateRead(
TRead & seq, TQualities & quals, SequencingSimulationInfo & info,
TFragment const & frag, Direction dir, Strand strand)
{
clear(seq);
clear(quals);
// Compute read length and check whether it fits in fragment.
unsigned sampleLength = this->readLength();
if (sampleLength > length(frag))
{
throw std::runtime_error("454 read is too long, increase fragment length");
}
// Get a copy of the to be sequenced base stretch.
TRead haplotypeInfix;
if (dir == LEFT)
haplotypeInfix = prefix(frag, sampleLength);
else
haplotypeInfix = suffix(frag, length(frag) - sampleLength);
if (strand == REVERSE)
reverseComplement(haplotypeInfix);
// In the flow cell simulation, we will simulate light intensities which will be stored in observedIntensities.
seqan2::String<double> observedIntensities;
reserve(observedIntensities, 4 * sampleLength);
seqan2::Dna5String observedBases;
// We also store the real homopolymer length.
seqan2::String<unsigned> realBaseCount;
// Probability density function to use for the background noise.
std::lognormal_distribution<double> distNoise(seqan2::cvtLogNormalDistParam(roche454Options.backgroundNoiseMean,
roche454Options.backgroundNoiseStdDev));
// Initialize information about the current homopolymer length.
unsigned homopolymerLength = 0;
seqan2::Dna homopolymerType = haplotypeInfix[0];
while (homopolymerLength < length(haplotypeInfix) && haplotypeInfix[homopolymerLength] == homopolymerType)
++homopolymerLength;
// Simulate flowcell.
for (unsigned i = 0, j = 0; i < sampleLength; ++j, j = j % 4) // i indicates first pos of current homopolymer, j indicates flow phase
{
if (ordValue(homopolymerType) == j)
{
// Simulate positive flow observation.
double l = homopolymerLength;
double sigma = roche454Options.k * (roche454Options.sqrtInStdDev ? sqrt(l) : l);
std::normal_distribution<double> distIntensity(homopolymerLength, sigma);
double intensity = distIntensity(rng);
intensity += distNoise(rng); // Add noise.
appendValue(observedIntensities, intensity);
appendValue(realBaseCount, homopolymerLength);
// Get begin pos and length of next homopolymer.
i += homopolymerLength;
if (i < length(haplotypeInfix))
{
homopolymerType = haplotypeInfix[i];
homopolymerLength = 0;
while (((i + homopolymerLength) < length(haplotypeInfix)) && haplotypeInfix[i + homopolymerLength] == homopolymerType)
++homopolymerLength;
}
}
else
{
// Simulate negative flow observation.
//
// Constants taken from MetaSim paper which have it from the
// original 454 publication.
double intensity = std::max(0.0, distNoise(rng));
appendValue(observedIntensities, intensity);
appendValue(realBaseCount, 0);
}
}
seqan2::String<seqan2::CigarElement<> > cigar;
// Call bases, from this build the edit string and maybe qualities. We only support the "inter" base calling
// method which was published by the MetaSim authors in the PLOS paper.
typedef seqan2::Iterator<seqan2::String<double>, seqan2::Standard>::Type IntensitiesIterator;
int i = 0; // Flow round, Dna(i % 4) gives base.
for (IntensitiesIterator it = begin(observedIntensities); it != end(observedIntensities); ++it, ++i)
{
double threshold = model->thresholdMatrix.getThreshold(static_cast<unsigned>(floor(*it)), static_cast<unsigned>(ceil(*it)));
unsigned calledBaseCount = static_cast<unsigned>(*it < threshold ? floor(*it) : ceil(*it));
// Add any matches.
unsigned j = 0;
for (; j < std::min(calledBaseCount, realBaseCount[i]); ++j)
{
appendOperation(cigar, 'M');
appendValue(seq, seqan2::Dna(i % 4));
}
// Add insertions, if any.
for (; j < calledBaseCount; ++j)
{
appendOperation(cigar, 'I');
appendValue(seq, seqan2::Dna(i % 4));
}
// Add deletions, if any.
for (; j < realBaseCount[i]; ++j)
appendOperation(cigar, 'D');
// Simulate qualities if configured to do so.
if (seqOptions->simulateQualities)
{
// Compute likelihood for calling the bases, given this intensity and the Phred score from this.
double densitySum = 0;
for (unsigned j = 0; j <= std::max(4u, 2 * MAX_HOMOPOLYMER_LEN); ++j) // Anecdotally through plot in maple: Enough to sum up to 4 or 2 times the maximal homopolymer length.
densitySum += model->thresholdMatrix.dispatchDensityFunction(j, *it);
double x = 0; // Probability of seeing < (j+1) bases.
for (unsigned j = 0; j < calledBaseCount; ++j) {
x += model->thresholdMatrix.dispatchDensityFunction(j, *it);
int q = -static_cast<int>(10 * ::std::log10(x / densitySum));
q = std::max(0, std::min(40, q));
appendValue(quals, (char)('!' + q));
}
}
}
// Write out extended sequencing information info if configured to do so. We always write out the sample position
// and alignment information.
info.cigar = cigar;
unsigned len = 0;
_getLengthInRef(len, cigar);
info.beginPos = (dir == LEFT) ? beginPosition(frag) : (beginPosition(frag) + length(frag) - len);
info.isForward = (strand == FORWARD);
if (seqOptions->embedReadInfo)
{
if (dir == LEFT)
info.sampleSequence = prefix(frag, len);
else
info.sampleSequence = suffix(frag, length(frag) - len);
if (strand == REVERSE)
reverseComplement(info.sampleSequence);
}
}
|