File: simulate_sanger.cpp

package info (click to toggle)
seqan2 2.5.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 228,748 kB
  • sloc: cpp: 257,602; ansic: 91,967; python: 8,326; sh: 1,056; xml: 570; makefile: 229; awk: 51; javascript: 21
file content (219 lines) | stat: -rw-r--r-- 9,619 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
// ==========================================================================
//                         Mason - A Read Simulator
// ==========================================================================
// Copyright (c) 2006-2026, Knut Reinert, FU Berlin
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above copyright
//       notice, this list of conditions and the following disclaimer in the
//       documentation and/or other materials provided with the distribution.
//     * Neither the name of Knut Reinert or the FU Berlin nor the names of
//       its contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL KNUT REINERT OR THE FU BERLIN BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
// DAMAGE.
//
// ==========================================================================
// Author: Manuel Holtgrewe <manuel.holtgrewe@fu-berlin.de>
// ==========================================================================

#include "sequencing.h"

// ===========================================================================
// Class SangerSequencingSimulator
// ===========================================================================

// ---------------------------------------------------------------------------
// Function SangerSequencingSimulator::readLength()
// ---------------------------------------------------------------------------

unsigned SangerSequencingSimulator::readLength()
{
    if (sangerOptions.readLengthIsUniform)
    {
        // Pick uniformly.
        double minLen = sangerOptions.readLengthMin;
        double maxLen = sangerOptions.readLengthMax;
        std::uniform_real_distribution<double> dist(minLen, maxLen);
        double len = dist(rng);
        return static_cast<unsigned>(round(len));
    }
    else
    {
        // Pick normally distributed.
        std::normal_distribution<double> dist(sangerOptions.readLengthMean, sangerOptions.readLengthError);
        double len = dist(rng);
        return static_cast<unsigned>(round(len));
    }
}

// ---------------------------------------------------------------------------
// Function SangerSequencingSimulator::simulateRead()
// ---------------------------------------------------------------------------

// Actually simulate read and qualities from fragment and direction forward/reverse strand.
void SangerSequencingSimulator::simulateRead(
        TRead & seq, TQualities & quals, SequencingSimulationInfo & info,
        TFragment const & frag, Direction dir, Strand strand)
{
    // TODO(holtgrew): Pick better names for read length here.
    // Pick sampled length.
    unsigned sampleLength = this->readLength();

    if (sampleLength > length(frag))
    {
        throw std::runtime_error("Sanger read is too long, increase fragment length");
    }

    // Simulate CIGAR string.
    TCigarString cigar;
    this->_simulateCigar(cigar, sampleLength);

    // Simulate sequence (materialize mismatches and insertions).
    typedef seqan2::ModifiedString<seqan2::ModifiedString<TFragment, seqan2::ModView<seqan2::FunctorComplement<seqan2::Dna5> > >, seqan2::ModReverse> TRevCompFrag;
    if ((dir == LEFT) && (strand == FORWARD))
    {
        _simulateSequence(seq, rng, prefix(frag, sampleLength), cigar);
    }
    else if ((dir == LEFT) && (strand == REVERSE))
    {
        seqan2::Prefix<TFragment>::Type holder(prefix(frag, sampleLength));
        _simulateSequence(seq, rng, TRevCompFrag(holder), cigar);
    }
    else if ((dir == RIGHT) && (strand == FORWARD))
    {
        _simulateSequence(seq, rng, suffix(frag, length(frag) - sampleLength), cigar);
    }
    else  // ((dir == RIGHT) && (strand == REVERSE))
    {
        seqan2::Suffix<TFragment>::Type holder(suffix(frag, length(frag) - sampleLength));
        _simulateSequence(seq, rng, TRevCompFrag(holder), cigar);
    }

    // Simulate Qualities.
    this->_simulateQualities(quals, cigar, sampleLength);

    // Reverse qualities if necessary.
    if (strand == REVERSE)
        reverse(quals);

    // Write out sequencing information info if configured to do so.
    if (seqOptions->embedReadInfo)
    {
        info.cigar = cigar;
        unsigned len = 0;
        _getLengthInRef(len, cigar);
        if (dir == LEFT)
            info.sampleSequence = prefix(frag, len);
        else
            info.sampleSequence = suffix(frag, length(frag) - len);
        info.isForward = (strand == FORWARD);
        if (strand == REVERSE)
            reverseComplement(info.sampleSequence);
    }
}

// ---------------------------------------------------------------------------
// Function SangerSequencingSimulator::_simulateCigar()
// ---------------------------------------------------------------------------

// Simulate CIGAR string.  We can do this with position specific parameters only and thus independent of any
// context.
void SangerSequencingSimulator::_simulateCigar(TCigarString & cigar, unsigned sampleLength)
{
    clear(cigar);
    std::uniform_real_distribution<double> dist(0, 1);

    for (unsigned i = 0; i < sampleLength;)
    {
        double x = dist(rng);
        double pos = 1.0 * i / (sampleLength - 1);
        double pMismatch = sangerOptions.probabilityMismatchBegin + pos * (sangerOptions.probabilityMismatchEnd - sangerOptions.probabilityMismatchBegin);
        double pInsert   = sangerOptions.probabilityInsertBegin + pos * (sangerOptions.probabilityInsertEnd - sangerOptions.probabilityInsertBegin);
        double pDelete   = sangerOptions.probabilityDeleteBegin + pos * (sangerOptions.probabilityDeleteEnd - sangerOptions.probabilityDeleteBegin);
        double pMatch    = 1.0 - pMismatch - pInsert - pDelete;

        // Simulate mutation/insertion/deletion events.  If possible we reuse the last CIGAR entry.  Adjacent
        // insertion/deletion pairs cancel each other out.  We count i up to the input read length, thus using the
        // "second" member of appendOperation()'s result.

        if (x < pMatch)  // match
        {
            i += appendOperation(cigar, 'M').second;
        }
        else if (x < pMatch + pMismatch)  // point polymorphism
        {
            i += appendOperation(cigar, 'X').second;
        }
        else if (x < pMatch + pMismatch + pInsert) // insertion
        {
            if (i == 0 || i + 1 == sampleLength)
                continue;  // no indel at beginning/end
            i += appendOperation(cigar, 'I').second;
        }
        else  // deletion
        {
            if (i == 0 || i + 1 == sampleLength)
                continue;  // no indel at beginning/end
            i += appendOperation(cigar, 'D').second;
        }
    }
}

// ---------------------------------------------------------------------------
// Function SangerSequencingSimulator::_simulateQualities()
// ---------------------------------------------------------------------------

void SangerSequencingSimulator::_simulateQualities(
        TQualities & quals, TCigarString const & cigar, unsigned sampleLength)
{
    clear(quals);

    // unsigned pos = 0;   // Position in result.
    unsigned rPos = 0;  // Position in fragment.
    for (unsigned i = 0; i < length(cigar); ++i)
    {
        for (unsigned j = 0; j < cigar[i].count; ++j/*, ++pos*/)
        {
            double mean = 0.0, stdDev = 0.0;
            double relPos = 1.0 * rPos / (1.0 * sampleLength);

            rPos += (cigar[i].operation != 'D');

            if (cigar[i].operation == 'D')
            {
                continue;  // No quality to give out.
            }
            else if (cigar[i].operation == 'I' || cigar[i].operation == 'X')
            {
                mean = sangerOptions.qualityMatchStartMean + relPos * (sangerOptions.qualityMatchEndMean - sangerOptions.qualityMatchStartMean);
                stdDev = sangerOptions.qualityMatchStartStdDev + relPos * (sangerOptions.qualityMatchEndStdDev - sangerOptions.qualityMatchStartStdDev);
            }
            else  // cigar[i].operation == 'M'
            {
                mean = sangerOptions.qualityErrorStartMean + relPos * (sangerOptions.qualityErrorEndMean - sangerOptions.qualityErrorStartMean);
                stdDev = sangerOptions.qualityErrorStartStdDev + relPos * (sangerOptions.qualityErrorEndStdDev - sangerOptions.qualityErrorStartStdDev);
            }

            std::normal_distribution<double> dist(mean, stdDev);
            int q = static_cast<int>(dist(rng));
            q = std::max(0, std::min(40, q));
            appendValue(quals, (char)('!' + q));
        }
    }
}