1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
|
// ==========================================================================
// SeqAn - The Library for Sequence Analysis
// ==========================================================================
// Copyright (c) 2006-2026, Knut Reinert, FU Berlin
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of Knut Reinert or the FU Berlin nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL KNUT REINERT OR THE FU BERLIN BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
// DAMAGE.
//
// ==========================================================================
// Author: Jonathan Goeke <goeke@molgen.mpg.de>
// ==========================================================================
// This file contains helper functions to count words in sequences and to
// calculate probabilities and variances of word occurrences.
// ==========================================================================
// TODO (goeke) const could be added below for the input variables but the function value() in matrix_base (align) is not defined for const. Similarly, the function emittedProbabilty is not defined for const in statistics_markov_model.h
#ifndef SEQAN_INCLUDE_SEQAN_ALIGNMENT_FREE_KMER_FUNCTIONS_H_
#define SEQAN_INCLUDE_SEQAN_ALIGNMENT_FREE_KMER_FUNCTIONS_H_
namespace seqan2 {
template <typename TAlphabet>
struct UnmaskedAlphabet_
{
typedef TAlphabet Type;
};
template <>
struct UnmaskedAlphabet_<Dna5>
{
typedef Dna Type;
};
template <typename TAlphabet>
struct UnmaskedAlphabet_<const TAlphabet>
{
typedef const typename UnmaskedAlphabet_<TAlphabet>::Type Type;
};
/*!
* @fn countKmers
* @headerfile <seqan/alignment_free.h>
* @brief Counts kmers in a sequence. Optionally, a background model is returned.
*
* @signature void countKmers(kmerCounts, sequence, k);
* @signature void countKmers(kmerCounts, bgFrequencies, sequence, k);
* @signature void countKmers(kmerCounts, bgModel, sequence, k);
*
* @param[out] kmerCounts @link String @endlink of <tt>unsigned</tt> with kmer counts for every k-mer.
* @param[out] bgFrequencies @link String @endlink of background frequencies (<tt>double</tt>) representing the model.
* @param[out] bgModel @link MarkovModel @endlink to use.
* @param[in] sequence @link String @endlink (sequence) where k-mers are counted.
* @param[in] k k-mer length (<tt>unsigned</tt>).
*
* k-mers overlapping masked (aka 'N') letters are not counted in case of Dna5Strings. A Bernoulli or Markov Model
* can be choosen as a background model.
*
* @section Examples
*
* Calculate the alignment free sequence similarity o two masked DNA sequences.
*
* @code{.cpp}
* using namespace seqan2;
* // Masked sequence, we do not want to count words overlapping 'N'
* Dna5String sequenceDna5 =
* "TAGGTTTTCCGAAAAGGTAGCAACTTTACGTGATCAAACCTCTGACGGGGTTTTCCCCGTCGAAATTGGGTG"
* "TTTCTTGTCTTGTTCTCACTTGGGGCATCTCCGTCAAGCCAAGAAAGTGCTCCCTGGATTCTGTTGCTAACG"
* "AGTCTCCTCTGCATTCCTGCTTGACTGATTGGGCGGACGGGGTGTCCACCTGACGCTGAGTATCGCCGTCAC"
* "GGTGCCACATGTCTTATCTATTCAGGGATCAGAATTTATTCAGGAAATCAGGAGATGCTACACTTGGGTTAT"
* "CGAAGCTCCTTCCAAGGCGTAGCAAGGGCGACTGAGCGCGTAAGCTCTAGATCTCCTCGTGTTGCAACTACA"
* "CGCGCGGGTCACTCGAAACACATAGTATGAACTTAACGACTGCTCGTACTGAACAATGCTGAGGCAGAAGAT"
* "CGCAGACCAGGCATCCCACTGCTTGAAAAAACTATNNNNCTACCCGCCTTTTTATTATCTCATCAGATCAAG";
*
* String<unsigned> kmerCounts;
* unsigned k = 2; // Count all 2-mers
* countKmers(kmerCounts, sequenceDna5, k);
*
* for(unsigned i = 0; i<16; ++i) // Print the 2-mer counts
* std::cout<<kmerCounts[i]<<"\n"; // 34 times AA; 30 times AC; 28 times AG; ...
*
*
* String<double> nucleotideFrequencies; // Defines a Bernoulli model for DNA sequences.
* // Count all 2-mers and save the nucleotide frequencies
* countKmers(kmerCounts, nucleotideFrequencies, sequenceDna5, k);
*
* for(unsigned i = 0; i<4; ++i) // Print the nucleotide frequencies
* std::cout << nucleotideFrequencies[i] << "\n";
* // => p(A) = 0.238; p(C) = 0.254; p(G) = 0.238; p(T) = 0.27;
*
* MarkovModel<Dna, double> backgroundModel(1); // Markov model of order 1
* // Count all 2-mers and return a Markov model
* countKmers(kmerCounts, backgroundModel, sequenceDna5, k);
* std::cout<<backgroundModel.transition; // Print the transition matrix of the markov model
* @endcode
*
* @see alignmentFreeComparison
* @see calculateProbability
* @see calculateVariance
* @see calculateCovariance
* @see stringToStringSet
* @see MarkovModel
*/
/*
* Function to count kmers, Ns are not considered
*/
template <typename TString>
void countKmers(String<unsigned> & kmerCounts, TString const & sequence, unsigned const k)
{
typedef typename Value<TString>::Type TAlphabet;
typedef typename UnmaskedAlphabet_<TAlphabet>::Type TUnmaskedAlphabet;
typedef typename Iterator<TString const>::Type TIterator;
typedef typename Position<TIterator>::Type TPosition;
typedef Shape<TUnmaskedAlphabet, SimpleShape> TShape;
// Declare variables
TShape myShape; // Shape, length can be changed (kmer_length)
resize(myShape, k);
// Calculate the number of kmers, length of count vector
int kmerNumber = _intPow((unsigned)ValueSize<TUnmaskedAlphabet>::VALUE, weight(myShape));
clear(kmerCounts);
resize(kmerCounts, kmerNumber, 0);
TIterator itSequence = begin(sequence);
int counterN = 0;
// Check for any N that destroys the first kmers
unsigned j = k - 1;
for (TPosition i = position(itSequence); i <= j; ++i)
{
if (_repeatMaskValue(sequence[i]))
{
counterN = i + 1;
}
}
for (; itSequence <= (end(sequence) - k); ++itSequence)
{
// Check if there is a "N" at the end of the new kmer
if (_repeatMaskValue(value(itSequence + (k - 1))))
counterN = k; // Do not consider any kmer covering this "N"
// If there is no "N" overlapping with the current kmer, count it
if (counterN <= 0)
{
unsigned hashValue = hash(myShape, itSequence);
++kmerCounts[hashValue];
}
counterN--;
}
}
/*
* Function to count kmers and background nucleotide frequencies, Ns are not considered
* (for zero order background model)
*/
template <typename TValueBG, typename TString>
void countKmers(String<unsigned> & kmerCounts, String<TValueBG> & backgroundFrequencies, TString const & sequence, unsigned const k)
{
typedef typename Value<TString>::Type TAlphabet;
typedef typename UnmaskedAlphabet_<TAlphabet>::Type TUnmaskedAlphabet;
typedef typename Iterator<TString const>::Type TIterator;
typedef typename Iterator<String<TValueBG> >::Type TIteratorTStringBG;
typedef typename Position<TIterator>::Type TPosition;
typedef Shape<TUnmaskedAlphabet, SimpleShape> TShape;
unsigned alphabetSize = ValueSize<TUnmaskedAlphabet>::VALUE;
// Declare variables
TShape myShape; // Shape, length can be changed (kmer_length)
TShape myShapeBG; // Shape for background, set to markovlen+1, here zero order only
resize(myShape, k);
resize(myShapeBG, 1); // Markov model of zero order (count background frequencies)
// Calculate number of kmers/ length of count vector, respectively background vector
unsigned kmerNumber = _intPow(alphabetSize, k);
unsigned kmerNumberBG = alphabetSize; // Zero order model for DNA sequences (Bernoulli model)
clear(kmerCounts);
resize(kmerCounts, kmerNumber, 0);
resize(backgroundFrequencies, kmerNumberBG, (TValueBG) 0);
TIterator itSequence = begin(sequence);
int counterN = 0; // Counter that counts how many kmers are effected by a N
int counterNbg = 0; // Counter for background model (different shape size)
// Check for any N that destroys the first kmers
unsigned j = k - 1;
for (TPosition i = position(itSequence); i <= j; ++i)
{
if (_repeatMaskValue(sequence[i]))
counterN = i + 1;
}
int sumBG = 0; // Count the number of nucleotides for the nucleotide frequency calculation (Ns are not considered anymore).
for (; itSequence <= (end(sequence) - k); ++itSequence)
{
// Check if there is a "N" at the end of the new kmer
if (_repeatMaskValue(value(itSequence + (k - 1))))
{
counterN = k; // Do not consider any kmer covering this "N"
}
// If there is no "N" overlapping with the current kmer, count it.
if (counterN <= 0)
{
unsigned hashValue = hash(myShape, itSequence);
++kmerCounts[hashValue];
}
// Check if there is a "N" at the end of the new background word, here single letters only.
if (_repeatMaskValue(value(itSequence)))
{
counterNbg = 1;
}
if (counterNbg <= 0)
{
unsigned hashValueBG = hash(myShapeBG, itSequence);
backgroundFrequencies[hashValueBG] += 1.0;
++sumBG;
}
counterN--;
counterNbg--;
}
// The background counts are updated until the last base is covered.
for (; itSequence < end(sequence); ++itSequence)
{
if (_repeatMaskValue(value(itSequence)))
{
counterNbg = 1;
}
if (counterNbg <= 0)
{
unsigned hashValueBG = hash(myShapeBG, itSequence);
++backgroundFrequencies[hashValueBG];
++sumBG;
}
counterNbg--;
}
// Normalise the background counts to obtain the nucleotide frequencies (Bernoulli model of DNA sequences).
TIteratorTStringBG itBackground = begin(backgroundFrequencies);
for (; itBackground < end(backgroundFrequencies); ++itBackground)
if (sumBG != 0)
value(itBackground) /= ((TValueBG) sumBG);
}
/*
* Function to count kmers and build a background markov model with masked sequences
*/
template <typename TString, typename TAlphabetBG, typename TValue>
void countKmers(String<unsigned> & kmerCounts, MarkovModel<TAlphabetBG, TValue> & backgroundModel, TString const & sequence, unsigned k)
{
//typedef typename Value<TString>::Type TAlphabet;
//typedef typename UnmaskedAlphabet_<TAlphabet>::Type TUnmaskedAlphabet;
typedef typename Iterator<TString const, Rooted>::Type TIterator;
//typedef typename Iterator<String<int>, Rooted>::Type TIteratorInt;
typedef typename Position<TIterator>::Type TPosition;
typedef Shape<TAlphabetBG, SimpleShape> TShape;
// Declare variables
TShape myShape; // Shape, length can be changed (kmer_length)
resize(myShape, k);
// Only consider kmers without N
int kmerNumber = _intPow((unsigned)ValueSize<TAlphabetBG>::VALUE, weight(myShape));
clear(kmerCounts);
resize(kmerCounts, kmerNumber, 0);
// Create sequence set for the markov model, if Ns occur, the sequence is split and Ns are removed
StringSet<String<TAlphabetBG> > seqSetMM;
TIterator itSeq = begin(sequence);
// Check for any N that destroys the first kmers
unsigned j = (k - 1);
for (TPosition i = position(itSeq); i <= j; ++i)
{
if (_repeatMaskValue(sequence[i]))
{
if ((i - position(itSeq)) > 0)
{
appendValue(seqSetMM, infix(sequence, position(itSeq), i));
}
goFurther(itSeq, i + 1 - position(itSeq));
j = i + k - 1;
}
}
int counterN = 0;
TPosition startSplitSequence = position(itSeq); // The position of possible start of a sequence after NNs is stored to split sequences.
for (; itSeq <= (end(sequence) - k); ++itSeq)
{
if (_repeatMaskValue(value(itSeq + (k - 1))))
{
counterN = k;
if (((position(itSeq) + k - 1) > startSplitSequence))
appendValue(seqSetMM, infix(sequence, startSplitSequence, (position(itSeq) + k - 1)));
startSplitSequence = (position(itSeq) + k); // Position after N, possible start
}
if (counterN <= 0)
{
unsigned hashValue = hash(myShape, itSeq);
++kmerCounts[hashValue];
}
counterN--;
}
// Create a stringSet, needed to create the Markov model
if ((position(itSeq) + k - 1) > startSplitSequence)
{
appendValue(seqSetMM, infix(sequence, startSplitSequence, (position(itSeq) + k - 1)));
}
// Build background Markov model
buildMarkovModel(backgroundModel, seqSetMM);
}
/*!
* @fn calculateProbability
* @headerfile <seqan/alignment_free.h>
* @brief Calculates the probability of a sequence given a Bernoulli model.
*
* @signature void calculateProbability(probability, sequence, bgFrequencies);
*
* @param[out] probability Probability (<tt>double</tt>) of the sequence given the model.
* @param[in] sequence @link String @endlink, usually of Dna characters.
* @param[in] bgFrequencies @link String @endlink of background frequencies (<tt>double</tt>) representing the model.
*
* @section Examples
*
* Calculate the probability for the word CCCAAGTTT with <i>p(A) = p(T) = 0.3</i> and <i>p(C) = p(G) = 0.2</i>.
*
* @code{.cpp}
* using namespace seqan2;
* double p = 0.0;
* DnaString word = "CCCAAGTTT";
* String<double> model;
* resize(model, 4);
* model[0] = 0.3; // p(A)
* model[1] = 0.2; // p(C)
* model[2] = 0.2; // p(G)
* model[3] = 0.3; // p(T)
* calculateProbability(p, word, model); // p = 3.888e-06
* @endcode
*
* @see calculateVariance
* @see alignmentFreeComparison
* @see calculateCovariance
* @see countKmers
*/
template <typename TValue, typename TString, typename TStringBG>
void calculateProbability(TValue & probability, TString const & sequence, TStringBG const & backgroundFrequencies)
{
typedef typename Iterator<TString const, Rooted>::Type TIteratorTString;
TIteratorTString itSequence = begin(sequence);
probability = (TValue) 1;
for (; itSequence < end(sequence); ++itSequence)
probability *= backgroundFrequencies[ordValue(*itSequence)];
}
/*!
* @fn calculateVariance
* @headerfile <seqan/alignment_free.h>
* @brief Calculates the variance for the number of word occurrences of a word in a sequence of length n given a
* background model.
*
* @signature void calculateVariance(variance, word, bgFrequencies, n);
* @signature void calculateVariance(variance, word, bgModel, n);
*
* @param[out] variance Variance of the number of occurrences of the word in a sequence of length n given the
* model; <tt>double</tt>.
* @param[in] word @link String @endlink, usually of Dna to compute variance for.
* @param[in] bgFrequencies @link String @endlink of bg frequencies representing the model.
* @param[in] bgModel @link MarkovModel @endlink to use.
* @param[in] n Length of the sequence where the occurrences of word are counted, <tt>int</tt>.
*
* Calculates the variance for the number of word occurrences of a word in a sequence of length n given a background
* model (Markov model or Bernoulli model). The formula is obtained from (Robin et al., 2005).
*
* @section References
*
* Robin, S., Rodolphe, F., and Schbath, S. (2005). DNA, Words and Models. Cambridge University Press. See Jonathan
* Goeke et al (to appear) for details on the implementation.
*
* @section Examples
*
* Calculate the variance for the number of occurrences of CAAGTC in a sequence of length 10000bp with
* <i>p(A) = p(T) = 0.3</i> and <i>p(C) = p(G) = 0.2</i>.
*
* @code{.cpp}
* using namespace seqan2;
* double var = 0.0;
* int n = 10000;
* DnaString word = "CAAGTC";
* String<double> model;
* resize(model, 4);
* model[0] = 0.3; // p(A)
* model[1] = 0.2; // p(C)
* model[2] = 0.2; // p(G)
* model[3] = 0.3; // p(T)
* calculateVariance(var, word, model, n); // var = 2.16
* @endcode
*
* Estimate a Markov model on a set of sequences and calculate the variance for the number of occurrences of the word
* CAAGTC in a sequence of length 10000bp.
*
* @code{.cpp}
* using namespace seqan2;
* double var = 0.0;
* int n = 10000;
* DnaString word = "CAAGTC";
* StringSet<DnaString> sequences;
* appendValue(sequences, "CAGAAAAAAACACTGATTAACAGGAATAAGCAGTTTACTTATTTTGGGCCTGGGACCCGTGTCTCTAATTTAATTAGGTGATCCCTGCGAAGTTTCTCCA");
* MarkovModel<Dna, double> model(0); // Bernoulli model
* model.build(sequences);
* calculateVariance(var, word, model, n); // var = 2.16
* MarkovModel<Dna, double> model1(1); // First order Markov model
* model1.build(sequences);
* calculateVariance(var, word, model1, n); // var = 1.69716
* @endcode
*
* @see calculateProbability
* @see calculateCovariance
* @see MarkovModel
* @see alignmentFreeComparison
* @see calculatePeriodicity
* @see countKmers
* @see calculateOverlapIndicator
*/
template <typename TValue, typename TString, typename TStringBG>
void calculateVariance(TValue & variance, TString const & word, TStringBG const & backgroundFrequencies, int const n)
{
typedef typename Value<TString>::Type TAlphabet;
typedef typename Value<TStringBG>::Type TValueBG;
typedef typename Iterator<String<int>, Rooted>::Type TIteratorInt;
int l = length(word);
TValueBG p_w;
calculateProbability(p_w, word, backgroundFrequencies);
String<int> periodicity;
calculatePeriodicity(periodicity, word, word);
variance = (TValue) (n - l + 1) * p_w;
for (TIteratorInt i = begin(periodicity); i < end(periodicity); ++i)
{
TValueBG p_clump;
TValueBG p_tmp;
calculateProbability(p_tmp, word, backgroundFrequencies);
String<TAlphabet> wordPrefix = prefix(word, value(i));
calculateProbability(p_clump, wordPrefix, backgroundFrequencies);
p_clump *= p_tmp;
variance += (TValue) 2 * (n - l + 1 - value(i)) * p_clump;
}
variance += (TValue) p_w * p_w * (n - 2 * n * l + 3 * l * l - 4 * l + 1);
}
template <typename TValue, typename TSpec, typename TAlphabet>
void calculateVariance(TValue & variance, String<TAlphabet, TSpec> const & word, MarkovModel<TAlphabet, TValue> /*const*/ & bgModel, int const n)
{
typedef typename Iterator<String<int>, Rooted>::Type TIteratorInt;
int l = length(word);
TValue p_w;
p_w = emittedProbability(bgModel, word);
String<int> periodicity;
calculatePeriodicity(periodicity, word, word);
variance = (TValue) (n - l + 1) * p_w;
for (TIteratorInt i = begin(periodicity); i < end(periodicity); ++i)
{
TValue p_clump;
String<TAlphabet> clump = prefix(word, value(i));
append(clump, word);
p_clump = emittedProbability(bgModel, clump);
variance += (TValue) 2 * (n - l + 1 - value(i)) * p_clump;
}
variance += (TValue) p_w * p_w * (n - 2 * n * l + 3 * l * l - 4 * l + 1);
}
/*!
* @fn calculateCovariance
* @headerfile <seqan/alignment_free.h>
* @brief Calculates the covariance for the number of word occurrences for two words in a sequence of length n, given a
* background model.
*
* @signature void calculateCovariance(covariance, word1, word2, bgFrequencies, n);
* @signature void calculateCovariance(covariance, word1, word2, bgModel, n);
*
* @param[out] covariance Variance of the number of occurrences of the word in a sequence of length n given the
* model, <tt>double</tt>.
* @param[in] word1 @link String @endlink, usually of Dna.
* @param[in] word2 @link String @endlink, usually of Dna.
* @param[in] bgFrequencies @link String @endlink of <tt>double</tt> with the background frequencies representing
* @param[in] bgModel @link MarkovModel @endlink to use.
* @param[in] n Length of the sequence where the occurrences of word are counted, <tt>int</tt>.
*
* Calculates the covariance for the number of word occurrences for two words in a sequence of length n given a
* background model (Markov model or Bernoulli model). The covariance is influenced by the property of words to overlap,
* for example, the words ATAT and TATA have a high covariance since they are likely to overlap. The formula is based on
* (Robin et al., 2005).
*
* @section References
*
* Robin, S., Rodolphe, F., and Schbath, S. (2005). DNA, Words and Models. Cambridge University Press. See Jonathan
* Goeke et al (to appear) for details on the implementation.
*
* @section Examples
*
* Calculate the covariance for the number of occurrences of ATATAT and TATATA in a sequence of length 10000bp with
* <i>p(A) = p(T) = 0.3</i> and <i>p(C) = p(G) = 0.2</i>.
*
* @code{.cpp}
* using namespace seqan2;
* double covar = 0.0;
* int n = 10000;
* DnaString word1 = "ATATAT";
* DnaString word2 = "TATATA";
* String<double> model;
* resize(model, 4);
* model[0] = 0.3; // p(A)
* model[1] = 0.2; // p(C)
* model[2] = 0.2; // p(G)
* model[3] = 0.3; // p(T)
* calculateCovariance(covar, word1, word2, model, n); // covar = 4.74
* @endcode
*
* Estimate a Markov model on a set of sequences and calculate the covariance for the number of occurrences of ATATAT
* and TATATA in a sequence of length 10000bp.
*
* @code{.cpp}
* using namespace seqan2;
* double covar = 0.0;
* int n = 10000;
* DnaString word1 = "ATATAT";
* DnaString word2 = "TATATA";
* StringSet<DnaString> sequences;
* appendValue(sequences, "CAGCACTGATTAACAGGAATAAGCAGTTTACTTCTGTCAGAATATTGGGCATATATA"
* "CTGGGACCCGTGTAATACTCTAATTTAATTAGGTGATCCCTGCGAAGTCTCCA");
* MarkovModel<Dna, double> modelMM0(0); // Bernoulli model
* modelMM0.build(sequences);
* calculateCovariance(covar, word1, word2, modelMM0, n); // covar = 4.74
* MarkovModel<Dna, double> modelMM1(1); // First order Markov model
* modelMM1.build(sequences);
* calculateCovariance(covar, word1, word2, modelMM1, n); // covar = 13.1541
* @endcode
*
* @see calculateProbability
* @see calculateVariance
* @see MarkovModel
* @see alignmentFreeComparison
* @see calculatePeriodicity
* @see countKmers
* @see calculateOverlapIndicator
*/
template <typename TValue, typename TString, typename TStringBG>
void calculateCovariance(TValue & covariance, TString const & word1, TString const & word2, TStringBG const & backgroundFrequencies, int const n)
{
if (word1 == word2)
{
calculateVariance(covariance, word1, backgroundFrequencies, n);
return;
}
typedef typename Value<TString>::Type TAlphabet;
typedef typename Value<TStringBG>::Type TValueBG;
typedef typename Iterator<String<int>, Rooted>::Type TIteratorInt;
covariance = 0;
int l1 = length(word1);
TValueBG p_w1;
calculateProbability(p_w1, word1, backgroundFrequencies);
String<int> periodicity1;
calculatePeriodicity(periodicity1, word1, word2);
for (TIteratorInt i = begin(periodicity1); i < end(periodicity1); ++i)
{
TValueBG p_clump;
TValueBG p_tmp;
calculateProbability(p_tmp, word2, backgroundFrequencies);
String<TAlphabet> wordPrefix = prefix(word1, value(i));
calculateProbability(p_clump, wordPrefix, backgroundFrequencies);
p_clump *= p_tmp;
covariance += (TValue) (n - l1 + 1 - value(i)) * p_clump;
}
int l2 = length(word2);
TValueBG p_w2;
calculateProbability(p_w2, word2, backgroundFrequencies);
String<int> periodicity2;
calculatePeriodicity(periodicity2, word2, word1);
for (TIteratorInt i = begin(periodicity2); i < end(periodicity2); ++i)
{
TValueBG p_clump;
TValueBG p_tmp;
calculateProbability(p_tmp, word1, backgroundFrequencies);
String<TAlphabet> wordPrefix = prefix(word2, value(i));
calculateProbability(p_clump, wordPrefix, backgroundFrequencies);
p_clump *= p_tmp;
covariance += (TValue) (n - l2 + 1 - value(i)) * p_clump;
}
covariance += (TValue) p_w1 * p_w2 * (n - 2 * n * l1 + 3 * l1 * l1 - 4 * l1 + 1);
}
template <typename TValue, typename TSpec, typename TAlphabet>
void calculateCovariance(TValue & covariance, String<TAlphabet, TSpec> const & word1, String<TAlphabet, TSpec> const & word2, MarkovModel<TAlphabet, TValue> /*const*/ & bgModel, int const n)
{
if (word1 == word2)
{
calculateVariance(covariance, word1, bgModel, n);
return;
}
typedef typename Iterator<String<int>, Rooted>::Type TIteratorInt;
covariance = 0;
int l1 = length(word1);
TValue p_w1;
p_w1 = emittedProbability(bgModel, word1);
String<int> periodicity1;
calculatePeriodicity(periodicity1, word1, word2); // word2 is right
for (TIteratorInt i = begin(periodicity1); i < end(periodicity1); ++i)
{
TValue p_clump;
String<TAlphabet> clump = prefix(word1, value(i));
append(clump, word2);
p_clump = emittedProbability(bgModel, clump);
covariance += (TValue) (n - l1 + 1 - value(i)) * p_clump;
}
TValue p_w2;
p_w2 = emittedProbability(bgModel, word2);
String<int> periodicity2;
calculatePeriodicity(periodicity2, word2, word1);
for (TIteratorInt i = begin(periodicity2); i < end(periodicity2); ++i)
{
TValue p_clump;
String<TAlphabet> clump = prefix(word2, value(i));
append(clump, word1);
p_clump = emittedProbability(bgModel, clump);
covariance += (TValue) (n - l1 + 1 - value(i)) * p_clump;
}
covariance += (TValue) p_w1 * p_w2 * (n - 2 * n * l1 + 3 * l1 * l1 - 4 * l1 + 1);
}
/*!
* @fn calculatePeriodicity
* @headerfile <seqan/alignment_free.h>
* @brief Calculate word periodicity (indicator for overlaps)
*
* @signature void calculatePeriodicity(periodicity, word1, word2);
*
* @param[out] periodicity String of <tt>int</tt> values giving the periodicity (overlap indicator) of
* <tt>word1</tt> and <tt>word2</tt>.
* @param[int] word1 String, usually of Dna characters.
* @param[int] word2 String, usually of Dna characters.
*
* Calculate word periodicity (indicator for overlaps) for two words.
*
* @section Examples
*
* Calculate the periodicity of two words (At which positions can they overlap?)
*
* @code{.cpp}
* using namespace seqan2;
* DnaString word1 = "ATATA";
* DnaString word2 = "TATAT";
* String<int> periodicity;
* calculatePeriodicity(periodicity, word1, word2);
* for(unsigned i = 0; i < length(periodicity); ++i) // Print the periodicity
* std::cout << periodicity[i] << "\t";
*
* // periodocity[0] = 1:
* // i = 01234
* // word1 = ATATA
* // word2 = -TATAT
*
* // periodocity[1] = 3:
* // i = 01234
* // word1 = ATATA
* // word2 = ---TATAT
* @endcode
*
* @see calculateVariance
* @see calculateCovariance
* @see calculateOverlapIndicator
* @see alignmentFreeComparison
*/
template <typename TString>
void calculatePeriodicity(String<int> & periodicity, TString const & word1, TString const & word2)
{
typedef typename Value<TString>::Type TAlphabet;
//typedef typename Iterator<TString const, Rooted>::Type TIterator;
typedef typename Size<TString>::Type TSize;
TSize length1 = length(word1);
TSize length2 = length(word2);
for (TSize i = 1; i < length1; ++i)
{
String<TAlphabet> my_suffix = suffix(word1, i); // Overlap of suffix of word1 with prefix of word2
TSize my_min = std::min(length2, (length1 - i));
String<TAlphabet> my_prefix = prefix(word2, my_min);
if (my_suffix == my_prefix)
{
appendValue(periodicity, i);
}
}
}
/*!
* @fn calculateOverlapIndicator
* @headerfile <seqan/alignment_free.h>
* @brief Calculate word overlaps: <tt>epsilon(word1, word2) = 1</tt> where <tt>word2[j] = word1[j+p] for
* all j = 1..(k-p)</tt>.
*
* @signature void calculateOverlapIndicator(epsilon, word1, word2);
*
* @param[out] epsilon String of int giving the periodicity (overlap indicator) of word1 and word2.
* @param[in] word1 String (for example a DNA sequence).
* @param[in] word2 String (for example a DNA sequence).
*
* Calculate the indicator for overlaps of two words. The formula is based on (Robin et al., 2005)
*
* @section References
*
* Robin, S., Rodolphe, F., and Schbath, S. (2005). DNA, Words and Models. Cambridge University Press. See Jonathan
* Goeke et al (to appear) for details on the implementation.
*
* @section Examples
*
* Calculate the overlap indicator (epsilon) for two words
*
* @code{.cpp}
* using namespace seqan2;
* DnaString word1 = "ATATA";
* DnaString word2 = "TATAT";
* String<int> epsilon;
* calculateOverlapIndicator(epsilon, word1, word2);
* for(unsigned i = 0; i < length(epsilon); ++i)
* std::cout << epsilon[i] << "\t";
* // epsilon = 01010:
* // word1 ATATA
* // word2 overlap 1: -TATAT
* // word2 overlap 2: ---TATAT
* @endcode
*
* @see calculateVariance
* @see calculateCovariance
* @see calculatePeriodicity
* @see alignmentFreeComparison
*/
template <typename TString>
void calculateOverlapIndicator(String<int> & epsilon, TString const & word1, TString const & word2)
{
typedef typename Value<TString>::Type TAlphabet;
//typedef typename Iterator<TString const, Rooted>::Type TIterator;
typedef typename Size<TString>::Type TSize;
TSize length1 = length(word1);
TSize length2 = length(word2);
clear(epsilon);
resize(epsilon, length1, 0);
for (TSize i = 0; i < length1; ++i)
{
String<TAlphabet> my_suffix = suffix(word1, length1 - i - 1); // Overlap of suffix of word1 with prefix of word2
TSize my_min = std::min(length2, i + 1);
String<TAlphabet> my_prefix = prefix(word2, my_min);
if (my_suffix == my_prefix)
epsilon[i] = 1;
}
}
/*!
* @fn stringToStringSet
* @headerfile <seqan/alignment_free.h>
* @brief Transform a String into a StringSet containing this String.
*
* @signature void stringToStringSet(stringSet, string);
* @signature void stringToStringSet(dnaStringSet, dna5String);
*
* @param[out] stringSet @link StringSet @endlink to create with one sequence.
* @param[in] string @link String @endlink to create the string set of.
* @param[out] dnaStringSet @link StringSet @endlink of @link String Strings @endlink over the alphabet @link Dna @endlink.
* @param[in] dna5String @link String @endlink over the alphabet @link Dna5 @endlink to convert.
*
* @note The second variant removes all N characters from the @link Dna5String @endlink.
*
* @section Examples
*
* Transform a masked DNA sequence into a set of sequences with all masked parts removed.
*
* @code{.cpp}
* using namespace seqan2;
* Dna5String sequenceDna5 =
* "NNNNNNTTTCCGAAAAGGTANNNNNGCAACTTTANNNCGTGATCAAAGTTTTCCCCGTCGAAATTGGGNNTG";
* StringSet<DnaString> sequencesDna;
* stringToStringSet(sequencesDna, sequenceDna5);
* // Print the masked sequence
* std::cout<<sequenceDna5<<"\n";
* // Print the sequence with the masked parts removed
* for(unsigned i = 0; i < length(sequencesDna); ++i)
* std::cout<<sequencesDna[i]<<"\n";
* // sequencesDna[0] = "TTTCCGAAAAGTA"
* // sequencesDna[1] = "GCAACTTTA"
* // sequencesDna[2] = "CGTGATCAAAGTTTTCCCCGTCGAAATTGGG"
* // sequencesDna[3] = "TG"
* @endcode
*
* @see MarkovModel
* @see alignmentFreeComparison
* @see cutNs
* @see countKmers
*/
template <typename TString>
void
stringToStringSet(StringSet<TString> & stringSet, TString const & sequence)
{
resize(stringSet, 1);
stringSet[0] = sequence;
}
inline void
stringToStringSet(StringSet<String<Dna> > & dnaStringSet, String<Dna5> const & sequence)
{
typedef Iterator<String<Dna5> const, Rooted>::Type TIterator;
typedef Position<TIterator>::Type TPosition;
TIterator itSeq = begin(sequence);
// Check for any N that destroys the first kmers
unsigned j = 0;
for (TPosition i = position(itSeq); i <= j; ++i)
{
if (sequence[i] == 'N')
{
if ((i - position(itSeq)) > 0)
appendValue(dnaStringSet, infix(sequence, position(itSeq), i));
goFurther(itSeq, i + 1 - position(itSeq));
j = i;
}
}
TPosition startSplitSequence = position(itSeq); // The position of possible starts of a sequence after Ns is stored to split the sequence.
for (; itSeq <= (end(sequence) - 1); ++itSeq)
{
if (value(itSeq) == 'N')
{
if (((position(itSeq)) > startSplitSequence))
{
appendValue(dnaStringSet, infix(sequence, startSplitSequence, position(itSeq)));
}
startSplitSequence = (position(itSeq) + 1); // Position after N, possible start
}
}
// Create the stringSet, the stringSet can be used to create a Markov model
if (position(itSeq) > startSplitSequence)
appendValue(dnaStringSet, infix(sequence, startSplitSequence, position(itSeq)));
}
/*!
* @fn cutNs
* @headerfile <seqan/alignment_free.h>
* @brief Cut out all masked sequences from a Dna5String.
*
* @signature void cutNs(sequenceCut, sequence);
*
* @param[out] sequenceCut Dna5String similar to sequence with all Ns cut out.
* @param[in] sequence Masked DNA sequence.
*
* This function concatenates the nonmasked parts of the sequence, thereby changing the word content. If you want to
* remove the masked parts of a sequence without concatenation, use stringToStringSet.
*
* @section Examples
*
* Transform a masked DNA sequence into an unmasked sequences with all masked parts cut out
*
* @code{.cpp}
* using namespace seqan2;
* Dna5String sequenceMasked =
* "NNNNNNTTTCCGAAAAGGTANNNNNGCAACTTTANNNCGTGATCAAAGTTTTCCCCGTCGAAATTGGGNNTG";
* Dna5String sequenceMaskedPartsRemoved;
* cutNs(sequenceMaskedPartsRemoved, sequenceMasked);
* // Print the masked sequence
* std::cout<<sequenceMasked<<"\n";
* // Print the sequence with the masked parts removed
* std::cout<<sequenceMaskedPartsRemoved<<"\n";
* // sequenceMasked =
* // "NNNNNNTTTCCGAAAAGGTANNNNNGCAACTTTANNNCGTGATCAAAGTTTTCCCCGTCGAAATTGGGNNTG"
* // sequenceMaskedPartsRemoved =
* // "TTTCCGAAAAGGTAGCAACTTTACGTGATCAAAGTTTTCCCCGTCGAAATTGGGTG"
* @endcode
*
* @see MarkovModel
* @see stringToStringSet
* @see alignmentFreeComparison
*/
inline void
cutNs(String<Dna5> & sequenceCut, String<Dna5> const & sequence)
{
typedef Iterator<String<Dna5> const, Rooted>::Type TIterator;
typedef Position<TIterator>::Type TPosition;
sequenceCut = "";
TIterator itSeq = begin(sequence);
// Check for any N that destroys the first kmers
unsigned j = 0;
for (TPosition i = position(itSeq); i <= j; ++i)
{
if (sequence[i] == 'N')
{
if ((i - position(itSeq)) > 0)
sequenceCut += infix(sequence, position(itSeq), i);
goFurther(itSeq, i + 1 - position(itSeq));
j = i;
}
}
TPosition startSplitSequence = position(itSeq); // The position of possible starts of a sequence after Ns is stored to split the sequence.
for (; itSeq <= (end(sequence) - 1); ++itSeq)
{
if (value(itSeq) == 'N')
{
if (((position(itSeq)) > startSplitSequence))
sequenceCut += infix(sequence, startSplitSequence, position(itSeq));
startSplitSequence = (position(itSeq) + 1); // Position after N, possible start
}
}
// Create the sequence with any N cut out.
if (position(itSeq) > startSplitSequence)
{
sequenceCut += infix(sequence, startSplitSequence, position(itSeq));
}
}
} // namespace seqan2
#endif // SEQAN_INCLUDE_SEQAN_ALIGNMENT_FREE_KMER_FUNCTIONS_H_
|