1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
// ==========================================================================
// SeqAn - The Library for Sequence Analysis
// ==========================================================================
// Copyright (c) 2006-2026, Knut Reinert, FU Berlin
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of Knut Reinert or the FU Berlin nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL KNUT REINERT OR THE FU BERLIN BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
// DAMAGE.
//
// ==========================================================================
// Author: Tobias Raussch <rausch@embl.de>
// Author: Ryan Wick <rrwick@gmail.com>
// ==========================================================================
// Implementation of Depth-First-Search algorithm.
// ==========================================================================
#ifndef INCLUDE_SEQAN_GRAPH_ALGORITHMS_DEPTH_FIRST_SEARCH_H_
#define INCLUDE_SEQAN_GRAPH_ALGORITHMS_DEPTH_FIRST_SEARCH_H_
namespace seqan2 {
// ============================================================================
// Forwards
// ============================================================================
// ============================================================================
// Tags, Classes, Enums
// ============================================================================
// ============================================================================
// Metafunctions
// ============================================================================
// ============================================================================
// Functions
// ============================================================================
// ----------------------------------------------------------------------------
// Function depthFirstSearch()
// ----------------------------------------------------------------------------
/*!
* @fn depthFirstSearch
* @headerfile <seqan/graph_algorithms.h>
* @brief Implements a depth-first search on a graph.
*
* @signature void depthFirstSearch(predecessor, discovery, finish, g);
*
* @param[out] predecessor A property map.Predecessor subgraph produced by the depth-first search.
* @param[out] discovery A property map.The discovery time of a vertex v.
* @param[out] finish A property map.The time when v's adjacency list has been fully explored.
* @param[in] g A graph. Types: Undirected Graph, Directed Graph
*
* In contrast to a breadth-first search the depth-first search is repeated from multiple sources if the graph is not
* connected. Hence, depth-first search produces a depth-first forest. To ensure each vertex ends up in exactly one
* tree we need not just a distance but a discovery and finishing time.
*
* @section Example
*
* @include demos/dox/graph_algorithms/depth_first_search.cpp
*
* @include demos/dox/graph_algorithms/depth_first_search.cpp.stdout
*
* @see breadthFirstSearch
*/
template <typename TSpec, typename TPredecessorMap, typename TDiscoveryTimeMap, typename TFinishingTimeMap>
void depthFirstSearch(TPredecessorMap & predecessor,
TDiscoveryTimeMap & disc,
TFinishingTimeMap & finish,
Graph<TSpec> const & g)
{
typedef Graph<TSpec> TGraph;
typedef typename Size<TGraph>::Type TSize;
typedef typename Iterator<TGraph, VertexIterator>::Type TVertexIterator;
typedef typename VertexDescriptor<TGraph>::Type TVertexDescriptor;
typedef typename Value<TPredecessorMap>::Type TPredVal;
typedef typename Iterator<Graph<TSpec>, AdjacencyIterator>::Type TAdjacencyIterator;
enum class _DfsTask : uint8_t
{
EXPLORE,
FINISH
};
// Initialization - set each vertex as unvisited and with no predecessor.
resizeVertexMap(predecessor, g);
resizeVertexMap(disc, g);
resizeVertexMap(finish, g);
TPredVal nil = getNil<TVertexDescriptor>();
String<bool> tokenMap;
resizeVertexMap(tokenMap, g);
TVertexIterator it(g);
for(;!atEnd(it);goNext(it))
{
assignProperty(tokenMap, getValue(it), false);
assignProperty(predecessor, getValue(it), nil);
}
TSize time = 0;
// We do the DFS non-recursively using a stack. The stack holds two possible tasks:
// EXPLORE, which means we must follow that vertex's edges
// FINISH, which means the vertex just needs a finish time
std::vector<std::pair<TVertexDescriptor, _DfsTask> > vStack;
// The graph may not be connected, so start at every vertex.
goBegin(it);
for(; !atEnd(it); goNext(it))
{
// If the vertex has already been visited, skip it.
TVertexDescriptor v = getValue(it);
if (getProperty(tokenMap, v))
{
continue;
}
vStack.clear();
vStack.emplace_back(v, _DfsTask::EXPLORE);
while (!vStack.empty())
{
// Get the vertex and task from the top of the stack.
auto stackItem = vStack.back();
vStack.pop_back();
TVertexDescriptor v = stackItem.first;
if (stackItem.second == _DfsTask::FINISH)
{
assignProperty(finish, v, ++time);
}
else if (!getProperty(tokenMap, v)) // If the task is EXPLORE and the vertex is not visited...
{
assignProperty(tokenMap, v, true); // label as visited
assignProperty(disc, v, ++time); // set discovery time
vStack.emplace_back(v, _DfsTask::FINISH); // add a task to the stack so the vertex will get a finish time
// Add EXPLORE tasks to the stack for each unvisited adjacent vertex. They are added in reverse order
// so the first adjacent vertex will be the first to come off the stack. This is to mimic the behaviour
// of the original recursive implementation of this function.
TAdjacencyIterator itad(g, v);
goEnd(itad);
while (!atBegin(itad))
{
goPrevious(itad);
TVertexDescriptor nextV = getValue(itad);
if (!getProperty(tokenMap, nextV))
{
vStack.emplace_back(nextV, _DfsTask::EXPLORE);
assignProperty(predecessor, nextV, v);
}
}
}
}
}
}
} // namespace seqan2
#endif // #ifndef INCLUDE_SEQAN_GRAPH_ALGORITHMS_DEPTH_FIRST_SEARCH_H_
|