1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
|
// ==========================================================================
// SeqAn - The Library for Sequence Analysis
// ==========================================================================
// Copyright (c) 2006-2026, Knut Reinert, FU Berlin
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of Knut Reinert or the FU Berlin nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL KNUT REINERT OR THE FU BERLIN BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
// DAMAGE.
//
// ==========================================================================
// Author: Tobias Rausch <rausch@embl.de>
// Author: Anne-Katrin Emde <anne-katrin.emde@fu-berlin.de>
// ==========================================================================
#ifndef SEQAN_INCLUDE_SEQAN_GRAPH_ALGORITHM_REFINE_INEXACT_H_
#define SEQAN_INCLUDE_SEQAN_GRAPH_ALGORITHM_REFINE_INEXACT_H_
//SEQAN_NO_DDDOC: do not generate documentation for this file
namespace seqan2 {
struct TagInexactRefinement_;
typedef Tag<TagInexactRefinement_> const InexactRefinement;
///inexact refinement (cuts that would produce segments shorter than min_len are not made)
template<typename TValue, typename TValue2, typename TSize>
inline bool
_cutIsValid(String<std::set<TValue> > & all_nodes,
TValue2 seq_i_pos,
TSize pos_i,
typename std::set<TValue>::iterator iter,
TSize min_len,
Tag<TagInexactRefinement_> const)
{
//cut already exists
if(iter != all_nodes[seq_i_pos].end())
return false;
typename std::set<TValue>::iterator tmp_iter = all_nodes[seq_i_pos].upper_bound(pos_i);
if(tmp_iter != all_nodes[seq_i_pos].end())
if((*tmp_iter - pos_i) < min_len)
return false;
if(tmp_iter != all_nodes[seq_i_pos].begin())
{
--tmp_iter;
if((pos_i - *tmp_iter) < min_len)
return false;
}
return true;
}
// returns node begin or end position closest to pos
// i.e. closest refined position
template<typename TAliGraph, typename TVertexDescriptor, typename TId, typename TPosition>
TPosition
_getClosestRefinedNeighbor(TAliGraph & ali_g,
TVertexDescriptor & vd,
TId /*seq*/,
TPosition pos)
{
if(pos-fragmentBegin(ali_g,vd) < fragmentBegin(ali_g,vd)+fragmentLength(ali_g,vd)-pos)
return fragmentBegin(ali_g,vd);
else
return fragmentBegin(ali_g,vd) + fragmentLength(ali_g,vd);
}
// get closest refined position to end position of fragment (cut_end_pos)
// and corresponding node (end_knot)
template<typename TAliGraph, typename TId, typename TPosition>
void
_getCutEndPos(TAliGraph & ali_g,
typename VertexDescriptor<TAliGraph>::Type & end_knot,
TId seq,
TPosition act_begin_pos,
TPosition end_pos,
TPosition & cut_end_pos)
{
end_knot = findVertex(ali_g,seq,end_pos-1);//end_pos1 is the first position of the next node
if(end_pos == fragmentBegin(ali_g,end_knot) + fragmentBegin(ali_g,end_knot))
cut_end_pos = end_pos;
else
{
cut_end_pos = _getClosestRefinedNeighbor(ali_g,end_knot,seq,end_pos);
if(cut_end_pos <= act_begin_pos) end_knot = getNil<typename VertexDescriptor<TAliGraph>::Type>();
else
{
end_knot = findVertex(ali_g,seq,cut_end_pos-1);
SEQAN_ASSERT(cut_end_pos == fragmentBegin(ali_g,end_knot)+fragmentLength(ali_g,end_knot));
}
}
}
// get closest refined position to begin position of fragment (cut_act_pos)
// and corresponding node (act_knot)
template<typename TAliGraph, typename TId, typename TPosition>
void
_getCutBeginPos(TAliGraph & ali_g,
typename VertexDescriptor<TAliGraph>::Type & act_knot,
TId seq,
TPosition act_end_pos,
TPosition act_pos,
TPosition & cut_act_pos)
{
act_knot = findVertex(ali_g,seq,act_pos);
//if completely refined
if(act_pos == fragmentBegin(ali_g,act_knot))
cut_act_pos = act_pos;
else //if incompletely refined
{
cut_act_pos = _getClosestRefinedNeighbor(ali_g,act_knot,seq,act_pos);
if(cut_act_pos > act_end_pos) act_knot = getNil<typename VertexDescriptor<TAliGraph>::Type>();
else
{
act_knot = findVertex(ali_g,seq,cut_act_pos); // have to watch out with cut_act_pos==seqLength!
SEQAN_ASSERT(act_knot == getNil<typename VertexDescriptor<TAliGraph>::Type>() ||
cut_act_pos == fragmentBegin(ali_g, act_knot));
}
}
}
//step 2 of constructing the refined alignment graph: add all edges
//version for inexact refinement
template<typename TAlignmentString,typename TPropertyMap,typename TStringSet,typename TSeqMap, typename TScore,typename TAliGraph>
void
_makeRefinedGraphEdges(TAlignmentString & alis,
TPropertyMap & , //pm,
TStringSet & seqs,
TSeqMap & seq_map,
TScore & score_type,
TAliGraph & ali_g,
Tag<TagInexactRefinement_> const)
{
typedef typename Value<TAlignmentString>::Type TAlign;
typedef typename Position<TAlign>::Type TPosition;
typedef typename Id<TAlign>::Type TId;
typedef typename Iterator<TAlignmentString, Rooted>::Type TAliIterator;
typedef typename VertexDescriptor<TAliGraph>::Type TVertexDescriptor;
typedef typename EdgeDescriptor<TAliGraph>::Type TEdgeDescriptor;
//typedef typename Cargo<TAliGraph>::Type TCargo;
TVertexDescriptor nilVertex = getNil<TVertexDescriptor>();
//make edges
TAliIterator ali_it = begin(alis);
TAliIterator ali_end = end(alis);
//for each segment/fragment/alignment
while(ali_it != ali_end)
{
//get first sequence that takes part in the alignment + boundaries of the ali
TId seq1;
TPosition begin_pos1,end_pos1;
_getSeqBeginAndEnd(*ali_it,seq_map,seq1,begin_pos1,end_pos1,(TId)0);
//get second sequence that takes part in the alignment + boundaries of the ali
TId seq2;
TPosition begin_pos2,end_pos2;
_getSeqBeginAndEnd(*ali_it,seq_map,seq2,begin_pos2,end_pos2,(TId)1);
//get the last node that is within the current ali
TVertexDescriptor end_knot1;
TPosition cut_end_pos1;
_getCutEndPos(ali_g,end_knot1,seq1,begin_pos1,end_pos1,cut_end_pos1);
if(end_knot1 == nilVertex) // there is no node --> fragment disappeared in min_frag_len heuristic
continue;
//get the node that represents the current interval (begin_pos until next_cut_pos or end_pos)
TVertexDescriptor act_knot1;
TPosition cut_act_pos1,act_pos1;
act_pos1 = begin_pos1;
_getCutBeginPos(ali_g,act_knot1,seq1,end_pos1,act_pos1,cut_act_pos1);
if(act_knot1 == nilVertex) // there is no node, can this happen here?
continue;
TPosition act_end_pos1 = cut_act_pos1 + fragmentLength(ali_g,act_knot1);
//walk through cuts on the first sequence
// while (act_end_pos1 <= cut_end_pos1)
while (true)
{
//get other sequence and projected position
//TId seq2;
TPosition act_pos2;
_getOtherSequenceAndProject(*ali_it,0,seq_map,seq1,act_pos1,seq2,act_pos2);
//get node that corresponds to that position
TVertexDescriptor act_knot2;
TPosition cut_act_pos2;
_getCutBeginPos(ali_g,act_knot2,seq2,end_pos2,act_pos2,cut_act_pos2);
if(act_knot2 == nilVertex) // there is no corresponding node in second sequence
break;
//corresponding end on seq2 (there might be more than one node on seq2 that corresponds
//to the same interval (=node) on seq1)
TPosition act_end_pos2;
_getOtherSequenceAndProject(*ali_it,0,seq_map,seq1,_min(act_end_pos1,end_pos1)-1,seq2,act_end_pos2);
++act_end_pos2;
TVertexDescriptor act_end_knot2;
TPosition cut_act_end_pos2;
_getCutEndPos(ali_g,act_end_knot2,seq2,begin_pos2,act_end_pos2,cut_act_end_pos2);
if(act_end_knot2 == nilVertex) // there is no node at all in second sequence
break;
if(cut_act_pos2 == cut_act_end_pos2)
break;
while(true)
{
//should at the moment return score for:
//
//seq1 = ....cr...rc....
// ||||||
//seq2 = ...c.r...rc....
//bzw
//seq1 = ..cr.....x.... man will aber nur ..cr......x....
// |||||||- ---||||||
//seq2 = ...r.c...rc... ...r.c...rc....
typename Value<TScore>::Type score = 0;
score = _getRefinedMatchScore(score_type,seqs,*ali_it,act_pos1,act_pos2,act_end_pos1-act_pos1,cut_act_end_pos2);
//score *= _getRefinedAnnoScore(ali_g,pm,act_knot1,act_knot2,score_type);
//add score for
//
//seq1 = ...-cr....x....
// ||
//seq2 = ...c.r...rc....
// score += getLeftRestScore(score_type,seqs,seq1,seq2,act_pos1,cut_act_pos1,act_pos2,cut_act_pos2);
if(score > 0)
{ if(findEdge(ali_g,act_knot1,act_knot2)==0)
addEdge(ali_g,act_knot1,act_knot2,score);
else
{
TEdgeDescriptor ed = findEdge(ali_g, act_knot1, act_knot2);
//if((TCargo)score > getCargo(ed))
//assignCargo(ed, score);
assignCargo(ed, getCargo(ed)+score);
}
}
if(act_knot2==act_end_knot2)
break;
act_pos2 = cut_act_pos2 + fragmentLength(ali_g,act_knot2);
_getCutBeginPos(ali_g,act_knot2,seq2,end_pos2,act_pos2,cut_act_pos2);
}
if(act_knot1 == end_knot1)
break;
act_pos1 = act_end_pos1;
act_knot1 = findVertex(ali_g,seq1,act_pos1);
cut_act_pos1 = act_pos1;
act_end_pos1 = cut_act_pos1 + fragmentLength(ali_g,act_knot1);
}
++ali_it;
}
}
// TODO(holtgrew): Documentation is incomplete.
/*!
* @fn matchRefinement
* @headerfile <seqan/graph_align.h>
* @brief Refines (i.e. cuts into smaller parts) a set of pairwise segment matches in such a way that none of the
* segments partly overlap. They are either identical (fully overlapping) or non-overlapping.
*
* @signature void matchRefinement(matches, stringSet[, scoringScheme], refinedGraph);
*
* @param[out] matches The set of matches. Types: Fragment, Align, Alignment Graph
* @param[out] refinedGraph The resulting refined set of matches stored in a graph. Types: Alignment Graph
* @param[out] stringSet The StringSet containing the sequences which the matches lie on. Types: StringSet
* @param[in] scoringScheme The scoring scheme used to score the refined matches (scores are attached to edges
* in the refined AlignmentGraph). If no scoring scheme is given, all edges get weight 1.
* Types: Score
*/
//score type given, min fragment length given, if > 1 ==> inexact refinement
template<typename TAlignmentString, typename TScoreValue,typename TScoreSpec, typename TOutGraph, typename TSequence, typename TSetSpec>
void
matchRefinement(TAlignmentString & alis,
StringSet<TSequence, TSetSpec> & seq,
Score<TScoreValue,TScoreSpec> & score_type,
TOutGraph & ali_graph,
unsigned int min_frag_len)
{
bool anno = false;
if(min_frag_len > 1)
matchRefinement(alis,seq,score_type,ali_graph,min_frag_len,anno,InexactRefinement());
else
matchRefinement(alis,seq,score_type,ali_graph,min_frag_len,anno,ExactRefinement());
}
//score type not given, min fragment length given, if > 1 ==> inexact refinement
template<typename TAlignmentString, typename TOutGraph, typename TSequence, typename TSetSpec>
void
matchRefinement(TAlignmentString & alis,
StringSet<TSequence, TSetSpec> & seq,
TOutGraph & ali_graph,
unsigned int min_frag_len)
{
// Score<int,FakeScore > fake_score;
typename Cargo<TOutGraph>::Type fake_score = 1;
bool anno = false;
if(min_frag_len > 1)
matchRefinement(alis,seq,fake_score,ali_graph,min_frag_len,anno,InexactRefinement());
else
matchRefinement(alis,seq,fake_score,ali_graph,min_frag_len,anno,ExactRefinement());
}
} // namespace seqan2
#endif // #ifndef SEQAN_INCLUDE_SEQAN_GRAPH_ALGORITHM_REFINE_INEXACT_H_
|