File: shape_threshold.h

package info (click to toggle)
seqan2 2.5.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 228,748 kB
  • sloc: cpp: 257,602; ansic: 91,967; python: 8,326; sh: 1,056; xml: 570; makefile: 229; awk: 51; javascript: 21
file content (1179 lines) | stat: -rw-r--r-- 38,425 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
// ==========================================================================
//                 SeqAn - The Library for Sequence Analysis
// ==========================================================================
// Copyright (c) 2006-2026, Knut Reinert, FU Berlin
// Copyright (c) 2013 NVIDIA Corporation
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above copyright
//       notice, this list of conditions and the following disclaimer in the
//       documentation and/or other materials provided with the distribution.
//     * Neither the name of Knut Reinert or the FU Berlin nor the names of
//       its contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL KNUT REINERT OR THE FU BERLIN BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
// DAMAGE.
//
// ==========================================================================
// Author: David Weese <david.weese@fu-berlin.de>
// ==========================================================================

#ifndef SEQAN_HEADER_SHAPE_THRESHOLD_H
#define SEQAN_HEADER_SHAPE_THRESHOLD_H

namespace seqan2
{

struct ThreshQGramLemma_;
struct ThreshExact_;
struct ThreshHeuristic_;

typedef Tag<ThreshQGramLemma_> const    ThreshQGramLemma;
typedef Tag<ThreshHeuristic_> const        ThreshHeuristic;
typedef Tag<ThreshExact_> const            ThreshExact;


//////////////////////////////////////////////////////////////////////////////
// q-gram lemma
//
// - exact for ungapped shapes or errors <= 1
// - lower bound gapped shapes
//////////////////////////////////////////////////////////////////////////////

template <typename TShape, typename TPatternLength, typename TErrors, typename TDistance>
inline int qgramThreshold(TShape const & shape, TPatternLength patternLength, TErrors errors, TDistance const, ThreshQGramLemma const)
{
    int t = (int)patternLength - (int)length(shape) + 1 - (int)errors * (int)weight(shape);
    return (t > 0)? t: 0;
}


//////////////////////////////////////////////////////////////////////////////
// q-gram heuristic
//
// - exact for errors <= 1
// - upper bound
//////////////////////////////////////////////////////////////////////////////

template <typename TShape, typename TPatternSize, typename TErrors, typename TDistance>
int qgramThreshold(TShape const & shape, TPatternSize patternLength, TErrors errors, TDistance const, ThreshHeuristic const)
{
    String<unsigned char> coverage;
    String<bool> preserved;
    String<unsigned> ones;
    CharString bitString;

    // initialize coverage map and bitmap of preserved q-grams
    resize(preserved, patternLength - length(shape) + 1, true);
    resize(coverage, patternLength, 0);

    shapeToString(bitString, shape);
    for (unsigned i = 0; i < length(bitString); ++i)
        if (bitString[i] == '1')
        {
            appendValue(ones, i);
            for (unsigned j = 0; j < length(preserved); ++j)
                ++coverage[i + j];
        }

    // greedily destroy a maximum number of q-grams
    for (; errors > 0; --errors)
    {
        // find position that destroys a maximum number of q-grams
        unsigned maxCoverage = 0;
        unsigned maxCoveragePos = 0;
        for (unsigned i = 0; i < length(coverage); ++i)
            if (maxCoverage < coverage[i])
            {
                maxCoverage = coverage[i];
                maxCoveragePos = i;
            }

        // destroy q-grams
        for (unsigned k = 0; k < length(ones); ++k)
            if (ones[k] <= maxCoveragePos)
            {
                unsigned startPos = maxCoveragePos - ones[k];
                if (startPos < length(preserved) && preserved[startPos])
                {
                    preserved[startPos] = false;
                    for (unsigned l = 0; l < length(ones); ++l)
                        --coverage[startPos + ones[l]];
                }
            }
    }

    unsigned thresh = 0;
    for (unsigned i = 0; i < length(preserved); ++i)
        if (preserved[i])
            ++thresh;

    return thresh;
}





//____________________________________________________________________________
// Extensions to SeqAn

    struct ErrorAlphabet_ {};
    typedef SimpleType<unsigned char, ErrorAlphabet_> ErrorAlphabet;

    template <> struct ValueSize< ErrorAlphabet >    { enum { VALUE = 4 }; };
    template <> struct BitsPerValue< ErrorAlphabet > { enum { VALUE = 2 }; };

    template <typename T = void>
    struct TranslateTableErrorToChar_
    {
        static char const VALUE[4];
    };
    template <typename T>
    char const TranslateTableErrorToChar_<T>::VALUE[4] = {'.', 'M', 'I', 'D'};

    inline void assign(char & c_target,
                       ErrorAlphabet const & source)
    {
        c_target = TranslateTableErrorToChar_<>::VALUE[source.value];
    }


    struct ErrorPackedString;

    template <typename TValue>
    struct Host<String<TValue, Packed<ErrorPackedString> > >
    {
        typedef String<int64_t, Array<1> > Type;
    };

    template <typename TValue>
    struct Host<String<TValue, Packed<ErrorPackedString> > const >
    {
        typedef String<int64_t, Array<1> > const Type;
    };


//____________________________________________________________________________

    enum ErrorType {
        SEQAN_MATCH    = 0,
        SEQAN_MISMATCH = 1,
        SEQAN_INSERT   = 2,
        SEQAN_DELETE   = 3
    };

    template <typename TDistance>
    struct ErrorTypes {
        enum { VALUE = 4 };
    };

    template <>
    struct ErrorTypes<HammingDistance> {
        enum { VALUE = 2 };
    };

    // descriptor of the modification pattern
    // in the recursion it modifies the last q-gram of a read sequence
    template <typename TDistance, typename TFloat>
    struct SensitivityDPState_
    {
        enum { TRANSITIONS = ErrorTypes<TDistance>::VALUE };
        TFloat prob;                // probability of this state
        int transition[ErrorTypes<TDistance>::VALUE];    // returns previous state
        unsigned char len;            // length of this pattern (shapeSpan-errors <= this value <= shapeSpan+errors)
        unsigned char errors:4;        // errors in this state
        bool skipFirst:1;            // skip this pattern if it is the first
        bool skipLast:1;            // skip this pattern if it is the last
        bool intermediate:1;        // this is an intermediate result (beginning with INSERT)
        bool qgramHit:1;            // is this a q-gram hit? (result of the former delta function)
    }
#ifndef STDLIB_VS
    __attribute__((packed))
#endif
    ;

    // descriptor of the modification pattern
    // in the recursion it modifies the last q-gram of a read sequence
    template <typename TDistance>
    struct ThreshDPState_
    {
        enum { TRANSITIONS = ErrorTypes<TDistance>::VALUE };
        int transition[ErrorTypes<TDistance>::VALUE];    // returns previous state
        unsigned char len;            // length of this pattern (shapeSpan-errors <= this value <= shapeSpan+errors)
        unsigned char errors:4;        // errors in this state
        bool skipFirst:1;            // skip this pattern if it is the first
        bool skipLast:1;            // skip this pattern if it is the last
        bool intermediate:1;        // this is an intermediate result (beginning with INSERT)
        bool qgramHit:1;            // is this a q-gram hit? (result of the former delta function)
    }
#ifndef STDLIB_VS
    __attribute__((packed))
#endif
    ;

#if defined(STDLIB_VS)

    template<typename TValue>
    inline bool isNan(TValue value)
    {
        return value != value;
    }

    template<typename TValue>
    inline bool isInf(TValue value)
    {
        return value == log(0.0);
    }

#else

    template<typename TValue>
    inline bool isNan(TValue value)
    {
        return std::isnan(value);
    }

    template<typename TValue>
    inline bool isInf(TValue value)
    {
        return std::isinf(value);
    }

#endif


    template <typename TValue>
    inline long double
    _transform(TValue a)
    {
#ifdef USE_LOGVALUES
        return log(a);
#else
        return a;
#endif
    }

    template <typename TValue>
    inline long double
    _transformBack(TValue a)
    {
#ifdef USE_LOGVALUES
        return exp(a);
#else
        return a;
#endif
    }

    //////////////////////////////////////////////////////////////////////////////
    // Returns the sum of two probability values in log space
    template <typename TValue>
    inline void
    _probAdd(TValue &a, TValue b)
    {
#ifdef USE_LOGVALUES
        if (isInf(a)) {
            a = b;
            return;
        }
        if (isInf(b)) return;
        if (isNan(a + log(1 + exp(b - a)))) return;
        a += log(1 + exp(b - a));
#else
        a += b;
#endif
    }

    template <typename TValue>
    inline TValue
    _probMul(TValue a, TValue b)
    {
#ifdef USE_LOGVALUES
        return a + b;
#else
        return a * b;
#endif
    }

    template <typename TValue>
    inline TValue
    _probDiv(TValue a, TValue b)
    {
#ifdef USE_LOGVALUES
        return a - b;
#else
        return a / b;
#endif
    }


struct ErrorPatternLess
{
    template <typename TPattern>
    bool operator() (TPattern const &a, TPattern const &b) const
    {
        typedef typename Iterator<TPattern const>::Type TIter;
        TIter itA = end(a, Standard());
        TIter itB = end(b, Standard());
        TIter itEnd;
        if (length(a) <= length(b))
        {
            itEnd = begin(a, Standard());
            for (; itA != itEnd;)
            {
                --itA;
                --itB;
                if (*itA < *itB) return true;
                if (*itA > *itB) return false;
            }
            return false;
        } else
        {
            itEnd = begin(b, Standard());
            for (; itB != itEnd;)
            {
                --itA;
                --itB;
                if (*itA < *itB) return true;
                if (*itA > *itB) return false;
            }
            return true;
        }
    }
};

template <typename TPatternStore, typename TPattern>
inline int
_getErrorPatternIndex(TPatternStore const &patternStore, TPattern const &pattern)
{
    typedef typename Iterator<TPatternStore const>::Type TIter;
    TIter lb = std::lower_bound(begin(patternStore, Standard()), end(patternStore, Standard()), pattern, ErrorPatternLess());
    TIter invalid = end(patternStore, Standard());
    if (lb != invalid && *lb == pattern) {
//        std::cout << pattern;
        return lb - begin(patternStore, Standard());
    } else {
/*        std::cerr << "  !Pattern Not Found! " << pattern;
        if (lb != invalid) std::cerr << "\tnext is " << *lb;
        std::cerr << std::endl;
*/        return -1;
    }
}

// Cut 1 read character and trailing INSERTs of the pattern
template <typename TPattern>
inline int
_cutErrorPattern(TPattern &_pattern)
{
    typedef typename Iterator<TPattern const, Standard>::Type TIter;
    TPattern const & pattern = const_cast<TPattern const&>(_pattern);
    TIter it = end(pattern, Standard());
    int cuttedErrors = -2;

    // cut trailing INSERTs
    do {
        --it;
        ++cuttedErrors;
    } while ((int)getValue(it) == SEQAN_INSERT);

    // cut non INSERT
    if ((int)getValue(it) != SEQAN_MATCH)
        ++cuttedErrors;

    //  and all adjacent INSERTs
    do {
        --it;
        ++cuttedErrors;
    } while ((int)getValue(it) == SEQAN_INSERT);

    resize(_pattern, 1 + (it - begin(pattern, Standard())));
    return cuttedErrors;
}

template < typename TLogErrorDistr >
typename Value<TLogErrorDistr>::Type
_getProb(TLogErrorDistr const &logError, int errorType, int readPos)
{
    int maxN = length(logError) / 4;
    SEQAN_ASSERT(readPos >= 0 && readPos < maxN);
    return logError[maxN * (int)errorType + readPos];
}

//////////////////////////////////////////////////////////////////////////////
// Returns log probability of q-gram-configuration q ending at position pos in sequence
template < typename TState, typename TLogErrorDistr, typename TPattern >
inline void
_getLastPatternProb(TState &state, TLogErrorDistr const &logError, TPattern const &pattern, int span)
{
    int maxN = length(logError) / 4;
    typename Value<TLogErrorDistr>::Type prob = _transform(1.0);
    for (int i = 0, j = 0; j < (int)length(pattern); ++j)
    {
        prob = _probMul(prob, _getProb(logError, getValue(pattern, j), maxN - span + i));
        if ((int)getValue(pattern, j) != SEQAN_INSERT)
            ++i;
    }
    state.prob = prob;
}

template < typename TState, typename TPattern >
inline void
_getLastPatternProb(TState &, Nothing const &, TPattern const &, int)
{
}

template <template <typename, typename> class TState,
          typename TDistance, typename TFloat,
          typename TPatternStore,
          typename TPattern,
          typename TErr>
inline void
_setInsertTransitions(TState<TDistance, TFloat> & state,
                      TPatternStore const & patternStore,
                      TPattern const & pattern,
                      TErr const errors,
                      TErr const maxErrors)
{
    if (errors <= maxErrors)
        state.transition[SEQAN_INSERT] = _getErrorPatternIndex(patternStore, pattern);
    else
        state.transition[SEQAN_INSERT] = -1;
}

template <template <typename, typename> class TState,
          typename TFloat,
          typename TPatternStore,
          typename TPattern,
          typename TErr>
inline void
_setInsertTransitions(TState<HammingDistance, TFloat> & /*state*/,
                      TPatternStore const & /*patternStore*/,
                      TPattern const & /*pattern*/,
                      TErr const /*errors*/,
                      TErr const /*maxErrors*/)
{
    // no-op
}

template <template <typename, typename> class TState,
          typename TDistance, typename TFloat,
          typename TPatternStore,
          typename TPattern,
          typename TErr>
inline void
_setDeleteTransitions(TState<TDistance, TFloat> & state,
                      TPatternStore const & patternStore,
                      TPattern const & pattern,
                      TErr const errors,
                      TErr const maxErrors)
{
    if (errors <= maxErrors)
        state.transition[SEQAN_DELETE] = _getErrorPatternIndex(patternStore, pattern);
    else
        state.transition[SEQAN_DELETE] = -1;
}

template <template <typename, typename> class TState,
          typename TFloat,
          typename TPatternStore,
          typename TPattern,
          typename TErr>
inline void
_setDeleteTransitions(TState<HammingDistance, TFloat> & /*state*/,
                      TPatternStore const & /*patternStore*/,
                      TPattern const & /*pattern*/,
                      TErr const /*errors*/,
                      TErr const /*maxErrors*/)
{
    // no-op
}

//////////////////////////////////////////////////////////////////////////////
// Initialize states-string for edit/hamming-distance filters
template <
    typename TStateString,
    typename TShape,
    typename TLogErrorDistr,
    typename TDistance >
void initPatterns(
    TStateString &states,                // resulting states-string
    TShape const &bitShape,                // bit-string of the shape
    int maxErrors,                        // allowed errors per pattern
    TLogErrorDistr const &logError,        // error distribution (Nothing or string of 4*patternLen floats)
    TDistance,                            // enumerate hamming or edit distance patterns
    bool optionMinOutput)                // omit output
{
#ifndef DEBUG_RECOG_DP
//    typedef String<ErrorAlphabet, Packed<ErrorPackedString> >    TPattern;
    typedef String<ErrorAlphabet>                                TPattern;
#endif

    typedef typename Iterator<TPattern, Standard>::Type            TIter;
    typedef typename Value<TStateString>::Type                    TState;

    ErrorType lastErrorType = (IsSameType<TDistance, HammingDistance>::VALUE)? SEQAN_MISMATCH: SEQAN_DELETE;

    SEQAN_ASSERT_EQ(SEQAN_MATCH, 0);
    SEQAN_ASSERT((IsSameType<TLogErrorDistr,Nothing>::VALUE || (length(logError) % 4) == 0u));

#ifndef DEBUG_RECOG_DP
    String<TPattern> patternStore;
#endif

    // a modifier is a pair of position and error type
    String<Pair<int, ErrorType> > mods;
    resize(mods, maxErrors, Pair<int, ErrorType> (0, SEQAN_MATCH));

    TPattern pattern;
    int span = length(bitShape);

    //////////////////////////////////////////////////////////////////////////////
    // Enumerate all edit-modification patterns with up to k errors
    if (maxErrors == 0)
    {
        resize(pattern, span, (ErrorAlphabet)SEQAN_MATCH);
        appendValue(patternStore, pattern, Generous());
    }
    else
    do
    {
        clear(pattern);
        resize(pattern, span, (ErrorAlphabet)SEQAN_MATCH);

        // place errors in the pattern
        bool skip = false;
        for (int i = 0; (i < maxErrors) && !skip; ++i)
        {
//            std::cout << mods[i].i1 << " " << (ErrorAlphabet)mods[i].i2 << "\t";
            switch (mods[i].i2)
            {
            case SEQAN_MISMATCH:
            case SEQAN_DELETE:
                if (pattern[mods[i].i1] != (ErrorAlphabet)SEQAN_MATCH)
                {
                    skip = true;
                    break;
                }
                pattern[mods[i].i1] = (ErrorAlphabet)mods[i].i2;
                break;

            case SEQAN_INSERT:
                insertValue(pattern, mods[i].i1, (ErrorAlphabet)SEQAN_INSERT);
                break;

            case SEQAN_MATCH:
                break;
            }
        }

        // remove redundant patterns
        if (!skip)
        {
            TIter it = begin(pattern, Standard());
            TIter itEnd = end(pattern, Standard());
            int left = getValue(it);
            int right;
            for (++it; (it != itEnd) && !skip; ++it, left = right)
            {
                right = getValue(it);

#ifdef NON_REDUNDANT
                if (left == SEQAN_MISMATCH && right == SEQAN_DELETE)
                    skip = true;    // MISMATCH before DELETE is DELETE before MISMATCH (already enumerated)

                if (left == SEQAN_MISMATCH && right == SEQAN_INSERT)
                    skip = true;    // MISMATCH before INSERT is INSERT before MISMATCH (already enumerated)

                if (left == SEQAN_INSERT && right == SEQAN_DELETE)
                    skip = true;    // INSERT before DELETE is one MISMATCH (already enumerated)

                if (left == SEQAN_DELETE && right == SEQAN_INSERT)
                    skip = true;    // DELETE before INSERT is one MISMATCH (already enumerated)
#endif
            }
            if (left == SEQAN_INSERT)
                skip = true;        // no trailing INSERT allowed
        }

        if (!skip)
        {
            appendValue(patternStore, pattern, Generous());
//            std::cout << pattern << std::endl;
        }

        // reposition modifiers
        int i = 0;
        for (; i < maxErrors; ++i)
        {
            if (mods[i].i2 == SEQAN_MATCH) continue;
            int endPos = (mods[i].i2 == SEQAN_INSERT)? span + 1: span;
            if (++mods[i].i1 < endPos)
            {
                for(--i; i >= 0; --i)
                    mods[i].i1 = mods[i + 1].i1;
                break;
            }
        }

        if (i < maxErrors) continue;

        for (i = 0; i < maxErrors; ++i)
            mods[i].i1 = 0;

        // next state combination
        for (i = 0; i < maxErrors; ++i)
        {
            if (mods[i].i2 == lastErrorType) continue;
            mods[i].i2 = (ErrorType)(mods[i].i2 + 1);
            for(--i; i >= 0; --i)
                mods[i].i2 = SEQAN_MISMATCH;
            break;
        }

        if (i == maxErrors) break;

    } while (true);

    if (!optionMinOutput)
        std::cout << "Stored " << length(patternStore) << " modification patterns" << std::flush;

    reserve(patternStore, length(patternStore), Exact());
    std::sort(begin(patternStore, Standard()), end(patternStore, Standard()), ErrorPatternLess());
    for (int p = 1; p < (int)length(patternStore); ++p)
    {
        if (patternStore[p-1] == patternStore[p])
            std::cerr << "  !Found duplicate! " << patternStore[p] << std::endl;
    }

    if (!optionMinOutput)
        std::cout << " and sorted them." << std::endl;

    //////////////////////////////////////////////////////////////////////////////
    // Calculate transitions
    resize(states, length(patternStore));
    for (int p = 0; p < (int)length(patternStore); ++p)
    {
        pattern = patternStore[p];
        TState &state = states[p];

//        std::cout << pattern << "\t";

        // count errors of current pattern
        int errors = 0;
        for (int i = 0; i < (int)length(pattern); ++i)
            if ((int)getValue(pattern, i) != SEQAN_MATCH)
                ++errors;

        state.len = length(pattern);
        state.errors = errors;
        state.intermediate = (int)getValue(pattern, 0) == SEQAN_INSERT;
        _getLastPatternProb(state, logError, pattern, span);
//        std::cout << pattern << "\t";

        state.skipFirst = false;
        state.skipLast = false;

#ifdef NON_REDUNDANT
        int err = 0, del = 0;
        for (int j = 0; j < (int)length(pattern); ++j)
        {
            switch ((int)getValue(pattern, j)) {
                case SEQAN_MATCH:
                    ++del;
                    break;

                case SEQAN_DELETE:
                    ++del;
                    SEQAN_FALLTHROUGH

                case SEQAN_INSERT:
                    ++err;
                    break;

                default:;
            }
            if (del > 0 && del <= err)
                state.skipFirst = true;
        }
        err = del = 0;
        for (int j = (int)length(pattern) - 1; j >= 0; --j)
        {
            switch ((int)getValue(pattern, j)) {
                case SEQAN_MATCH:
                    ++del;
                    break;

                case SEQAN_DELETE:
                    ++del;
                    SEQAN_FALLTHROUGH

                case SEQAN_INSERT:
                    ++err;
                    break;

                default:;
            }
            if (del > 0 && del <= err)
                state.skipLast = true;
        }
#else
        state.skipFirst = (int)getValue(pattern, 0) == SEQAN_INSERT;
#endif
        // apply pattern to read q-gram
        // and check if shape is recognized in the genome
        state.qgramHit = false;
        int delta = 0;
        for (int j = 0, readPos = 0, genomePos = 0; j < (int)length(pattern); ++j)
        {
            switch ((int)getValue(pattern, j))
            {
                case SEQAN_MATCH:
                    if (readPos == 0) {
                        // SEQAN_ASSERT_EQ(bitShape[0], '1')
                        delta = genomePos;
                        state.qgramHit = true;
                    } else
                        if (bitShape[readPos] == '1')
                            state.qgramHit &= (readPos + delta == genomePos);
//                    std::cout << readPos;
                    ++readPos; ++genomePos;
                    break;
                case SEQAN_MISMATCH:
                    // was it a relevant read position?
                    if (bitShape[readPos] == '1')
                        state.qgramHit = false;
//                    std::cout << 'x';
                    ++readPos; ++genomePos;
                    break;
                case SEQAN_DELETE:
                    // was it a relevant read position?
                    if (bitShape[readPos] == '1')
                        state.qgramHit = false;
                    ++readPos;
                    break;
                case SEQAN_INSERT:
                    ++genomePos;
//                    std::cout << 'x';
            }
        }
//        std::cout << std::endl;

        // prepend INSERT
        ++errors;
        insertValue(pattern, 0, SEQAN_INSERT);
        _setInsertTransitions(state, patternStore, pattern, errors, maxErrors);

        // prepend MISMATCH and cut INSERTS
        errors -= _cutErrorPattern(pattern);
        if ((int)SEQAN_MISMATCH < (int)state.TRANSITIONS)
        {
            pattern[0] = SEQAN_MISMATCH;
            if (errors <= maxErrors)
                state.transition[SEQAN_MISMATCH] = _getErrorPatternIndex(patternStore, pattern);
            else
                state.transition[SEQAN_MISMATCH] = -1;
        }

        // prepend DELETE
        pattern[0] = SEQAN_DELETE;
        _setDeleteTransitions(state, patternStore, pattern, errors, maxErrors);

        // prepend MATCH
        if ((int)SEQAN_MATCH < (int)state.TRANSITIONS)
        {
            --errors;
            pattern[0] = SEQAN_MATCH;
            if (errors <= maxErrors)
                state.transition[SEQAN_MATCH] = _getErrorPatternIndex(patternStore, pattern);
            else
                state.transition[SEQAN_MATCH] = -1;
        }
/*
        std::cout << "\t" << state.errors;
        std::cout << "\t" << state.qgramHit;
        std::cout << "\t" << state.leftError;
        std::cout << "\t" << state.rightError;
        std::cout << "\t" << state.transition[0];
        std::cout << "\t" << state.transition[1];
        std::cout << "\t" << state.transition[2];
        std::cout << "\t" << state.transition[3];
        std::cout << std::endl;
*/    }
    if (!optionMinOutput)
        std::cout << "Preprocessing finished." << std::endl;
}

//////////////////////////////////////////////////////////////////////////////
// Compute filtering loss of any q-gram filter (given a states-string)
template <
    typename TThreshString,
    typename TStateString >
void computeExactQGramThreshold(
    TThreshString &treshPerError,
    TStateString const &states,
    int span,
    int maxErrors,
    int maxN,
    bool optionMinOutput)
{
    typedef typename Value<TStateString>::Type        TState;
    typedef unsigned                                TThresh;
    typedef String<TThresh>                            TMatrixCol;

    int statesCount = length(states);
//    int span = length(bitShape);

    // columns n-1 and n for recursion
    TMatrixCol col0;    // addressing is colx[errors * statesCount + state]
    TMatrixCol col1;
    const TThresh infty = std::numeric_limits<TThresh>::max() >> 1;

    resize(col0, maxErrors * statesCount, infty);
    resize(col1, maxErrors * statesCount);

    // RECURSION BEGIN
    for (int s = 0; s < statesCount; ++s)
    {
        TState const &state = states[s];
        if (state.skipFirst) continue;

        // threshold is 1 iff we have a q-gram hit at the end
        col0[s] = (state.qgramHit)? 1: 0;
    }

    // iterate over sequence length n
    TMatrixCol *col = &col1;
    TMatrixCol *colPrev = &col0;

#ifdef DEBUG_RECOG_DP
    std::cout << span << ":0";
    dump(col0, 0,statesCount);
    std::cout << " :1";
    dump(col0, 1,statesCount);
#endif


    // RECURSION
    //
    // thresh(n,q,e) = min(thresh(n-1,0|(q>>1),e),              delta=1/0 <-> q hat 0/>0 error
    //                     thresh(n-1,1|(q>>1),e-1)) + delta

    for (int n = span; n < maxN; ++n)
    {
        for (int e = 0; e < maxErrors * statesCount; e += statesCount)
        {
            for (int s = 0; s < statesCount; ++s)
            {
                TState const &state = states[s];

                // MATCH
                TThresh t = (*colPrev)[e + state.transition[SEQAN_MATCH]];

                // MISMATCH, INSERT, DELETE
                if (e > 0)
                    for (int m = SEQAN_MISMATCH; m < TState::TRANSITIONS; ++m)
                    {
                        int prevState = state.transition[m];
                        if (prevState >= 0)
                        {
                            if (m == SEQAN_INSERT)
                                t = _min(t, (*col)[(e - statesCount) + prevState]);
                            else
                                t = _min(t, (*colPrev)[(e - statesCount) + prevState]);
                        }
                    }

                (*col)[e + s] = t + state.qgramHit;
            }
            if (!optionMinOutput)
                std::cout << '.' << std::flush;
        }

        TMatrixCol *tmp = col;
        col = colPrev;
        colPrev = tmp;

#ifdef DEBUG_RECOG_DP
        std::cout << n+1 << ":0";
        dump(*colPrev, 0,statesCount);
        std::cout << " :1";
        dump(*colPrev, 1,statesCount);
        std::cout << " :2";
        dump(*colPrev, 2,statesCount);
#endif
    }

    if (!optionMinOutput)
        std::cout << std::endl;

    resize(treshPerError, maxErrors);

    // RECURSION END
    for (int eSum = 0; eSum < maxErrors; ++eSum)
    {
        TThresh t = infty;
        for (int s = 0; s < statesCount; ++s)
        {
            TState const &state = states[s];

            // skip intermediate results
            if (state.intermediate || state.skipLast) continue;
            if (state.errors <= eSum)
            {
                int e = eSum - state.errors;
                // multiply probability for the trailing pattern
                t = _min(t, (*colPrev)[e * statesCount + s]);
            }
        }

        if (t >= infty) t = 0;
        treshPerError[eSum] = t;
    }
}


//////////////////////////////////////////////////////////////////////////////
// Compute filtering loss of any q-gram filter (given a states-string)
template <
    typename TLossString,
    typename TLogErrorDistr,
    typename TStateString >
void computeQGramFilteringSensitivity(
    TLossString &found,
    TStateString const &states,
    int span,
    int maxT,
    int maxErrors,
    TLogErrorDistr const &logError,
//    bool optionAbsolute = false,
    bool optionMinOutput)
{
    typedef typename Value<TLossString>::Type        TFloat;
    //typedef typename Value<TLogErrorDistr>::Type    TProbValue;
    typedef typename Value<TStateString>::Type        TState;

    typedef String<TFloat>                            TMatrixCol;
    //typedef String<int>                                TIntCol;

    SEQAN_ASSERT_EQ((length(logError) % 4), 0u);

    int maxN = length(logError) / 4;
    int statesCount = length(states);
    const bool optionAbsolute = false;
//    int span = length(bitShape);

    // columns n-1 and n for recursion
    TMatrixCol col0;
    TMatrixCol col1;
    resize(col0, maxErrors * statesCount * maxT, (TFloat)_transform(0.0));
    resize(col1, maxErrors * statesCount * maxT);

#ifdef COUNT_LOSSES
    TFloat positive = _transform(0.0);
    TFloat negative = _transform(1.0);
#else
    TFloat positive = _transform(1.0);
    TFloat negative = _transform(0.0);
#endif

    // RECURSION BEGIN
    for (int s = 0; s < statesCount; ++s)
    {
        TState const &state = states[s];

        if (state.skipFirst) continue;

        // we miss no match if threshold t is 0
        col0[s*maxT] = positive;

        // for n==0
        if (state.qgramHit)
        {
            // we miss no match if read q-gram is recognized
            // --> probability of finding this MMP is 1, if t=1
            col0[s*maxT+1] = positive;
            // --> probability of finding this MMP is 0, if t>1
            for (int t = 2; t < maxT; ++t)
                col0[s*maxT+t] = negative;
        } else
        {
            // we miss 1 match if t>0 and read q-gram is not recognized
            // --> probability of finding this MMP is 0, if t>=1
            for (int t = 1; t < maxT; ++t)
                col0[s*maxT+t] = negative;
        }
    }

    // iterate over sequence length n
    TMatrixCol *col = &col1;
    TMatrixCol *colPrev = &col0;

#ifdef DEBUG_RECOG_DP
    std::cout << span << ":0";
    dump(col0, 0,statesCount);
    std::cout << " :1";
    dump(col0, 1,statesCount);
#endif


    // RECURSION
    //
    // found(n,q,t,e) = (1-errorProb[n-span]) * found(n-1,0|(q>>1),t-delta,e) delta=1/0 <-> q hat 0/>0 fehler
    //               + errorProb[n-span] * found(n-1,1|(q>>1),t-delta,e-1)

    // rekursion (fuer q-gram matches <=1 fehler)
    // found(n,q,t,e) = (1-errorProb[n-span]) * found(n-1,0|(q>>1),t-delta,e) delta=1/0 <-> q hat <=1/>1 fehler
    //               + errorProb[n-span] * found(n-1,1|(q>>1),t-delta,e-1)

    for (int n = span; n < maxN; ++n)
    {
        for (int e = 0; e < maxErrors * statesCount; e += statesCount)
        {
            for (int s = 0; s < statesCount; ++s)
            {
                TState const &state = states[s];
                for (int t = 0; t < maxT; ++t)
                {
                    int _t = t;
                    if (_t > 0 && state.qgramHit) --_t;

                    // MATCH
                    TFloat recovered = _probMul(
                        _getProb(logError, SEQAN_MATCH, n-span),
                        (*colPrev)[(e+state.transition[SEQAN_MATCH])*maxT+_t]);

                    // MISMATCH, INSERT, DELETE
                    for (int m = SEQAN_MISMATCH; m < (int)state.TRANSITIONS; ++m)
                        if (e > 0)
                        {
                            int prevState = state.transition[m];
                            if (prevState >= 0)
                            {
                                if (m == SEQAN_INSERT)
                                    _probAdd(recovered, _probMul(_getProb(logError,m,n-span), (*col)[((e-statesCount)+prevState)*maxT+t]));
                                else
                                    _probAdd(recovered, _probMul(_getProb(logError,m,n-span), (*colPrev)[((e-statesCount)+prevState)*maxT+_t]));
                            }
                        }
                    (*col)[(e+s)*maxT+t] = recovered;
                }
            }
            if (!optionMinOutput)
                std::cout << '.' << std::flush;
        }

        TMatrixCol *tmp = col;
        col = colPrev;
        colPrev = tmp;

#ifdef DEBUG_RECOG_DP
        std::cout << n+1 << ":0";
        dump(*colPrev, 0,statesCount);
        std::cout << " :1";
        dump(*colPrev, 1,statesCount);
        std::cout << " :2";
        dump(*colPrev, 2,statesCount);
#endif
    }

    if (!optionMinOutput)
        std::cout << std::endl;

    // RECURSION END
    for (int eSum = 0; eSum < maxErrors; ++eSum)
        for (int t = 0; t < maxT; ++t)
        {
            TFloat recovered = _transform(0.0);
            for (int s = 0; s < statesCount; ++s)
            {
                TState const &state = states[s];

                // skip intermediate results
                if (state.intermediate || state.skipLast) continue;
                if (state.errors <= eSum)
                {
                    int e = eSum - state.errors;
                    // multiply probability for the trailing pattern
                    _probAdd(recovered, _probMul(state.prob, (*colPrev)[(e*statesCount+s)*maxT+t]));
                }
            }

#ifndef COUNT_LOSSES
            // we can only normalize probs if t==0 contains all k-pattern probs
            if (t > 0 && !optionAbsolute)
                recovered = _probDiv(recovered, found[eSum*maxT]);
#endif

            found[eSum*maxT+t] = recovered;
        }
}


//////////////////////////////////////////////////////////////////////////////
// q-gram threshold DP algorithm
//
// - exact threshold
//////////////////////////////////////////////////////////////////////////////

template <typename TShape, typename TPatternSize, typename TErrors, typename TDistance>
int qgramThreshold(TShape const & shape, TPatternSize patternLength, TErrors errors, TDistance const dist, ThreshExact const)
{
    String<ThreshDPState_<TDistance> > states;
    String<unsigned> thresh;
    String<char> bitString;

    shapeToString(bitString, shape);
    initPatterns(states, bitString, errors, Nothing(), dist, true);
    computeExactQGramThreshold(thresh, states, length(bitString), errors + 1, patternLength, true);

    return thresh[errors];
}

//////////////////////////////////////////////////////////////////////////////
// q-gram filter sensitivity DP algorithm
//
// - exact threshold
//////////////////////////////////////////////////////////////////////////////

template <typename TSensitivityMatrix, typename TShape, typename TPatternSize, typename TErrors, typename TThresh, typename TDistance, typename TErrorDist>
void qgramFilteringSensitivity(
    TSensitivityMatrix & sensMat,
    TShape const & shape,
    TPatternSize patternLength,
    TErrors errors,
    TThresh maxThresh,
    TDistance const dist,
    ThreshExact const,
    TErrorDist const & logErrorDistribution)
{
    typedef typename Value<TSensitivityMatrix>::Type TFloat;
    String<SensitivityDPState_<TDistance, TFloat> > states;
    String<unsigned> thresh;
    String<char> bitString;

    maxThresh = _min(maxThresh, patternLength - length(shape) + 1);
    resize(sensMat, (maxThresh + 1) * (errors + 1));
    shapeToString(bitString, shape);

    initPatterns(states, bitString, errors, logErrorDistribution, dist, true);
    computeQGramFilteringSensitivity(sensMat, states, length(bitString), maxThresh + 1, errors + 1, logErrorDistribution, true);
}

}    // namespace seqan2

#endif