1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
|
// ==========================================================================
// SeqAn - The Library for Sequence Analysis
// ==========================================================================
// Copyright (c) 2006-2026, Knut Reinert, FU Berlin
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of Knut Reinert or the FU Berlin nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL KNUT REINERT OR THE FU BERLIN BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
// DAMAGE.
//
// ==========================================================================
// Author: David Weese <david.weese@fu-berlin.de>
// ==========================================================================
// A data type to represent Rational numbers.
// Taken from the Rational Number Library in Boost version 1.47.
// ==========================================================================
#ifndef SEQAN_MATH_RATIONAL_H_
#define SEQAN_MATH_RATIONAL_H_
namespace seqan2 {
// ============================================================================
// Forwards
// ============================================================================
template <typename TInt>
class Rational;
template <typename TInt>
Rational<TInt> abs(const Rational<TInt>& r);
// ============================================================================
// Tags, Classes, Enums
// ============================================================================
template <typename TInt>
class Rational :
less_than_comparable < Rational<TInt>,
equality_comparable < Rational<TInt>,
less_than_comparable2 < Rational<TInt>, TInt,
equality_comparable2 < Rational<TInt>, TInt,
addable < Rational<TInt>,
subtractable < Rational<TInt>,
multipliable < Rational<TInt>,
dividable < Rational<TInt>,
addable2 < Rational<TInt>, TInt,
subtractable2 < Rational<TInt>, TInt,
subtractable2_left < Rational<TInt>, TInt,
multipliable2 < Rational<TInt>, TInt,
dividable2 < Rational<TInt>, TInt,
dividable2_left < Rational<TInt>, TInt,
incrementable < Rational<TInt>,
decrementable < Rational<TInt>
> > > > > > > > > > > > > > > >
{
// Class-wide pre-conditions
// SEQAN_STATIC_ASSERT( std::numeric_limits<TInt>::is_specialized );
// Helper types
// typedef typename boost::call_traits<TInt>::param_type param_type;
typedef const TInt & param_type;
struct helper { TInt parts[2]; };
typedef TInt (helper::* bool_type)[2];
public:
typedef TInt int_type;
Rational() : num(0), den(1) {}
template <typename T>
Rational(T const & n, SEQAN_CTOR_ENABLE_IF( Is<IntegerConcept<T> > ) ) : num(n), den(1) { (void)dummy; }
Rational(param_type n, param_type d) : num(n), den(d) { normalize(); }
// Default copy constructor and assignment are fine
// Add assignment from TInt
Rational& operator=(param_type n) { return assign(n, 1); }
// Assign in place
Rational& assign(param_type n, param_type d);
// Access to representation
TInt numerator() const { return num; }
TInt denominator() const { return den; }
// Arithmetic assignment operators
Rational& operator+= (const Rational& r);
Rational& operator-= (const Rational& r);
Rational& operator*= (const Rational& r);
Rational& operator/= (const Rational& r);
Rational& operator+= (param_type i);
Rational& operator-= (param_type i);
Rational& operator*= (param_type i);
Rational& operator/= (param_type i);
// Increment and decrement
const Rational& operator++();
const Rational& operator--();
// Operator not
bool operator!() const { return !num; }
// Boolean conversion
operator bool_type() const { return operator !() ? 0 : &helper::parts; }
operator double() const
{
SEQAN_ASSERT_NEQ (den, TInt(0));
return (double)num / (double)den;
}
// Comparison operators
bool operator< (const Rational& r) const;
bool operator== (const Rational& r) const;
bool operator< (param_type i) const;
bool operator> (param_type i) const;
bool operator== (param_type i) const;
private:
// Implementation - numerator and denominator (normalized).
// Other possibilities - separate whole-part, or sign, fields?
TInt num;
TInt den;
// Representation note: Fractions are kept in normalized form at all
// times. normalized form is defined as gcd(num,den) == 1 and den > 0.
// In particular, note that the implementation of abs() below relies
// on den always being positive.
bool test_invariant() const;
void normalize();
};
// Assign in place
template <typename TInt>
inline Rational<TInt>& Rational<TInt>::assign(param_type n, param_type d)
{
num = n;
den = d;
normalize();
return *this;
}
// Unary plus and minus
template <typename TInt>
inline Rational<TInt> operator+ (const Rational<TInt>& r)
{
return r;
}
template <typename TInt>
inline Rational<TInt> operator- (const Rational<TInt>& r)
{
return Rational<TInt>(-r.numerator(), r.denominator());
}
// Arithmetic assignment operators
template <typename TInt>
Rational<TInt>& Rational<TInt>::operator+= (const Rational<TInt>& r)
{
// This calculation avoids overflow, and minimises the number of expensive
// calculations. Thanks to Nickolay Mladenov for this algorithm.
//
// Proof:
// We have to compute a/b + c/d, where gcd(a,b)=1 and gcd(b,c)=1.
// Let g = gcd(b,d), and b = b1*g, d=d1*g. Then gcd(b1,d1)=1
//
// The result is (a*d1 + c*b1) / (b1*d1*g).
// Now we have to normalize this ratio.
// Let's assume h | gcd((a*d1 + c*b1), (b1*d1*g)), and h > 1
// If h | b1 then gcd(h,d1)=1 and hence h|(a*d1+c*b1) => h|a.
// But since gcd(a,b1)=1 we have h=1.
// Similarly h|d1 leads to h=1.
// So we have that h | gcd((a*d1 + c*b1) , (b1*d1*g)) => h|g
// Finally we have gcd((a*d1 + c*b1), (b1*d1*g)) = gcd((a*d1 + c*b1), g)
// Which proves that instead of normalizing the result, it is better to
// divide num and den by gcd((a*d1 + c*b1), g)
// Protect against self-modification
TInt r_num = r.num;
TInt r_den = r.den;
TInt g = greatestCommonDivisor(den, r_den);
den /= g; // = b1 from the calculations above
num = num * (r_den / g) + r_num * den;
g = greatestCommonDivisor(num, g);
num /= g;
den *= r_den/g;
return *this;
}
template <typename TInt>
Rational<TInt>& Rational<TInt>::operator-= (const Rational<TInt>& r)
{
// Protect against self-modification
TInt r_num = r.num;
TInt r_den = r.den;
// This calculation avoids overflow, and minimises the number of expensive
// calculations. It corresponds exactly to the += case above
TInt g = greatestCommonDivisor(den, r_den);
den /= g;
num = num * (r_den / g) - r_num * den;
g = greatestCommonDivisor(num, g);
num /= g;
den *= r_den/g;
return *this;
}
template <typename TInt>
Rational<TInt>& Rational<TInt>::operator*= (const Rational<TInt>& r)
{
// Protect against self-modification
TInt r_num = r.num;
TInt r_den = r.den;
// Avoid overflow and preserve normalization
TInt gcd1 = greatestCommonDivisor(num, r_den);
TInt gcd2 = greatestCommonDivisor(r_num, den);
num = (num/gcd1) * (r_num/gcd2);
den = (den/gcd2) * (r_den/gcd1);
return *this;
}
template <typename TInt>
Rational<TInt>& Rational<TInt>::operator/= (const Rational<TInt>& r)
{
// Protect against self-modification
TInt r_num = r.num;
TInt r_den = r.den;
// Avoid repeated construction
TInt zero(0);
// Trap division by zero
SEQAN_ASSERT_NEQ (r_num, zero);
if (num == zero)
return *this;
// Avoid overflow and preserve normalization
TInt gcd1 = greatestCommonDivisor(num, r_num);
TInt gcd2 = greatestCommonDivisor(r_den, den);
num = (num/gcd1) * (r_den/gcd2);
den = (den/gcd2) * (r_num/gcd1);
if (den < zero) {
num = -num;
den = -den;
}
return *this;
}
// Mixed-mode operators
template <typename TInt>
inline Rational<TInt>&
Rational<TInt>::operator+= (param_type i)
{
return operator+= (Rational<TInt>(i));
}
template <typename TInt>
inline Rational<TInt>&
Rational<TInt>::operator-= (param_type i)
{
return operator-= (Rational<TInt>(i));
}
template <typename TInt>
inline Rational<TInt>&
Rational<TInt>::operator*= (param_type i)
{
return operator*= (Rational<TInt>(i));
}
template <typename TInt>
inline Rational<TInt>&
Rational<TInt>::operator/= (param_type i)
{
return operator/= (Rational<TInt>(i));
}
// Increment and decrement
template <typename TInt>
inline const Rational<TInt>& Rational<TInt>::operator++()
{
// This can never denormalise the fraction
num += den;
return *this;
}
template <typename TInt>
inline const Rational<TInt>& Rational<TInt>::operator--()
{
// This can never denormalise the fraction
num -= den;
return *this;
}
// Comparison operators
template <typename TInt>
bool Rational<TInt>::operator< (const Rational<TInt>& r) const
{
// Avoid repeated construction
int_type const zero( 0 );
// This should really be a class-wide invariant. The reason for these
// checks is that for 2's complement systems, INT_MIN has no corresponding
// positive, so negating it during normalization keeps it INT_MIN, which
// is bad for later calculations that assume a positive denominator.
SEQAN_ASSERT_GT( this->den, zero );
SEQAN_ASSERT_GT( r.den, zero );
// Determine relative order by expanding each value to its simple continued
// fraction representation using the Euclidian GCD algorithm.
struct { int_type n, d, q, r; } ts = { this->num, this->den, this->num /
this->den, this->num % this->den }, rs = { r.num, r.den, r.num / r.den,
r.num % r.den };
unsigned reverse = 0u;
// Normalize negative moduli by repeatedly adding the (positive) denominator
// and decrementing the quotient. Later cycles should have all positive
// values, so this only has to be done for the first cycle. (The rules of
// C++ require a nonnegative quotient & remainder for a nonnegative dividend
// & positive divisor.)
while ( ts.r < zero ) { ts.r += ts.d; --ts.q; }
while ( rs.r < zero ) { rs.r += rs.d; --rs.q; }
// Loop through and compare each variable's continued-fraction components
while ( true )
{
// The quotients of the current cycle are the continued-fraction
// components. Comparing two c.f. is comparing their sequences,
// stopping at the first difference.
if ( ts.q != rs.q )
{
// Since reciprocation changes the relative order of two variables,
// and c.f. use reciprocals, the less/greater-than test reverses
// after each index. (Start w/ non-reversed @ whole-number place.)
return reverse ? ts.q > rs.q : ts.q < rs.q;
}
// Prepare the next cycle
reverse ^= 1u;
if ( (ts.r == zero) || (rs.r == zero) )
{
// At least one variable's c.f. expansion has ended
break;
}
ts.n = ts.d; ts.d = ts.r;
ts.q = ts.n / ts.d; ts.r = ts.n % ts.d;
rs.n = rs.d; rs.d = rs.r;
rs.q = rs.n / rs.d; rs.r = rs.n % rs.d;
}
// Compare infinity-valued components for otherwise equal sequences
if ( ts.r == rs.r )
{
// Both remainders are zero, so the next (and subsequent) c.f.
// components for both sequences are infinity. Therefore, the sequences
// and their corresponding values are equal.
return false;
}
else
{
// Exactly one of the remainders is zero, so all following c.f.
// components of that variable are infinity, while the other variable
// has a finite next c.f. component. So that other variable has the
// lesser value (modulo the reversal flag!).
return ( ts.r != zero ) != static_cast<bool>( reverse );
}
}
template <typename TInt>
bool Rational<TInt>::operator< (param_type i) const
{
// Avoid repeated construction
int_type const zero( 0 );
// Break value into mixed-fraction form, w/ always-nonnegative remainder
SEQAN_ASSERT_GT( this->den, zero );
int_type q = this->num / this->den, r = this->num % this->den;
while ( r < zero ) { r += this->den; --q; }
// Compare with just the quotient, since the remainder always bumps the
// value up. [Since q = floor(n/d), and if n/d < i then q < i, if n/d == i
// then q == i, if n/d == i + r/d then q == i, and if n/d >= i + 1 then
// q >= i + 1 > i; therefore n/d < i iff q < i.]
return q < i;
}
template <typename TInt>
bool Rational<TInt>::operator> (param_type i) const
{
// Trap equality first
if (num == i && den == TInt(1))
return false;
// Otherwise, we can use operator<
return !operator<(i);
}
template <typename TInt>
inline bool Rational<TInt>::operator== (const Rational<TInt>& r) const
{
return ((num == r.num) && (den == r.den));
}
template <typename TInt>
inline bool Rational<TInt>::operator== (param_type i) const
{
return ((den == TInt(1)) && (num == i));
}
// Invariant check
template <typename TInt>
inline bool Rational<TInt>::test_invariant() const
{
return ( this->den > int_type(0) ) && ( greatestCommonDivisor(this->num, this->den) ==
int_type(1) );
}
// Normalisation
template <typename TInt>
void Rational<TInt>::normalize()
{
// Avoid repeated construction
TInt zero(0);
SEQAN_ASSERT_NEQ (den, zero);
// Handle the case of zero separately, to avoid division by zero
if (num == zero) {
den = TInt(1);
return;
}
TInt g = greatestCommonDivisor(num, den);
num /= g;
den /= g;
// Ensure that the denominator is positive
if (den < zero) {
num = -num;
den = -den;
}
SEQAN_ASSERT( this->test_invariant() );
}
// Input and output
template <typename TInt>
std::istream& operator>> (std::istream& is, Rational<TInt>& r)
{
TInt n = TInt(0), d = TInt(1);
char c = 0;
is >> n;
if (!is) return is;
c = is.get();
if (c == '/')
{
is >> std::noskipws >> d;
}
else if (c == '.')
{
bool negative = false;
if (n < TInt(0))
{
n = -n;
negative = true;
}
c = is.get();
// read digits as long we can store them
while ('0' <= c && c <= '9' &&
(n < (TInt)std::numeric_limits<TInt>::max() / (TInt)10 - (TInt)9) &&
(d < (TInt)std::numeric_limits<TInt>::max() / (TInt)10))
{
n = 10 * n + (c - '0');
d *= 10;
c = is.get();
}
// ignore remaining digits
while ('0' <= c && c <= '9')
is.get();
is.unget();
if (negative) n = -n;
}
r.assign(n, d);
return is;
}
// Add manipulators for output format?
template <typename TInt>
std::ostream& operator<< (std::ostream& os, const Rational<TInt>& r)
{
os << r.numerator() << '/' << r.denominator();
return os;
}
// Type conversion
template <typename T, typename TInt>
inline T rational_cast(const Rational<TInt>& src)
{
return static_cast<T>(src.numerator())/static_cast<T>(src.denominator());
}
// Do not use any abs() defined on TInt - it isn't worth it, given the
// difficulties involved (Koenig lookup required, there may not *be* an abs()
// defined, etc etc).
template <typename TInt>
inline Rational<TInt> abs(const Rational<TInt>& r)
{
if (r.numerator() >= TInt(0))
return r;
return Rational<TInt>(-r.numerator(), r.denominator());
}
template <typename TInt>
inline TInt floor(const Rational<TInt>& r)
{
// Avoid repeated construction
TInt zero(0);
SEQAN_ASSERT_NEQ (r.denominator(), zero);
if (r.numerator() >= zero)
return r.numerator() / r.denominator();
else
return ((r.numerator() + 1) / r.denominator()) - 1;
}
template <typename TInt>
inline TInt ceil(const Rational<TInt>& r)
{
// Avoid repeated construction
TInt zero(0);
SEQAN_ASSERT_NEQ (r.denominator(), zero);
if (r.numerator() > zero)
return ((r.numerator() - 1) / r.denominator()) + 1;
else
return r.numerator() / r.denominator();
}
} // namespace seqan2
#endif // #ifndef SEQAN_MATH_RATIONAL_H_
|