File: math_rational.h

package info (click to toggle)
seqan2 2.5.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 228,748 kB
  • sloc: cpp: 257,602; ansic: 91,967; python: 8,326; sh: 1,056; xml: 570; makefile: 229; awk: 51; javascript: 21
file content (584 lines) | stat: -rw-r--r-- 17,861 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
// ==========================================================================
//                 SeqAn - The Library for Sequence Analysis
// ==========================================================================
// Copyright (c) 2006-2026, Knut Reinert, FU Berlin
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above copyright
//       notice, this list of conditions and the following disclaimer in the
//       documentation and/or other materials provided with the distribution.
//     * Neither the name of Knut Reinert or the FU Berlin nor the names of
//       its contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL KNUT REINERT OR THE FU BERLIN BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
// DAMAGE.
//
// ==========================================================================
// Author: David Weese <david.weese@fu-berlin.de>
// ==========================================================================
// A data type to represent Rational numbers.
// Taken from the Rational Number Library in Boost version 1.47.
// ==========================================================================

#ifndef SEQAN_MATH_RATIONAL_H_
#define SEQAN_MATH_RATIONAL_H_

namespace seqan2 {

// ============================================================================
// Forwards
// ============================================================================

template <typename TInt>
class Rational;

template <typename TInt>
Rational<TInt> abs(const Rational<TInt>& r);


// ============================================================================
// Tags, Classes, Enums
// ============================================================================

template <typename TInt>
class Rational :
    less_than_comparable < Rational<TInt>,
    equality_comparable < Rational<TInt>,
    less_than_comparable2 < Rational<TInt>, TInt,
    equality_comparable2 < Rational<TInt>, TInt,
    addable < Rational<TInt>,
    subtractable < Rational<TInt>,
    multipliable < Rational<TInt>,
    dividable < Rational<TInt>,
    addable2 < Rational<TInt>, TInt,
    subtractable2 < Rational<TInt>, TInt,
    subtractable2_left < Rational<TInt>, TInt,
    multipliable2 < Rational<TInt>, TInt,
    dividable2 < Rational<TInt>, TInt,
    dividable2_left < Rational<TInt>, TInt,
    incrementable < Rational<TInt>,
    decrementable < Rational<TInt>
    > > > > > > > > > > > > > > > >
{
    // Class-wide pre-conditions
//    SEQAN_STATIC_ASSERT( std::numeric_limits<TInt>::is_specialized );

    // Helper types
//    typedef typename boost::call_traits<TInt>::param_type param_type;
    typedef const TInt & param_type;

    struct helper { TInt parts[2]; };
    typedef TInt (helper::* bool_type)[2];

public:
    typedef TInt int_type;
    Rational() : num(0), den(1) {}

    template <typename T>
    Rational(T const & n, SEQAN_CTOR_ENABLE_IF( Is<IntegerConcept<T> > ) ) : num(n), den(1) { (void)dummy; }
    Rational(param_type n, param_type d) : num(n), den(d) { normalize(); }

    // Default copy constructor and assignment are fine

    // Add assignment from TInt
    Rational& operator=(param_type n) { return assign(n, 1); }

    // Assign in place
    Rational& assign(param_type n, param_type d);

    // Access to representation
    TInt numerator() const { return num; }
    TInt denominator() const { return den; }

    // Arithmetic assignment operators
    Rational& operator+= (const Rational& r);
    Rational& operator-= (const Rational& r);
    Rational& operator*= (const Rational& r);
    Rational& operator/= (const Rational& r);

    Rational& operator+= (param_type i);
    Rational& operator-= (param_type i);
    Rational& operator*= (param_type i);
    Rational& operator/= (param_type i);

    // Increment and decrement
    const Rational& operator++();
    const Rational& operator--();

    // Operator not
    bool operator!() const { return !num; }

    // Boolean conversion


    operator bool_type() const { return operator !() ? 0 : &helper::parts; }
    operator double() const
    {
        SEQAN_ASSERT_NEQ (den, TInt(0));
        return (double)num / (double)den;
    }

    // Comparison operators
    bool operator< (const Rational& r) const;
    bool operator== (const Rational& r) const;

    bool operator< (param_type i) const;
    bool operator> (param_type i) const;
    bool operator== (param_type i) const;

private:
    // Implementation - numerator and denominator (normalized).
    // Other possibilities - separate whole-part, or sign, fields?
    TInt num;
    TInt den;

    // Representation note: Fractions are kept in normalized form at all
    // times. normalized form is defined as gcd(num,den) == 1 and den > 0.
    // In particular, note that the implementation of abs() below relies
    // on den always being positive.
    bool test_invariant() const;
    void normalize();
};

// Assign in place
template <typename TInt>
inline Rational<TInt>& Rational<TInt>::assign(param_type n, param_type d)
{
    num = n;
    den = d;
    normalize();
    return *this;
}

// Unary plus and minus
template <typename TInt>
inline Rational<TInt> operator+ (const Rational<TInt>& r)
{
    return r;
}

template <typename TInt>
inline Rational<TInt> operator- (const Rational<TInt>& r)
{
    return Rational<TInt>(-r.numerator(), r.denominator());
}

// Arithmetic assignment operators
template <typename TInt>
Rational<TInt>& Rational<TInt>::operator+= (const Rational<TInt>& r)
{
    // This calculation avoids overflow, and minimises the number of expensive
    // calculations. Thanks to Nickolay Mladenov for this algorithm.
    //
    // Proof:
    // We have to compute a/b + c/d, where gcd(a,b)=1 and gcd(b,c)=1.
    // Let g = gcd(b,d), and b = b1*g, d=d1*g. Then gcd(b1,d1)=1
    //
    // The result is (a*d1 + c*b1) / (b1*d1*g).
    // Now we have to normalize this ratio.
    // Let's assume h | gcd((a*d1 + c*b1), (b1*d1*g)), and h > 1
    // If h | b1 then gcd(h,d1)=1 and hence h|(a*d1+c*b1) => h|a.
    // But since gcd(a,b1)=1 we have h=1.
    // Similarly h|d1 leads to h=1.
    // So we have that h | gcd((a*d1 + c*b1) , (b1*d1*g)) => h|g
    // Finally we have gcd((a*d1 + c*b1), (b1*d1*g)) = gcd((a*d1 + c*b1), g)
    // Which proves that instead of normalizing the result, it is better to
    // divide num and den by gcd((a*d1 + c*b1), g)

    // Protect against self-modification
    TInt r_num = r.num;
    TInt r_den = r.den;

    TInt g = greatestCommonDivisor(den, r_den);
    den /= g;  // = b1 from the calculations above
    num = num * (r_den / g) + r_num * den;
    g = greatestCommonDivisor(num, g);
    num /= g;
    den *= r_den/g;

    return *this;
}

template <typename TInt>
Rational<TInt>& Rational<TInt>::operator-= (const Rational<TInt>& r)
{
    // Protect against self-modification
    TInt r_num = r.num;
    TInt r_den = r.den;

    // This calculation avoids overflow, and minimises the number of expensive
    // calculations. It corresponds exactly to the += case above
    TInt g = greatestCommonDivisor(den, r_den);
    den /= g;
    num = num * (r_den / g) - r_num * den;
    g = greatestCommonDivisor(num, g);
    num /= g;
    den *= r_den/g;

    return *this;
}

template <typename TInt>
Rational<TInt>& Rational<TInt>::operator*= (const Rational<TInt>& r)
{
    // Protect against self-modification
    TInt r_num = r.num;
    TInt r_den = r.den;

    // Avoid overflow and preserve normalization
    TInt gcd1 = greatestCommonDivisor(num, r_den);
    TInt gcd2 = greatestCommonDivisor(r_num, den);
    num = (num/gcd1) * (r_num/gcd2);
    den = (den/gcd2) * (r_den/gcd1);
    return *this;
}

template <typename TInt>
Rational<TInt>& Rational<TInt>::operator/= (const Rational<TInt>& r)
{
    // Protect against self-modification
    TInt r_num = r.num;
    TInt r_den = r.den;

    // Avoid repeated construction
    TInt zero(0);

    // Trap division by zero
    SEQAN_ASSERT_NEQ (r_num, zero);

    if (num == zero)
        return *this;

    // Avoid overflow and preserve normalization
    TInt gcd1 = greatestCommonDivisor(num, r_num);
    TInt gcd2 = greatestCommonDivisor(r_den, den);
    num = (num/gcd1) * (r_den/gcd2);
    den = (den/gcd2) * (r_num/gcd1);

    if (den < zero) {
        num = -num;
        den = -den;
    }
    return *this;
}

// Mixed-mode operators
template <typename TInt>
inline Rational<TInt>&
Rational<TInt>::operator+= (param_type i)
{
    return operator+= (Rational<TInt>(i));
}

template <typename TInt>
inline Rational<TInt>&
Rational<TInt>::operator-= (param_type i)
{
    return operator-= (Rational<TInt>(i));
}

template <typename TInt>
inline Rational<TInt>&
Rational<TInt>::operator*= (param_type i)
{
    return operator*= (Rational<TInt>(i));
}

template <typename TInt>
inline Rational<TInt>&
Rational<TInt>::operator/= (param_type i)
{
    return operator/= (Rational<TInt>(i));
}

// Increment and decrement
template <typename TInt>
inline const Rational<TInt>& Rational<TInt>::operator++()
{
    // This can never denormalise the fraction
    num += den;
    return *this;
}

template <typename TInt>
inline const Rational<TInt>& Rational<TInt>::operator--()
{
    // This can never denormalise the fraction
    num -= den;
    return *this;
}

// Comparison operators
template <typename TInt>
bool Rational<TInt>::operator< (const Rational<TInt>& r) const
{
    // Avoid repeated construction
    int_type const  zero( 0 );

    // This should really be a class-wide invariant.  The reason for these
    // checks is that for 2's complement systems, INT_MIN has no corresponding
    // positive, so negating it during normalization keeps it INT_MIN, which
    // is bad for later calculations that assume a positive denominator.
    SEQAN_ASSERT_GT( this->den, zero );
    SEQAN_ASSERT_GT( r.den, zero );

    // Determine relative order by expanding each value to its simple continued
    // fraction representation using the Euclidian GCD algorithm.
    struct { int_type  n, d, q, r; }  ts = { this->num, this->den, this->num /
     this->den, this->num % this->den }, rs = { r.num, r.den, r.num / r.den,
     r.num % r.den };
    unsigned  reverse = 0u;

    // Normalize negative moduli by repeatedly adding the (positive) denominator
    // and decrementing the quotient.  Later cycles should have all positive
    // values, so this only has to be done for the first cycle.  (The rules of
    // C++ require a nonnegative quotient & remainder for a nonnegative dividend
    // & positive divisor.)
    while ( ts.r < zero )  { ts.r += ts.d; --ts.q; }
    while ( rs.r < zero )  { rs.r += rs.d; --rs.q; }

    // Loop through and compare each variable's continued-fraction components
    while ( true )
    {
        // The quotients of the current cycle are the continued-fraction
        // components.  Comparing two c.f. is comparing their sequences,
        // stopping at the first difference.
        if ( ts.q != rs.q )
        {
            // Since reciprocation changes the relative order of two variables,
            // and c.f. use reciprocals, the less/greater-than test reverses
            // after each index.  (Start w/ non-reversed @ whole-number place.)
            return reverse ? ts.q > rs.q : ts.q < rs.q;
        }

        // Prepare the next cycle
        reverse ^= 1u;

        if ( (ts.r == zero) || (rs.r == zero) )
        {
            // At least one variable's c.f. expansion has ended
            break;
        }

        ts.n = ts.d;         ts.d = ts.r;
        ts.q = ts.n / ts.d;  ts.r = ts.n % ts.d;
        rs.n = rs.d;         rs.d = rs.r;
        rs.q = rs.n / rs.d;  rs.r = rs.n % rs.d;
    }

    // Compare infinity-valued components for otherwise equal sequences
    if ( ts.r == rs.r )
    {
        // Both remainders are zero, so the next (and subsequent) c.f.
        // components for both sequences are infinity.  Therefore, the sequences
        // and their corresponding values are equal.
        return false;
    }
    else
    {
        // Exactly one of the remainders is zero, so all following c.f.
        // components of that variable are infinity, while the other variable
        // has a finite next c.f. component.  So that other variable has the
        // lesser value (modulo the reversal flag!).
        return ( ts.r != zero ) != static_cast<bool>( reverse );
    }
}

template <typename TInt>
bool Rational<TInt>::operator< (param_type i) const
{
    // Avoid repeated construction
    int_type const  zero( 0 );

    // Break value into mixed-fraction form, w/ always-nonnegative remainder
    SEQAN_ASSERT_GT( this->den, zero );
    int_type  q = this->num / this->den, r = this->num % this->den;
    while ( r < zero )  { r += this->den; --q; }

    // Compare with just the quotient, since the remainder always bumps the
    // value up.  [Since q = floor(n/d), and if n/d < i then q < i, if n/d == i
    // then q == i, if n/d == i + r/d then q == i, and if n/d >= i + 1 then
    // q >= i + 1 > i; therefore n/d < i iff q < i.]
    return q < i;
}

template <typename TInt>
bool Rational<TInt>::operator> (param_type i) const
{
    // Trap equality first
    if (num == i && den == TInt(1))
        return false;

    // Otherwise, we can use operator<
    return !operator<(i);
}

template <typename TInt>
inline bool Rational<TInt>::operator== (const Rational<TInt>& r) const
{
    return ((num == r.num) && (den == r.den));
}

template <typename TInt>
inline bool Rational<TInt>::operator== (param_type i) const
{
    return ((den == TInt(1)) && (num == i));
}

// Invariant check
template <typename TInt>
inline bool Rational<TInt>::test_invariant() const
{
    return ( this->den > int_type(0) ) && ( greatestCommonDivisor(this->num, this->den) ==
     int_type(1) );
}

// Normalisation
template <typename TInt>
void Rational<TInt>::normalize()
{
    // Avoid repeated construction
    TInt zero(0);

    SEQAN_ASSERT_NEQ (den, zero);

    // Handle the case of zero separately, to avoid division by zero
    if (num == zero) {
        den = TInt(1);
        return;
    }

    TInt g = greatestCommonDivisor(num, den);

    num /= g;
    den /= g;

    // Ensure that the denominator is positive
    if (den < zero) {
        num = -num;
        den = -den;
    }

    SEQAN_ASSERT( this->test_invariant() );
}

// Input and output
template <typename TInt>
std::istream& operator>> (std::istream& is, Rational<TInt>& r)
{
    TInt n = TInt(0), d = TInt(1);
    char c = 0;

    is >> n;
    if (!is) return is;

    c = is.get();
    if (c == '/')
    {
        is >> std::noskipws >> d;
    }
    else if (c == '.')
    {
        bool negative = false;
        if (n < TInt(0))
        {
            n = -n;
            negative = true;
        }
        c = is.get();
        // read digits as long we can store them
        while ('0' <= c && c <= '9' &&
                (n < (TInt)std::numeric_limits<TInt>::max() / (TInt)10 - (TInt)9) &&
                (d < (TInt)std::numeric_limits<TInt>::max() / (TInt)10))
        {
            n = 10 * n + (c - '0');
            d *= 10;
            c = is.get();
        }
        // ignore remaining digits
        while ('0' <= c && c <= '9')
            is.get();
        is.unget();

        if (negative) n = -n;
    }
    r.assign(n, d);

    return is;
}

// Add manipulators for output format?
template <typename TInt>
std::ostream& operator<< (std::ostream& os, const Rational<TInt>& r)
{
    os << r.numerator() << '/' << r.denominator();
    return os;
}

// Type conversion
template <typename T, typename TInt>
inline T rational_cast(const Rational<TInt>& src)
{
    return static_cast<T>(src.numerator())/static_cast<T>(src.denominator());
}

// Do not use any abs() defined on TInt - it isn't worth it, given the
// difficulties involved (Koenig lookup required, there may not *be* an abs()
// defined, etc etc).
template <typename TInt>
inline Rational<TInt> abs(const Rational<TInt>& r)
{
    if (r.numerator() >= TInt(0))
        return r;

    return Rational<TInt>(-r.numerator(), r.denominator());
}


template <typename TInt>
inline TInt floor(const Rational<TInt>& r)
{
    // Avoid repeated construction
    TInt zero(0);

    SEQAN_ASSERT_NEQ (r.denominator(), zero);

    if (r.numerator() >= zero)
        return r.numerator() / r.denominator();
    else
        return ((r.numerator() + 1) / r.denominator()) - 1;
}

template <typename TInt>
inline TInt ceil(const Rational<TInt>& r)
{
    // Avoid repeated construction
    TInt zero(0);

    SEQAN_ASSERT_NEQ (r.denominator(), zero);

    if (r.numerator() > zero)
        return ((r.numerator() - 1) / r.denominator()) + 1;
    else
        return r.numerator() / r.denominator();
}


}  // namespace seqan2

#endif  // #ifndef SEQAN_MATH_RATIONAL_H_