1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
|
// Copyright (c) 2016, the SDSL Project Authors. All rights reserved.
// Please see the AUTHORS file for details. Use of this source code is governed
// by a BSD license that can be found in the LICENSE file.
/*! \file bp_support_algorithm.hpp
\brief bp_support_algorithm.hpp contains algorithms for balanced parentheses sequences.
\author Simon Gog
*/
#ifndef INCLUDED_SDSL_BP_SUPPORT_ALGORITHM
#define INCLUDED_SDSL_BP_SUPPORT_ALGORITHM
#include "int_vector.hpp" // for bit_vector
#include <stack> // for calculate_pioneers_bitmap method
#include <map> // for calculate_pioneers_bitmap method
#include "sorted_stack_support.hpp"
namespace sdsl {
// This structure contains lookup tables
template <typename T = void>
struct excess {
struct impl {
// Given an excess value x in [-8,8] and a 8-bit
// word w interpreted as parentheses sequence.
// near_fwd_pos[(x+8)<<8 | w] contains the minimal position
// p in [0..7] where the excess value x is reached, or 8
// if x is not reached in w.
uint8_t near_fwd_pos[(8 - (-8)) * 256];
// Given an excess value of x in [-8,8] and a 8-bit
// word w interpreted as parentheses sequence.
// near_bwd_pos[(x+8)<<8 | w] contains the maximal position
// p in [0..7] where the excess value x is reached, or 8
// if x is not reached in w.
uint8_t near_bwd_pos[(8 - (-8)) * 256];
// Given a 8-bit word w. word_sum[w] contains the
// excess value of w.
int8_t word_sum[256];
// Given a 8-bit word w. min[w] contains the
// minimal excess value in w.
int8_t min[256];
// Given a 8-bit word w. min_pos_max[w] contains
// the maximal position p in w, where min[w] is
// reached
int8_t min_pos_max[256];
// Given an excess value x in [1,8] and a 8-bit
// word w interpreted as parentheses sequence.
// min_match_pos_packed[w]:[(x-1)*4,x*4] contains
// the minimal position, where excess value
// -x is reached and 9, if there is no such position.
uint32_t min_match_pos_packed[256];
// Given an excess value x in [1,8] and a 8-bit
// word w interpreted as parentheses sequence.
// max_match_pos_packed[w]:[(x-1)*4,x*4] contains
// the maximal position, where excess value
// -x is reached and 9, if there is no such position.
uint32_t max_match_pos_packed[256];
// Given a 8-bit word w. x=min_and_info[w] contains
// the following information.
// * [0..7] the minimum excess value in w + 8 of an opening parenthesis
// * [8..11] the maximal position of the minimal excess value
// * [12..15] the number of ones in the word
// if w != 0, and 17 for w=0.
uint16_t min_open_excess_info[256];
impl()
{
for (int32_t x = -8; x < 8; ++x) {
for (uint16_t w = 0; w < 256; ++w) {
uint16_t i = (x + 8) << 8 | w;
near_fwd_pos[i] = 8;
int8_t p = 0;
int8_t excess = 0;
do {
excess += 1 - 2 * ((w & (1 << p)) == 0);
if (excess == x) {
near_fwd_pos[i] = p;
break;
}
++p;
} while (p < 8);
near_bwd_pos[i] = 8;
p = 7;
excess = 0;
do {
excess += 1 - 2 * ((w & (1 << p)) > 0);
if (excess == x) {
near_bwd_pos[i] = p;
break;
}
--p;
} while (p > -1);
}
}
int_vector<> packed_mins(1, 0, 32);
int_vector<> packed_maxs(1, 0, 32);
for (uint16_t w = 0; w < 256; ++w) {
int8_t excess = 0;
int8_t rev_excess = 0;
int32_t min_excess_of_open = 17;
int32_t min_excess_of_open_pos = 0;
uint32_t ones = 0;
min[w] = 8;
packed_mins[0] = 0x99999999U;
packed_maxs[0] = 0x99999999U;
packed_mins.width(4);
packed_maxs.width(4);
for (uint16_t p = 0; p < 8; ++p) {
ones += (w & (1 << p)) != 0;
excess += 1 - 2 * ((w & (1 << p)) == 0);
if (excess <= min[w]) {
min[w] = excess;
min_pos_max[w] = p;
}
if (excess < 0 and packed_mins[-excess - 1] == 9) {
packed_mins[-excess - 1] = p;
}
if (w & (1 << p) and excess + 8 <= min_excess_of_open) {
min_excess_of_open = excess + 8;
min_excess_of_open_pos = p;
}
rev_excess += 1 - 2 * ((w & (1 << (7 - p))) > 0);
if (rev_excess < 0 and packed_maxs[-rev_excess - 1] == 9) {
packed_maxs[-rev_excess - 1] = 7 - p;
}
}
word_sum[w] = excess;
packed_mins.width(32);
min_match_pos_packed[w] = packed_mins[0];
packed_maxs.width(32);
max_match_pos_packed[w] = packed_maxs[0];
min_open_excess_info[w] =
(min_excess_of_open) | (min_excess_of_open_pos << 8) | (ones << 12);
}
}
};
static impl data;
};
template <typename T>
typename excess<T>::impl excess<T>::data;
//! Calculate pioneers as defined in the paper of Geary et al. (CPM 2004)
/*! \param bp The balanced parentheses sequence.
* \param block_size Block size.
* \return Bitvector which marks the pioneers in bp.
* \par Time complexity
* \f$ \Order{n \log n} \f$, where \f$ n=\f$bp.size()
* \par Space complexity
* \f$ \Order{2n + min(block\_size, \frac{n}{block\_size} )\cdot \log n } \f$
*/
inline bit_vector calculate_pioneers_bitmap(const bit_vector& bp, uint64_t block_size)
{
bit_vector pioneer_bitmap(bp.size(), 0);
std::stack<uint64_t> opening_parenthesis;
uint64_t blocks = (bp.size() + block_size - 1) / block_size;
// calculate positions of findclose and findopen pioneers
for (uint64_t block_nr = 0; block_nr < blocks; ++block_nr) {
std::map<uint64_t, uint64_t> block_and_position; // for find_open and find_close
std::map<uint64_t, uint64_t> matching_position; // for find_open and find_close
for (uint64_t i = 0, j = block_nr * block_size; i < block_size and j < bp.size();
++i, ++j) {
if (bp[j]) { //opening parenthesis
opening_parenthesis.push(j);
} else { // closing parenthesis
uint64_t position = opening_parenthesis.top();
uint64_t blockpos = position / block_size;
opening_parenthesis.pop();
block_and_position[blockpos] = position;
matching_position[blockpos] = j; // greatest j is pioneer
}
}
for (std::map<uint64_t, uint64_t>::const_iterator it = block_and_position.begin(),
end = block_and_position.end(),
mit = matching_position.begin();
it != end and it->first != block_nr;
++it, ++mit) {
// opening and closing pioneers are symmetric
pioneer_bitmap[it->second] = 1;
pioneer_bitmap[mit->second] = 1;
}
}
// assert that the sequence is balanced
assert(opening_parenthesis.empty());
return pioneer_bitmap;
}
//! Space-efficient version of calculate_pioneers_bitmap
/*! \param bp The balanced parentheses sequence.
* \param block_size Block size.
* \return Bitvector which marks the pioneers in bp.
* \par Time complexity
* \f$ \Order{n} \f$, where \f$ n=\f$bp.size()
* \par Space complexity
* \f$ \Order{2n + n} \f$ bits: \f$n\f$ bits for input, \f$n\f$ bits for
* output, and \f$n\f$ bits for a succinct stack.
* \pre The parentheses sequence represented by bp has to be balanced.
*/
inline bit_vector calculate_pioneers_bitmap_succinct(const bit_vector& bp, uint64_t block_size)
{
bit_vector pioneer_bitmap(bp.size(), 0);
sorted_stack_support opening_parenthesis(bp.size());
uint64_t cur_pioneer_block = 0, last_start = 0, last_j = 0, cur_block = 0,
first_index_in_block = 0;
// calculate positions of findclose and findopen pioneers
for (uint64_t j = 0, new_block = block_size; j < bp.size(); ++j, --new_block) {
if (!(new_block)) {
cur_pioneer_block = j / block_size;
++cur_block;
first_index_in_block = j;
new_block = block_size;
}
if (bp[j]) { // opening parenthesis
if (/*j < bp.size() is not necessary as the last parenthesis is always a closing one*/
new_block > 1 and !bp[j + 1]) {
++j;
--new_block;
continue;
}
opening_parenthesis.push(j);
} else {
assert(!opening_parenthesis.empty());
uint64_t start = opening_parenthesis.top();
opening_parenthesis.pop();
if (start < first_index_in_block) {
if ((start / block_size) == cur_pioneer_block) {
pioneer_bitmap[last_start] = pioneer_bitmap[last_j] =
0; // override false pioneer
}
pioneer_bitmap[start] = pioneer_bitmap[j] = 1;
cur_pioneer_block = start / block_size;
last_start = start;
last_j = j;
}
}
}
// assert that the sequence is balanced
assert(opening_parenthesis.empty());
return pioneer_bitmap;
}
//! find_open/find_close for closing/opening parentheses.
/*! \param bp The balanced parentheses sequence.
* \param matches Reference to the result.
* \pre bp represents a balanced parentheses sequence.
* \par Time complexity
* \f$ \Order{n} \f$, where \f$ n=\f$bp.size()
* \par Space complexity
* \f$ \Order{n + 2n\log n } \f$
*/
template <class int_vector>
void calculate_matches(const bit_vector& bp, int_vector& matches)
{
matches = int_vector(bp.size(), 0, bits::hi(bp.size()) + 1);
std::stack<uint64_t> opening_parenthesis;
for (uint64_t i = 0; i < bp.size(); ++i) {
if (bp[i]) { // opening parenthesis
opening_parenthesis.push(i);
} else { // closing parenthesis
assert(!opening_parenthesis.empty());
uint64_t position = opening_parenthesis.top();
opening_parenthesis.pop();
matches[i] = position;
assert(matches[i] == position);
matches[position] = i;
assert(matches[position] == i);
}
}
// assert that the sequence is balanced
assert(opening_parenthesis.empty());
}
//! Calculates enclose answers for a balanced parentheses sequence.
/*! \param bp A bit_vector representing a balanced parentheses sequence.
* \param enclose Reference to the result.
* \pre bp represents a balanced parentheses sequence.
* \par Time complexity
* \f$ \Order{n} \f$, where \f$ n=\f$bp.size()
* \par Space complexity
* \f$ \Order{n + 2n\log n } \f$
*/
template <class int_vector>
void calculate_enclose(const bit_vector& bp, int_vector& enclose)
{
enclose = int_vector(bp.size(), 0, bits::hi(bp.size()) + 1);
std::stack<uint64_t> opening_parenthesis;
for (uint64_t i = 0; i < bp.size(); ++i) {
if (bp[i]) { // opening parenthesis
if (!opening_parenthesis.empty()) {
uint64_t position = opening_parenthesis.top();
enclose[i] = position;
assert(enclose[i] == position);
} else
enclose[i] = bp.size();
opening_parenthesis.push(i);
} else { // closing parenthesis
uint64_t position = opening_parenthesis.top();
enclose[i] = position; // find open answer if i is a closing parenthesis
opening_parenthesis.pop();
}
}
// assert that the sequence is balanced
assert(opening_parenthesis.empty());
}
inline uint64_t near_find_close(const bit_vector& bp, const uint64_t i, const uint64_t block_size)
{
typedef bit_vector::difference_type difference_type;
difference_type excess_v = 1;
const uint64_t end = ((i + 1) / block_size + 1) * block_size;
const uint64_t l = (((i + 1) + 7) / 8) * 8;
const uint64_t r = (end / 8) * 8;
for (uint64_t j = i + 1; j < std::min(end, l); ++j) {
if (bp[j])
++excess_v;
else {
--excess_v;
if (excess_v == 0) {
return j;
}
}
}
const uint64_t* b = bp.data();
for (uint64_t j = l; j < r; j += 8) {
if (excess_v <= 8) {
assert(excess_v > 0);
uint32_t x =
excess<>::data.min_match_pos_packed[((*(b + (j >> 6))) >> (j & 0x3F)) & 0xFF];
uint8_t p = (x >> ((excess_v - 1) << 2)) & 0xF;
if (p < 9) {
return j + p;
}
}
excess_v += excess<>::data.word_sum[((*(b + (j >> 6))) >> (j & 0x3F)) & 0xFF];
}
for (uint64_t j = std::max(l, r); j < end; ++j) {
if (bp[j])
++excess_v;
else {
--excess_v;
if (excess_v == 0) {
return j;
}
}
}
return i;
}
inline uint64_t near_find_closing(const bit_vector& bp, uint64_t i, uint64_t closings, const uint64_t block_size)
{
typedef bit_vector::difference_type difference_type;
difference_type excess_v = 0;
difference_type succ_excess = -closings;
const uint64_t end = (i / block_size + 1) * block_size;
const uint64_t l = (((i) + 7) / 8) * 8;
const uint64_t r = (end / 8) * 8;
for (uint64_t j = i; j < std::min(end, l); ++j) {
if (bp[j])
++excess_v;
else {
--excess_v;
if (excess_v == succ_excess) {
return j;
}
}
}
const uint64_t* b = bp.data();
for (uint64_t j = l; j < r; j += 8) {
if (excess_v - succ_excess <= 8) {
uint32_t x =
excess<>::data.min_match_pos_packed[((*(b + (j >> 6))) >> (j & 0x3F)) & 0xFF];
uint8_t p = (x >> (((excess_v - succ_excess) - 1) << 2)) & 0xF;
if (p < 9) {
return j + p;
}
}
excess_v += excess<>::data.word_sum[((*(b + (j >> 6))) >> (j & 0x3F)) & 0xFF];
}
for (uint64_t j = std::max(l, r); j < end; ++j) {
if (bp[j])
++excess_v;
else {
--excess_v;
if (excess_v == succ_excess) {
return j;
}
}
}
return i - 1;
}
inline uint64_t near_fwd_excess(const bit_vector& bp,
uint64_t i,
bit_vector::difference_type rel,
const uint64_t block_size)
{
typedef bit_vector::difference_type difference_type;
difference_type excess_v = rel;
const uint64_t end = (i / block_size + 1) * block_size;
const uint64_t l = (((i) + 7) / 8) * 8;
const uint64_t r = (end / 8) * 8;
for (uint64_t j = i; j < std::min(end, l); ++j) {
excess_v += 1 - 2 * bp[j];
if (!excess_v) {
return j;
}
}
excess_v += 8;
const uint64_t* b = bp.data();
for (uint64_t j = l; j < r; j += 8) {
if (excess_v >= 0 and excess_v <= 16) {
uint32_t x =
excess<>::data.near_fwd_pos[(excess_v << 8) + (((*(b + (j >> 6))) >> (j & 0x3F)) & 0xFF)];
if (x < 8) {
return j + x;
}
}
excess_v -= excess<>::data.word_sum[((*(b + (j >> 6))) >> (j & 0x3F)) & 0xFF];
}
excess_v -= 8;
for (uint64_t j = std::max(l, r); j < end; ++j) {
excess_v += 1 - 2 * bp[j];
if (!excess_v) {
return j;
}
}
return i - 1;
}
//! Calculate the position with minimal excess value in the interval [l..r].
/*! \param bp The bit_vector which represents the parentheses sequence
* \param l The left border of the interval.
* \param r The right border of the interval.
* \param min_rel_ex Reference to the relative minimal excess value with regards to excess(bp[l])
*/
inline uint64_t
near_rmq(const bit_vector& bp, uint64_t l, uint64_t r, bit_vector::difference_type& min_rel_ex)
{
typedef bit_vector::difference_type difference_type;
const uint64_t l8 = (((l + 1) + 7) / 8) * 8;
const uint64_t r8 = (r / 8) * 8;
difference_type excess_v = 0;
difference_type min_pos = l;
min_rel_ex = 0;
for (uint64_t j = l + 1; j < std::min(l8, r + 1); ++j) {
if (bp[j])
++excess_v;
else {
--excess_v;
if (excess_v <= min_rel_ex) {
min_rel_ex = excess_v;
min_pos = j;
}
}
}
const uint64_t* b = bp.data();
for (uint64_t j = l8; j < r8; j += 8) {
int8_t x = excess<>::data.min[(((*(b + (j >> 6))) >> (j & 0x3F)) & 0xFF)];
if ((excess_v + x) <= min_rel_ex) {
min_rel_ex = excess_v + x;
min_pos = j + excess<>::data.min_pos_max[(((*(b + (j >> 6))) >> (j & 0x3F)) & 0xFF)];
}
excess_v += excess<>::data.word_sum[((*(b + (j >> 6))) >> (j & 0x3F)) & 0xFF];
}
for (uint64_t j = std::max(l8, r8); j < r + 1; ++j) {
if (bp[j])
++excess_v;
else {
--excess_v;
if (excess_v <= min_rel_ex) {
min_rel_ex = excess_v;
min_pos = j;
}
}
}
return min_pos;
}
//! Near backward excess
/* This method searches the maximal parenthesis j, with \f$ j\leq i \f$,
* such that \f$ excess(j) = excess(i+1)+rel \f$ and i < bp.size()-1
*/
inline uint64_t near_bwd_excess(const bit_vector& bp,
uint64_t i,
bit_vector::difference_type rel,
const uint64_t block_size)
{
typedef bit_vector::difference_type difference_type;
difference_type excess_v = rel;
const difference_type begin = ((difference_type)(i) / block_size) * block_size;
const difference_type r = ((difference_type)(i) / 8) * 8;
const difference_type l = ((difference_type)((begin + 7) / 8)) * 8;
for (difference_type j = i + 1; j >= /*begin*/ std::max(r, begin); --j) {
if (bp[j])
++excess_v;
else
--excess_v;
if (!excess_v) return j - 1;
}
excess_v += 8;
const uint64_t* b = bp.data();
for (difference_type j = r - 8; j >= l; j -= 8) {
if (excess_v >= 0 and excess_v <= 16) {
uint32_t x =
excess<>::data.near_bwd_pos[(excess_v << 8) + (((*(b + (j >> 6))) >> (j & 0x3F)) & 0xFF)];
if (x < 8) {
return j + x - 1;
}
}
excess_v += excess<>::data.word_sum[((*(b + (j >> 6))) >> (j & 0x3F)) & 0xFF];
}
excess_v -= 8;
for (difference_type j = std::min(l, r); j > begin; --j) {
if (bp[j])
++excess_v;
else
--excess_v;
if (!excess_v) return j - 1;
}
if (0 == begin and -1 == rel) {
return -1;
}
return i + 1;
}
inline uint64_t near_find_open(const bit_vector& bp, uint64_t i, const uint64_t block_size)
{
typedef bit_vector::difference_type difference_type;
difference_type excess_v = -1;
const difference_type begin = ((difference_type)(i - 1) / block_size) * block_size;
const difference_type r = ((difference_type)(i - 1) / 8) * 8;
const difference_type l = ((difference_type)((begin + 7) / 8)) * 8;
for (difference_type j = i - 1; j >= std::max(r, begin); --j) {
if (bp[j]) {
if (++excess_v == 0) {
return j;
}
} else
--excess_v;
}
const uint64_t* b = bp.data();
for (difference_type j = r - 8; j >= l; j -= 8) {
if (excess_v >= -8) {
assert(excess_v < 0);
uint32_t x =
excess<>::data.max_match_pos_packed[((*(b + (j >> 6))) >> (j & 0x3F)) & 0xFF];
uint8_t p = (x >> ((-excess_v - 1) << 2)) & 0xF;
if (p < 9) {
return j + p;
}
}
excess_v += excess<>::data.word_sum[((*(b + (j >> 6))) >> (j & 0x3F)) & 0xFF];
}
for (difference_type j = std::min(l, r) - 1; j >= begin; --j) {
if (bp[j]) {
if (++excess_v == 0) {
return j;
}
} else
--excess_v;
}
return i;
}
inline uint64_t near_find_opening(const bit_vector& bp,
uint64_t i,
const uint64_t openings,
const uint64_t block_size)
{
typedef bit_vector::difference_type difference_type;
difference_type excess_v = 0;
difference_type succ_excess = openings;
const difference_type begin = ((difference_type)(i) / block_size) * block_size;
const difference_type r = ((difference_type)(i) / 8) * 8;
const difference_type l = ((difference_type)((begin + 7) / 8)) * 8;
for (difference_type j = i; j >= std::max(r, begin); --j) {
if (bp[j]) {
if (++excess_v == succ_excess) {
return j;
}
} else
--excess_v;
}
const uint64_t* b = bp.data();
for (difference_type j = r - 8; j >= l; j -= 8) {
if (succ_excess - excess_v <= 8) {
assert(succ_excess - excess_v > 0);
uint32_t x =
excess<>::data.max_match_pos_packed[((*(b + (j >> 6))) >> (j & 0x3F)) & 0xFF];
uint8_t p = (x >> ((succ_excess - excess_v - 1) << 2)) & 0xF;
if (p < 9) {
return j + p;
}
}
excess_v += excess<>::data.word_sum[((*(b + (j >> 6))) >> (j & 0x3F)) & 0xFF];
}
for (difference_type j = std::min(l, r) - 1; j >= begin; --j) {
if (bp[j]) {
if (++excess_v == succ_excess) {
return j;
}
} else
--excess_v;
}
return i + 1;
}
//! Find the opening parenthesis of the enclosing pair if this parenthesis is near.
/*!
* \param bp bit_vector containing the representation of the balanced parentheses sequence.
* \param i Position of the opening parenthesis for which we search the position of the opening parenthesis of the enclosing parentheses pair.
* \param block_size Number of entries to search for the corresponding opening parenthesis of the enclosing parentheses pair.
* \return If no near enclose exists return i, otherwise the position of the opening parenthesis of the enclosing pair.
* \pre We assert that \f$ bp[i]=1 \f$
*/
// TODO: implement a fast version using lookup-tables of size 8
inline uint64_t near_enclose(const bit_vector& bp, uint64_t i, const uint64_t block_size)
{
uint64_t opening_parentheses = 1;
for (uint64_t j = i; j + block_size - 1 > i and j > 0; --j) {
if (bp[j - 1]) {
++opening_parentheses;
if (opening_parentheses == 2) {
return j - 1;
}
} else
--opening_parentheses;
}
return i;
}
inline uint64_t near_rmq_open(const bit_vector& bp, const uint64_t begin, const uint64_t end)
{
typedef bit_vector::difference_type difference_type;
difference_type min_excess = end - begin + 1, ex = 0;
uint64_t result = end;
const uint64_t l = ((begin + 7) / 8) * 8;
const uint64_t r = (end / 8) * 8;
for (uint64_t k = begin; k < std::min(end, l); ++k) {
if (bp[k]) {
++ex;
if (ex <= min_excess) {
result = k;
min_excess = ex;
}
} else {
--ex;
}
}
const uint64_t* b = bp.data();
for (uint64_t k = l; k < r; k += 8) {
uint16_t x = excess<>::data.min_open_excess_info[((*(b + (k >> 6))) >> (k & 0x3F)) & 0xFF];
int8_t ones = (x >> 12);
if (ones) {
int8_t min_ex = (x & 0xFF) - 8;
if (ex + min_ex <= min_excess) {
result = k + ((x >> 8) & 0xF);
min_excess = ex + min_ex;
}
}
ex += ((ones << 1) - 8);
}
for (uint64_t k = std::max(r, l); k < end; ++k) {
if (bp[k]) {
++ex;
if (ex <= min_excess) {
result = k;
min_excess = ex;
}
} else {
--ex;
}
}
if (min_excess <= ex) return result;
return end;
}
} // end namespace sdsl
#endif
|