1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
|
// -----------------------------------------------------------------------------------------------------
// Copyright (c) 2006-2020, Knut Reinert & Freie Universität Berlin
// Copyright (c) 2016-2020, Knut Reinert & MPI für molekulare Genetik
// This file may be used, modified and/or redistributed under the terms of the 3-clause BSD-License
// shipped with this file and also available at: https://github.com/seqan/seqan3/blob/master/LICENSE.md
// -----------------------------------------------------------------------------------------------------
#include <algorithm>
#include <type_traits>
#include "helper.hpp"
#include "helper_search_scheme.hpp"
#include <seqan3/test/performance/sequence_generator.hpp>
#include <seqan3/core/debug_stream.hpp>
#include <seqan3/search/configuration/default_configuration.hpp>
#include <seqan3/search/detail/search_configurator.hpp>
#include <seqan3/search/detail/search_scheme_algorithm.hpp>
#include <seqan3/search/detail/unidirectional_search_algorithm.hpp>
#include <seqan3/search/detail/policy_max_error.hpp>
#include <seqan3/search/detail/policy_search_result_builder.hpp>
#include <seqan3/search/fm_index/all.hpp>
#include <seqan3/range/views/slice.hpp>
#include <seqan3/range/views/to.hpp>
#include <gtest/gtest.h>
// Uses the trivial search of the unidirectional search algorithm.
// The algorithm is configured with the corrsponding configuration types.
// To modify the trivial search use the configuration settings of the search algorithm.
template <typename index_t, typename query_t, typename delegate_t>
static void search_trivial(index_t const & index,
query_t const & query,
seqan3::detail::search_param error_left,
delegate_t && delegate)
{
using namespace seqan3::detail;
// Configure the algorithm according to the given specifications.
auto cfg = seqan3::search_cfg::max_error_total{seqan3::search_cfg::error_count{error_left.total}} |
seqan3::search_cfg::max_error_substitution{seqan3::search_cfg::error_count{error_left.substitution}} |
seqan3::search_cfg::max_error_insertion{seqan3::search_cfg::error_count{error_left.insertion}} |
seqan3::search_cfg::max_error_deletion{seqan3::search_cfg::error_count{error_left.deletion}} |
seqan3::search_cfg::hit_all{} |
seqan3::search_cfg::output_index_cursor{};
auto indexed_query = std::pair{size_t{0}, query};
auto algo = std::get<0>(seqan3::detail::search_configurator::configure_algorithm<decltype(indexed_query)>(cfg,
index));
// Call the algorithm and call the delegate with the returned index cursor.
algo(indexed_query, [&] (auto result) { delegate(result.index_cursor()); });
}
template <typename text_t>
inline void test_search_hamming(auto index, text_t const & text, auto const & search, uint64_t const query_length,
std::vector<uint8_t> const & error_distribution, size_t const seed,
auto const & blocks_length, auto const & ordered_blocks_length,
uint64_t const start_pos)
{
using char_t = typename text_t::value_type;
uint64_t const pos = std::rand() % (text.size() - query_length + 1);
text_t const orig_query = text | seqan3::views::slice(pos, pos + query_length) | seqan3::views::to<text_t>;
// Modify query s.t. it has errors matching error_distribution.
auto query = orig_query;
auto it = index.cursor();
uint64_t current_blocks_length = 0;
for (uint8_t block = 0; block < search.blocks(); ++block)
{
uint64_t const single_block_length = ordered_blocks_length[block];
EXPECT_LE(error_distribution[block], single_block_length);
if (error_distribution[block] > single_block_length)
{
seqan3::debug_stream << "Error in block " << block << "(+ 1): " << error_distribution[block]
<< " errors cannot fit into a block of length " << single_block_length << "." << '\n'
<< "Error Distribution: " << error_distribution << '\n';
exit(1);
}
// Choose random positions in the query sequence for substitutions. Repeat until all error positions are unique.
std::vector<uint8_t> error_positions(error_distribution[block]);
do
{
error_positions.clear();
for (uint8_t error = 0; error < error_distribution[block]; ++error)
error_positions.push_back(std::rand() % single_block_length);
std::sort(error_positions.begin(), error_positions.end());
} while (std::adjacent_find(error_positions.begin(), error_positions.end()) != error_positions.end());
// Construct query sequence with chosen error positions.
for (uint8_t error = 0; error < error_positions.size(); ++error)
{
uint64_t const pos = error_positions[error] + current_blocks_length;
// Decrease alphabet size by one because we don't want to replace query[pos], with the same character.
uint8_t new_rank = std::rand() % (seqan3::alphabet_size<char_t> - 1);
// If it is a match now, it can't be the highest rank of the alphabet. Thus we set it to the highest rank.
if (new_rank == seqan3::to_rank(query[pos]))
new_rank = seqan3::alphabet_size<char_t> - 1;
seqan3::assign_rank_to(new_rank, query[pos]);
}
current_blocks_length += single_block_length;
}
std::vector<uint64_t> hits_trivial, hits_ss;
auto delegate_trivial = [&hits_trivial] (auto const & it)
{
for (auto && res : it.locate())
hits_trivial.push_back(res.second);
};
auto delegate_ss = [&hits_ss] (auto const & it)
{
for (auto && res : it.locate())
hits_ss.push_back(res.second);
};
auto remove_predicate_ss = [&text, &orig_query, query_length] (uint64_t const hit)
{
seqan3::dna4_vector matched_seq = text | seqan3::views::slice(hit, hit + query_length)
| seqan3::views::to<seqan3::dna4_vector>;
return (matched_seq != orig_query);
};
auto remove_predicate_trivial = [&] (uint64_t const hit)
{
// filter only correct error distributions
seqan3::dna4_vector matched_seq = text | seqan3::views::slice(hit, hit + query_length)
| seqan3::views::to<seqan3::dna4_vector>;
if (orig_query != matched_seq)
return true;
uint64_t lb = 0, rb = 0;
uint8_t total_errors = 0;
for (uint8_t block = 0; block < search.blocks(); ++block)
{
rb += ordered_blocks_length[block];
uint8_t errors = 0;
for (uint64_t i = lb; i < rb; ++i)
if (hit + i >= text.size())
++errors;
else
errors += query[i] != text[hit + i];
total_errors += errors;
if (errors != error_distribution[block])
return true;
lb += ordered_blocks_length[block];
}
return false;
};
uint8_t const total = search.u.back();
uint8_t const substitution = std::rand() % (total + 1);
seqan3::detail::search_param error_left{total, substitution, 0, 0};
// Find all hits using search schemes.
seqan3::detail::search_ss<false>(it, query, start_pos, start_pos + 1, 0, 0, true, search, blocks_length, error_left,
delegate_ss);
// Find all hits using trivial backtracking.
search_trivial(index, query, error_left, delegate_trivial);
// Eliminate hits that we are not interested in (based on the search and chosen error distribution)
hits_ss.erase(std::remove_if(hits_ss.begin(), hits_ss.end(), remove_predicate_ss), hits_ss.end());
hits_trivial.erase(std::remove_if(hits_trivial.begin(), hits_trivial.end(), remove_predicate_trivial),
hits_trivial.end());
// Eliminate duplicates
hits_ss = seqan3::uniquify(hits_ss);
hits_trivial = seqan3::uniquify(hits_trivial);
EXPECT_EQ(hits_ss, hits_trivial);
if (hits_ss != hits_trivial)
{
seqan3::debug_stream << "Seed: " << seed << '\n'
<< "Text: " << text << '\n'
<< "Query: " << query << '\n'
<< "Errors: " << total << ", " << substitution << '\n'
<< "SS hits: " << hits_ss << '\n'
<< "Trivial hits: " << hits_trivial << '\n';
}
}
template <typename search_scheme_t>
inline void test_search_scheme_hamming(search_scheme_t const & search_scheme, size_t const seed,
uint64_t const iterations)
{
seqan3::dna4_vector text;
search_scheme_t ordered_search_scheme;
std::vector<std::vector<std::vector<uint8_t> > > error_distributions(search_scheme.size());
// Calculate all error distributions and sort each of them (from left to right).
uint8_t max_error = 0;
for (uint8_t search_id = 0; search_id < search_scheme.size(); ++search_id)
{
ordered_search_scheme[search_id] = search_scheme[search_id];
seqan3::search_error_distribution(error_distributions[search_id], search_scheme[search_id]);
for (std::vector<uint8_t> & resElem : error_distributions[search_id])
seqan3::order_search_vector(resElem, search_scheme[search_id]);
max_error = std::max(max_error, search_scheme[search_id].u.back());
}
for (uint64_t text_length = 10; text_length < 10000; text_length *= 10)
{
uint64_t const query_length_min = std::max<uint64_t>(3, search_scheme.front().blocks() * max_error);
uint64_t const query_length_max = std::min<uint64_t>(16, text_length);
text = seqan3::test::generate_sequence<seqan3::dna4>(text_length, 0/*variance*/, seed);
seqan3::bi_fm_index index(text);
for (uint64_t i = 0; i < iterations; ++i)
{
for (uint64_t query_length = query_length_min; query_length < query_length_max; ++query_length)
{
auto const block_info = search_scheme_block_info(search_scheme, query_length);
for (uint8_t search_id = 0; search_id < search_scheme.size(); ++search_id)
{
auto const & [blocks_length, start_pos] = block_info[search_id];
std::vector<uint64_t> ordered_blocks_length;
seqan3::get_ordered_search(search_scheme[search_id], blocks_length,
ordered_search_scheme[search_id], ordered_blocks_length);
for (auto && error_distribution : error_distributions[search_id])
{
test_search_hamming(index, text, search_scheme[search_id], query_length,
error_distribution, seed, blocks_length, ordered_blocks_length, start_pos);
}
}
}
}
}
}
template <typename search_scheme_t>
inline void test_search_scheme_edit(search_scheme_t const & search_scheme, size_t const seed, uint64_t const iterations)
{
seqan3::dna4_vector text, query;
// retrieve maximum number of errors from search_scheme
uint8_t max_error = 0;
for (auto const & search : search_scheme)
max_error = std::max(max_error, search.u.back());
for (uint64_t text_length = 10; text_length < 10000; text_length *= 10)
{
uint64_t const query_length_min = std::max<uint64_t>(3, search_scheme.front().blocks() * max_error);
uint64_t const query_length_max = std::min<uint64_t>(16, text_length);
text = seqan3::test::generate_sequence<seqan3::dna4>(text_length, 0/*variance*/, seed);
seqan3::bi_fm_index index(text);
uint8_t const substitution = std::rand() % (max_error + 1);
uint8_t const insertion = std::rand() % (max_error + 1);
uint8_t const deletion = std::rand() % (max_error + 1);
seqan3::detail::search_param error_left{max_error, substitution, insertion, deletion};
for (uint64_t i = 0; i < iterations; ++i)
{
for (uint64_t query_length = query_length_min; query_length < query_length_max; ++query_length)
{
query = seqan3::test::generate_sequence<seqan3::dna4>(query_length, 0/*variance*/, seed);
std::vector<uint64_t> hits_trivial, hits_ss;
auto delegate_trivial = [&hits_trivial] (auto const & it)
{
for (auto && res : it.locate())
hits_trivial.push_back(res.second);
};
auto delegate_ss = [&hits_ss] (auto const & it)
{
for (auto && res : it.locate())
hits_ss.push_back(res.second);
};
// Find all hits using search schemes.
seqan3::detail::search_ss<false>(index, query, error_left, search_scheme, delegate_ss);
// Find all hits using trivial backtracking.
search_trivial(index, query, error_left, delegate_trivial);
// Eliminate duplicates
hits_ss = seqan3::uniquify(hits_ss);
hits_trivial = seqan3::uniquify(hits_trivial);
EXPECT_EQ(hits_ss, hits_trivial);
if (hits_ss != hits_trivial)
{
seqan3::debug_stream << "Seed: " << seed << '\n'
<< "Text: " << text << '\n'
<< "Query: " << query << '\n'
<< "Errors: " << max_error << ", " << substitution << ", "
<< insertion << ", " << deletion << '\n'
<< "SS hits: " << hits_ss << '\n'
<< "Trivial hits: " << hits_trivial << '\n';
}
}
}
}
}
TEST(search_scheme_test, search_scheme_hamming)
{
size_t seed = 42;
test_search_scheme_hamming(seqan3::detail::optimum_search_scheme<0, 0>, seed, 10);
test_search_scheme_hamming(seqan3::detail::optimum_search_scheme<0, 1>, seed, 10);
test_search_scheme_hamming(seqan3::detail::optimum_search_scheme<1, 1>, seed, 10);
test_search_scheme_hamming(seqan3::detail::optimum_search_scheme<0, 2>, seed, 10);
test_search_scheme_hamming(seqan3::detail::optimum_search_scheme<1, 2>, seed, 10);
test_search_scheme_hamming(seqan3::detail::optimum_search_scheme<2, 2>, seed, 10);
test_search_scheme_hamming(seqan3::detail::optimum_search_scheme<0, 3>, seed, 10);
test_search_scheme_hamming(seqan3::detail::optimum_search_scheme<1, 3>, seed, 10);
test_search_scheme_hamming(seqan3::detail::optimum_search_scheme<2, 3>, seed, 10);
// test_search_scheme_hamming(seqan3::detail::optimum_search_scheme<3, 3>, seed, 10);
}
TEST(search_scheme_test, search_scheme_edit)
{
size_t seed = 42;
// TODO: test with lower bounds != 0.
// For that we need alignment statistics to know the number of errors spent in search_trivial
test_search_scheme_edit(seqan3::detail::optimum_search_scheme<0, 0>, seed, 10);
test_search_scheme_edit(seqan3::detail::optimum_search_scheme<0, 1>, seed, 10);
test_search_scheme_edit(seqan3::detail::optimum_search_scheme<0, 2>, seed, 10);
test_search_scheme_edit(seqan3::detail::optimum_search_scheme<0, 3>, seed, 10);
}
|