1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
|
# Tutorial
## Some manipulations on big genomes
A script [memusg](https://github.com/shenwei356/memusg) is
used to check the peek memory usage of seqkit. Usage: `memusg [-t] command`.
1. Human genome
$ seqkit stat hsa.fa
file format type num_seqs sum_len min_len avg_len max_len
hsa.fa FASTA DNA 194 3,099,750,718 970 15,978,096.5 248,956,422
1. Build FASTA index (***optional***, when using flag `-2` (`--two-pass`),
some commands will automaticlly build it).
For some commands, including `subseq`, `split`, `sort` and `shuffle`,
when input files are (plain or gzipped) FASTA files or stdin,
FASTA index would be optional used for
rapid acccess of sequences and reducing memory occupation.
***ATTENTION***: the `.seqkit.fai` file created by SeqKit is a little different from .fai file
created by samtools. SeqKit uses full sequence head instead of just ID as key.
$ memusg -t seqkit faidx --id-regexp "^(.+)$" hsa.fa -o hsa.fa.seqkit.fai
elapsed time: 10.011s
peak rss: 177.21 MB
Create common .fai file:
$ memusg -t seqkit faidx hsa.fa -o hsa.fa.fai2
elapsed time: 10.454s
peak rss: 172.82 MB
Performance of samtools:
$ memusg -t samtools faidx hsa.fa
elapsed time: 9.574s
peak rss: 1.45 MB
Exactly same content:
$ md5sum hsa.fa.fai*
21e0c25b4d817d1c19ee8107191b9b31 hsa.fa.fai
21e0c25b4d817d1c19ee8107191b9b31 hsa.fa.fai2
1. Sorting by sequence length
$ memusg -t seqkit sort --by-length --reverse --two-pass hsa.fa > hsa.sorted.fa
[INFO] create and read FASTA index ...
[INFO] read sequence IDs and lengths from FASTA index ...
[INFO] 194 sequences loaded
[INFO] sorting ...
[INFO] output ...
elapsed time: 4.892s
peak rss: 500.15 MB
Detail:
$ seqkit fx2tab --length hsa.sorted.fa --name --only-id | cut -f 1,4 | more
1 248956422
2 242193529
3 198295559
4 190214555
5 181538259
6 170805979
7 159345973
X 156040895
8 145138636
9 138394717
11 135086622
10 133797422
12 133275309
13 114364328
14 107043718
15 101991189
16 90338345
17 83257441
18 80373285
20 64444167
19 58617616
Y 57227415
22 50818468
21 46709983
KI270728.1 1872759
KI270727.1 448248
...
real 0m10.697s
user 0m11.153s
sys 0m0.917s
1. Shuffling sequences
$ memusg -t seqkit shuffle hsa.fa --two-pass > hsa.shuffled.fa
[INFO] create and read FASTA index ...
[INFO] read sequence IDs from FASTA index ...
[INFO] 194 sequences loaded
[INFO] shuffle ...
[INFO] output ...
elapsed time: 6.632s
peak rss: 528.3 MB
1. Spliting into files with single sequence
$ memusg -t seqkit split --by-id hsa.fa --two-pass
[INFO] split by ID. idRegexp: ^([^\s]+)\s?
[INFO] create and read FASTA index ...
[INFO] read sequence IDs from FASTA index ...
[INFO] 194 sequences loaded
[INFO] write 1 sequences to file: hsa.id_KI270743.1.fa
[INFO] write 1 sequences to file: hsa.id_KI270706.1.fa
[INFO] write 1 sequences to file: hsa.id_KI270717.1.fa
[INFO] write 1 sequences to file: hsa.id_KI270718.1.fa
[INFO] write 1 sequences to file: hsa.id_KI270468.1.fa
...
elapsed time: 18.807s
peak rss: 1.36 GB
1. Geting subsequence of some chromesomes
$ memusg -t seqkit subseq -r 1:10 --chr X --chr Y hsa.fa
>X_1-10 X dna_sm:chromosome chromosome:GRCh38:X:1:156040895:1 REF
nnnnnnnnnn
>Y_1-10 Y dna_sm:chromosome chromosome:GRCh38:Y:2781480:56887902:1 REF
NNNNNNNNNN
elapsed time: 1.276s
peak rss: 640.92 MB
1. Geting CDS sequence of chr 1 by GTF files
$ memusg -t seqkit subseq --gtf Homo_sapiens.GRCh38.84.gtf.gz --chr X --feature cds hsa.fa > chrX.gtf.cds.fa
[INFO] read GTF file ...
[INFO] 22420 GTF features loaded
elapsed time: 8.643s
peak rss: 846.14 MB
## Remove contaminated reads
1. Mapping with reads on some potential contaminate genomes, and get the reads IDs list.
$ wc -l contaminate.list
244 contaminate.list
$ head -n 2 contaminate.list
HWI-D00523:240:HF3WGBCXX:1:1101:2574:2226
HWI-D00523:240:HF3WGBCXX:1:1101:12616:2205
1. Remove contaminated reads
$ seqkit grep -f contaminate.list -v reads_1.fq.gz -o reads_1.clean.fq.gz
$ seqkit grep -f contaminate.list -v reads_2.fq.gz -o reads_2.clean.fq.gz
$ seqkit stat *.fq.gz
file seq_format seq_type num_seqs min_len avg_len max_len
reads_1.clean.fq.gz FASTQ DNA 2,256 226 227 229
reads_1.fq.gz FASTQ DNA 2,500 226 227 229
reads_2.clean.fq.gz FASTQ DNA 2,256 223 224 225
reads_2.fq.gz FASTQ DNA 2,500 223 224 225
## Handling of aligned sequences
1. Some mock sequences (usually they will be much longer)
$ cat seqs.fa
>seq1
ACAACGTCTACTTACGTTGCATCGTCATGCTGCATTACGTAGTCTGATGATG
>seq2
ACACCGTCTACTTTCATGCTGCATTACGTAGTCTGATGATG
>seq3
ACAACGTCTACTTACGTTGCATCGTCATGCTGCACTGATGATG
>seq4
ACAACGTCTACTTACGTTGCATCTTCGGTCATGCTGCATTACGTAGTCTGATGATG
1. Run multiple sequence alignment (clustalo)
clustalo -i seqs.fa -o seqs.msa.fa --force --outfmt fasta --threads=4
1. Convert FASTA format to tabular format.
$ seqkit fx2tab seqs.msa.fa
seq1 ACAACGTCTACTTACGTTGCAT----CGTCATGCTGCATTACGTAGTCTGATGATG
seq2 ---------------ACACCGTCTACTTTCATGCTGCATTACGTAGTCTGATGATG
seq3 ACAACGTCTACTTACGTTGCATCGTCATGCTGCACTGATGATG-------------
seq4 ACAACGTCTACTTACGTTGCATCTTCGGTCATGCTGCATTACGTAGTCTGATGATG
or
$ seqkit fx2tab seqs.msa.fa | cut -f 2
ACAACGTCTACTTACGTTGCAT----CGTCATGCTGCATTACGTAGTCTGATGATG
---------------ACACCGTCTACTTTCATGCTGCATTACGTAGTCTGATGATG
ACAACGTCTACTTACGTTGCATCGTCATGCTGCACTGATGATG-------------
ACAACGTCTACTTACGTTGCATCTTCGGTCATGCTGCATTACGTAGTCTGATGATG
For me, it's useful when 1) manually assembling Sanger sequencing result,
2) designing site specific PCR primers.
1. Remove gaps
$ seqkit seq seqs.msa.fa -g
>seq1
ACAACGTCTACTTACGTTGCATCGTCATGCTGCATTACGTAGTCTGATGATG
>seq2
ACACCGTCTACTTTCATGCTGCATTACGTAGTCTGATGATG
>seq3
ACAACGTCTACTTACGTTGCATCGTCATGCTGCACTGATGATG
>seq4
ACAACGTCTACTTACGTTGCATCTTCGGTCATGCTGCATTACGTAGTCTGATGATG
## Play with miRNA hairpins
### Dataset
[`hairpin.fa.gz`](ftp://mirbase.org/pub/mirbase/21/hairpin.fa.gz)
from [The miRBase Sequence Database -- Release 21](ftp://mirbase.org/pub/mirbase/21/)
### Quick glance
1. Sequence number
$ seqkit stat hairpin.fa.gz
file format type num_seqs sum_len min_len avg_len max_len
hairpin.fa.gz FASTA RNA 28,645 2,949,871 39 103 2,354
1. First 10 bases
$ zcat hairpin.fa.gz \
| seqkit subseq -r 1:10 \
| seqkit sort -s
| seqkit seq -s \
| head -n 10
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAG
AAAAAAAAAG
AAAAAAAAAG
AAAAAAAAAU
AAAAAAAAGG
AAAAAAACAU
AAAAAAACGA
AAAAAAAUUA
hmm, nothing special, non-coding RNA~
### Repeated hairpin sequences
We may want to check how may identical hairpins among different species there are.
`seqkit rmdup` could remove duplicated sequences by sequence content,
and save the replicates to another file (here is `duplicated.fa.gz`),
as well as replicating details (`duplicated.detail.txt`,
1th column is the repeated number,
2nd column contains sequence IDs seperated by comma).
$ seqkit rmdup -s -i hairpin.fa.gz -o clean.fa.gz -d duplicated.fa.gz -D duplicated.detail.txt
$ head -n 5 duplicated.detail.txt
18 dre-mir-430c-1, dre-mir-430c-2, dre-mir-430c-3, dre-mir-430c-4, dre-mir-430c-5, dre-mir-430c-6, dre-mir-430c-7, dre-mir-430c-8, dre-mir-430c-9, dre-mir-430c-10, dre-mir-430c-11, dre-mir-430c-12, dre-mir-430c-13, dre-mir-430c-14, dre-mir-430c-15, dre-mir-430c-16, dre-mir-430c-17, dre-mir-430c-18
16 hsa-mir-29b-2, mmu-mir-29b-2, rno-mir-29b-2, ptr-mir-29b-2, ggo-mir-29b-2, ppy-mir-29b-2, sla-mir-29b, mne-mir-29b, ppa-mir-29b-2, bta-mir-29b-2, mml-mir-29b-2, eca-mir-29b-2, aja-mir-29b, oar-mir-29b-1, oar-mir-29b-2, rno-mir-29b-3
15 dme-mir-125, dps-mir-125, dan-mir-125, der-mir-125, dgr-mir-125-1, dgr-mir-125-2, dmo-mir-125, dpe-mir-125-2, dpe-mir-125-1, dpe-mir-125-3, dse-mir-125, dsi-mir-125, dvi-mir-125, dwi-mir-125, dya-mir-125
13 hsa-mir-19b-1, ggo-mir-19b-1, age-mir-19b-1, ppa-mir-19b-1, ppy-mir-19b-1, ptr-mir-19b-1, mml-mir-19b-1, sla-mir-19b-1, lla-mir-19b-1, mne-mir-19b-1, bta-mir-19b, oar-mir-19b, chi-mir-19b
13 hsa-mir-20a, ssc-mir-20a, ggo-mir-20a, age-mir-20, ppa-mir-20, ppy-mir-20a, ptr-mir-20a, mml-mir-20a, sla-mir-20, lla-mir-20, mne-mir-20, bta-mir-20a, eca-mir-20a
The result shows the most conserved miRNAs among different species,
`mir-29b`, `mir-125`, `mir-19b-1` and `mir-20a`.
And the `dre-miR-430c` has the most multicopies in *Danio rerio*.
### Hairpins in different species
1. Before spliting by species, let's take a look at the sequence names.
$ seqkit seq hairpin.fa.gz -n | head -n 3
cel-let-7 MI0000001 Caenorhabditis elegans let-7 stem-loop
cel-lin-4 MI0000002 Caenorhabditis elegans lin-4 stem-loop
cel-mir-1 MI0000003 Caenorhabditis elegans miR-1 stem-loop
The first three letters (e.g. `cel`) are the abbreviation of species names.
So we could split hairpins by the first letters by defining custom
sequence ID parsing regular expression `^([\w]+)\-`.
By default, `seqkit` takes the first non-space letters as sequence ID.
For example,
| FASTA head | ID |
|:--------------------------------------------------------------|:--------------------------------------------------|
| >123456 gene name | 123456 |
| >longname | longname |
| >gi|110645304|ref|NC_002516.2| Pseudomona | gi|110645304|ref|NC_002516.2| |
But for some sequences from NCBI,
e.g. `>gi|110645304|ref|NC_002516.2| Pseudomona`, the ID is `NC_002516.2`.
In this case, we could set sequence ID parsing regular expression by flag
`--id-regexp "\|([^\|]+)\| "` or just use flag `--id-ncbi`. If you want
the `gi` number, then use `--id-regexp "^gi\|([^\|]+)\|"`.
1. Split sequences by species.
A custom ID parsing regular expression is used, `^([\w]+)\-`.
$ seqkit split hairpin.fa.gz -i --id-regexp "^([\w]+)\-" --two-pass
***To reduce memory usage when splitting big file, we should always use flag `--two-pass`***
2. Species with most miRNA hairpins. Third column is the sequences number.
$ cd hairpin.fa.gz.split/;
$ seqkit stat hairpin.id_* \
| csvtk space2tab \
| csvtk -t sort -k num_seqs:nr \
| csvtk -t pretty \
| more
file format type num_seqs sum_len min_len avg_len max_len
hairpin.id_hsa.fasta FASTA RNA 1,881 154,242 82 82 82
hairpin.id_mmu.fasta FASTA RNA 1,193 107,370 90 90 90
hairpin.id_bta.fasta FASTA RNA 808 61,408 76 76 76
hairpin.id_gga.fasta FASTA RNA 740 42,180 57 57 57
hairpin.id_eca.fasta FASTA RNA 715 89,375 125 125 125
hairpin.id_mtr.fasta FASTA RNA 672 231,840 345 345 345
Here, a CSV/TSV tool [csvtk](https://github.com/shenwei356/csvtk)
is used to sort and view the result.
For human miRNA hairpins
1. Length distribution.
`seqkit fx2tab` could show extra information like sequence length, GC content.
[`csvtk`](http://bioinf.shenwei.me/csvtk/) is used to plot.
$ seqkit grep -r -p '^hsa' hairpin.fa.gz \
| seqkit fx2tab -l \
| cut -f 4 \
| csvtk -H plot hist --xlab Length --title "Human pre-miRNA length distribution"

$ seqkit grep -r -p '^hsa' hairpin.fa.gz \
| seqkit fx2tab -l \
| cut -f 4 \
| csvtk -H plot box --xlab Length --horiz --height 1.5

## Bacteria genome
### Dataset
[Pseudomonas aeruginosa PAO1](http://www.ncbi.nlm.nih.gov/nuccore/110645304),
files:
- Genbank file [`PAO1.gb`](/files/PAO1/PAO1.gb)
- Genome FASTA file [`PAO1.fasta`](/files/PAO1/PAO1.fasta)
- GTF file [`PAO1.gtf`](/files/PAO1/PAO1.gtf) was created with [`extract_features_from_genbank_file.py`](https://github.com/shenwei356/bio_scripts/blob/master/file_formats/extract_features_from_genbank_file.py), by
extract_features_from_genbank_file.py PAO1.gb -t . -f gtf > PAO1.gtf
### Motif distribution
Motifs
$ cat motifs.fa
>GTAGCGS
GTAGCGS
>GGWGKTCG
GGWGKTCG
1. Sliding. Remember flag `--id-ncbi`, do you?
By the way, do not be scared by the long flag `--circle-genome`, `--step`
and so on. They have short ones, `-c`, `-s`
$ seqkit sliding --id-ncbi --circular-genome \
--step 20000 --window 200000 PAO1.fasta -o PAO1.fasta.sliding.fa
$ seqkit stat PAO1.fasta.sliding.fa
file format type num_seqs sum_len min_len avg_len max_len
PAO1.fasta.sliding.fa FASTA DNA 314 62,800,000 200,000 200,000 200,000
1. Locating motifs
$ seqkit locate --id-ncbi --ignore-case --degenerate \
--pattern-file motifs.fa PAO1.fasta.sliding.fa -o PAO1.fasta.sliding.fa.motifs.tsv
1. Ploting distribution ([plot_motif_distribution.R](/files/PAO1/plot_motif_distribution.R))
# preproccess
$ perl -ne 'if (/_sliding:(\d+)-(\d+)\t(.+)/) {$loc= $1 + 100000; print "$loc\t$3\n";} else {print}' PAO1.fasta.sliding.fa.motifs.tsv > PAO1.fasta.sliding.fa.motifs.tsv2
# plot
$ ./plot_motif_distribution.R
Result

### Find multicopy genes
1. Get all CDS sequences
$ seqkit subseq --id-ncbi --gtf PAO1.gtf --feature cds PAO1.fasta -o PAO1.cds.fasta
$ seqkit stat *.fasta
file format type num_seqs sum_len min_len avg_len max_len
PAO1.cds.fasta FASTA DNA 5,572 5,593,306 72 1,003.8 16,884
PAO1.fasta FASTA DNA 1 6,264,404 6,264,404 6,264,404 6,264,404
1. Get duplicated sequences
$ seqkit rmdup --by-seq --ignore-case PAO1.cds.fasta -o PAO1.cds.uniq.fasta \
--dup-seqs-file PAO1.cds.dup.fasta --dup-num-file PAO1.cds.dup.text
$ cat PAO1.cds.dup.text
6 NC_002516.2_500104:501120:-, NC_002516.2_2556948:2557964:+, NC_002516.2_3043750:3044766:-, NC_002516.2_3842274:3843290:-, NC_002516.2_4473623:4474639:+, NC_002516.2_5382796:5383812:-
2 NC_002516.2_2073555:2075438:+, NC_002516.2_4716660:4718543:+
2 NC_002516.2_2072935:2073558:+, NC_002516.2_4716040:4716663:+
2 NC_002516.2_2075452:2076288:+, NC_002516.2_4718557:4719393:+
### Flanking sequences
1. Get CDS and 1000 bp upstream sequence
$ seqkit subseq --id-ncbi --gtf PAO1.gtf \
--feature cds PAO1.fasta --up-stream 1000
1. Get 1000 bp upstream sequence of CDS, *NOT* including CDS.
$ seqkit subseq --id-ncbi --gtf PAO1.gtf \
--feature cds PAO1.fasta --up-stream 1000 --only-flank
<div id="disqus_thread"></div>
<script>
/**
* RECOMMENDED CONFIGURATION VARIABLES: EDIT AND UNCOMMENT THE SECTION BELOW TO INSERT DYNAMIC VALUES FROM YOUR PLATFORM OR CMS.
* LEARN WHY DEFINING THESE VARIABLES IS IMPORTANT: https://disqus.com/admin/universalcode/#configuration-variables*/
/*
var disqus_config = function () {
this.page.url = PAGE_URL; // Replace PAGE_URL with your page's canonical URL variable
this.page.identifier = PAGE_IDENTIFIER; // Replace PAGE_IDENTIFIER with your page's unique identifier variable
};
*/
(function() { // DON'T EDIT BELOW THIS LINE
var d = document, s = d.createElement('script');
s.src = '//seqkit.disqus.com/embed.js';
s.setAttribute('data-timestamp', +new Date());
(d.head || d.body).appendChild(s);
})();
</script>
<noscript>Please enable JavaScript to view the <a href="https://disqus.com/?ref_noscript">comments powered by Disqus.</a></noscript>
|