1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666
|
# Usage and Examples
## Quick Guide
- Basic: [seq](#seq), [stats](#stats), [sum](#sum), [subseq](#subseq), [sliding](#sliding),
[faidx](#faidx), [watch](#watch), [sana](#sana), [scat](#scat)
- Format conversion: [fq2fa](#fq2fa), [fa2fq](#fa2fq), [fx2tab](#fx2tab-tab2fx), [tab2fx](#fx2tab-tab2fx),
[convert](#convert), [translate](#translate)
- Searching: [grep](#grep), [locate](#locate), [amplicon](#amplicon), [fish](#fish)
- Set operation: [sample](#sample), [rmdup](#rmdup), [common](#common),
[duplicate](#duplicate), [split](#split), [split2](#split2), [head](#head),
[head-genome](#head-genome), [range](#range), [pair](#pair)
- Edit: [concat](#concat), [replace](#replace), [restart](#restart), [mutate](#mutate),
[rename](#rename)
- Ordering: [sort](#sort), [shuffle](#shuffle)
- BAM processing: [bam](#bam)
## Technical details and guides for use
### FASTA/Q format parsing and writing
> **Seqkit also supports reading and writing xz (.xz) and zstd (.zst) formats since v2.2.0**.
SeqKit uses the author's lightweight and high-performance bioinformatics package
[bio](https://github.com/shenwei356/bio) for FASTA/Q parsing,
which has [high performance](https://github.com/shenwei356/bio#fastaq-parsing)
close to the
famous C lib [klib](https://github.com/attractivechaos/klib/) ([kseq.h](https://github.com/attractivechaos/klib/blob/master/kseq.h)).
<img src="https://github.com/shenwei356/bio/raw/master/benchmark/benchmark.tsv.png" alt="" width="700" align="center" />
Notes:
- `seqkit` uses 4 threads by default.
- `seqkit_t1` uses 1 thread.
- `seqtk` is single-threaded.
- `seqtk+gzip`: `seqtk` pipes data to the single-threaded `gzip`.
- `seqtk+pigz`: `seqtk` pipes data to the multithreaded `pigz` which uses 4 threads here.
### Input and output files
Seqkit accepts input data from standard input (STDIN) and plain or gzip-compressed files.
Files can be given via positional arguments or the flag `--infile-list`. For example:
seqkit seq a.fasta b.fasta
seqkit seq --infile-list file-list.txt
seqkit seq --infile-list <(find -name "*.fq.gz" directory)
Result are printed to standard ouput (STDOUT) by default, you can also specify the output file
via the flag `-o/--out-file`. The file name extension `.gz` is automatically recognized.
For example:
seqkit seq a.fasta -o a.fasta.gz
seqkit grep -f IDs.txt read_1.fq.gz -o dir/read_1.fq.gz
Seqkit utlizies the [pgzip](https://github.com/klauspost/pgzip) package to read and write gzip file,
and the outputted gzip file would be slighty larger than files generated by GNU `gzip`.
**Seqkit writes gzip files very fast, much faster than the multi-threaded `pigz`,
so there's no need to pipe the result to `gzip`/`pigz`**.
### Sequence formats and types
SeqKit seamlessly support FASTA and FASTQ format.
Sequence format is automatically detected.
All subcommands except for `faidx` and `bam` can handle both formats.
And only when some commands (`subseq`, `split`, `sort` and `shuffle`)
which utilise FASTA index to improve perfrmance for large files in two pass mode
(by flag `--two-pass`), only FASTA format is supported.
Sequence type (DNA/RNA/Protein) is automatically detected by leading subsequences
of the first sequences in file or STDIN. The length of the leading subsequences
is configurable by global flag `--alphabet-guess-seq-length` with default value
of 10000. If length of the sequences is less than that, whole sequences will
be checked.
### Sequence ID
By default, most softwares, including `seqkit`, take the leading non-space
letters as sequence identifier (ID). For example,
| FASTA header | ID |
|:--------------------------------------------------------------|:--------------------------------------------------|
| >123456 gene name | 123456 |
| >longname | longname |
| >gi|110645304|ref|NC_002516.2| Pseudomona | gi|110645304|ref|NC_002516.2| |
But for some sequences from NCBI,
e.g. `>gi|110645304|ref|NC_002516.2| Pseudomona`, the ID is `NC_002516.2`.
In this case, we could set sequence ID parsing regular expression by global flag
`--id-regexp "\|([^\|]+)\| "` or just use flag `--id-ncbi`. If you want
the `gi` number, then use `--id-regexp "^gi\|([^\|]+)\|"`.
### FASTA index
For some commands, including `subseq`, `split`, `sort` and `shuffle`,
when input files are (plain or gzipped) FASTA files,
FASTA index would be optional used for
rapid access of sequences and reducing memory occupation.
ATTENTION: the `.seqkit.fai` file created by SeqKit is a little different from `.fai` file
created by `samtools`. SeqKit uses full sequence head instead of just ID as key.
### Parallelization of CPU intensive jobs
The validation of sequences bases and complement process of sequences
are parallelized for large sequences.
Parsing of line-based files, including BED/GFF file and ID list file are also parallelized.
The `pgzip` package reads and write gzip files in parallel.
The Parallelization is implemented by multiple goroutines in golang
which are similar to but much
lighter weight than threads. The concurrency number is configurable with global
flag `-j` or `--threads` (default value: 4).
**Using four threads is fast enough for most commands where FASTA/Q reading and writing is the
performance bottleneck, and using more threads will not increase the speed**.
Few commands could benefit from multiple (>4) threads:
- `stats`
- `scat`
- `grep -s -m`
- `locate -s -m`
- `amplicon -s -m`
### Memory occupation
Most of the subcommands do not read whole FASTA/Q records in to memory,
including `stat`, `fq2fa`, `fx2tab`, `tab2fx`, `grep`, `locate`, `replace`,
`seq`, `sliding`, `subseq`.
Note that when using `subseq --gtf | --bed`, if the GTF/BED files are too
big, the memory usage will increase.
You could use `--chr` to specify chromesomes and `--feature` to limit features.
Some subcommands could either read all records or read the files twice by flag
`-2` (`--two-pass`), including `sample`, `split`, `shuffle` and `sort`.
They use FASTA index for rapid acccess of sequences and reducing memory occupation.
### Reproducibility
Subcommands `sample` and `shuffle` use random function, random seed could be
given by flag `-s` (`--rand-seed`). This makes sure that sampling result could be
reproduced in different environments with same random seed.
## seqkit
``` text
SeqKit -- a cross-platform and ultrafast toolkit for FASTA/Q file manipulation
Version: 2.3.0
Author: Wei Shen <shenwei356@gmail.com>
Documents : http://bioinf.shenwei.me/seqkit
Source code: https://github.com/shenwei356/seqkit
Please cite: https://doi.org/10.1371/journal.pone.0163962
Seqkit utlizies the pgzip (https://github.com/klauspost/pgzip) package to
read and write gzip file, and the outputted gzip file would be slighty
larger than files generated by GNU gzip.
Seqkit writes gzip files very fast, much faster than the multi-threaded pigz,
therefore there's no need to pipe the result to gzip/pigz.
Usage:
seqkit [command]
Available Commands:
amplicon extract amplicon (or specific region around it) via primer(s)
bam monitoring and online histograms of BAM record features
common find common sequences of multiple files by id/name/sequence
concat concatenate sequences with the same ID from multiple files
convert convert FASTQ quality encoding between Sanger, Solexa and Illumina
duplicate duplicate sequences N times
fa2fq retrieve corresponding FASTQ records by a FASTA file
faidx create FASTA index file and extract subsequence
fish look for short sequences in larger sequences using local alignment
fq2fa convert FASTQ to FASTA
fx2tab convert FASTA/Q to tabular format (and length, GC content, average quality...)
genautocomplete generate shell autocompletion script (bash|zsh|fish|powershell)
grep search sequences by ID/name/sequence/sequence motifs, mismatch allowed
head print first N FASTA/Q records
head-genome print sequences of the first genome with common prefixes in name
locate locate subsequences/motifs, mismatch allowed
mutate edit sequence (point mutation, insertion, deletion)
pair match up paired-end reads from two fastq files
range print FASTA/Q records in a range (start:end)
rename rename duplicated IDs
replace replace name/sequence by regular expression
restart reset start position for circular genome
rmdup remove duplicated sequences by ID/name/sequence
sample sample sequences by number or proportion
sana sanitize broken single line FASTQ files
scat real time recursive concatenation and streaming of fastx files
seq transform sequences (extract ID, filter by length, remove gaps...)
shuffle shuffle sequences
sliding extract subsequences in sliding windows
sort sort sequences by id/name/sequence/length
split split sequences into files by id/seq region/size/parts (mainly for FASTA)
split2 split sequences into files by size/parts (FASTA, PE/SE FASTQ)
stats simple statistics of FASTA/Q files
subseq get subsequences by region/gtf/bed, including flanking sequences
sum compute message digest for all sequences in FASTA/Q files
tab2fx convert tabular format to FASTA/Q format
translate translate DNA/RNA to protein sequence (supporting ambiguous bases)
version print version information and check for update
watch monitoring and online histograms of sequence features
Flags:
--alphabet-guess-seq-length int length of sequence prefix of the first FASTA record based on which seqkit guesses the sequence type (0 for whole seq) (default 10000)
-h, --help help for seqkit
--id-ncbi FASTA head is NCBI-style, e.g. >gi|110645304|ref|NC_002516.2| Pseud...
--id-regexp string regular expression for parsing ID (default "^(\\S+)\\s?")
--infile-list string file of input files list (one file per line), if given, they are appended to files from cli arguments
-w, --line-width int line width when outputing FASTA format (0 for no wrap) (default 60)
-o, --out-file string out file ("-" for stdout, suffix .gz for gzipped out) (default "-")
--quiet be quiet and do not show extra information
-t, --seq-type string sequence type (dna|rna|protein|unlimit|auto) (for auto, it automatically detect by the first sequence) (default "auto")
-j, --threads int number of CPUs. can also set with environment variable SEQKIT_THREADS) (default 4)
Use "seqkit [command] --help" for more information about a command.
```
### Datasets
Datasets from [The miRBase Sequence Database -- Release 21](ftp://mirbase.org/pub/mirbase/21/)
- [`hairpin.fa.gz`](ftp://mirbase.org/pub/mirbase/21/hairpin.fa.gz)
- [`mature.fa.gz`](ftp://mirbase.org/pub/mirbase/21/mature.fa.gz)
- [`miRNA.diff.gz`](ftp://mirbase.org/pub/mirbase/21/miRNA.diff.gz)
Human genome from [ensembl](http://uswest.ensembl.org/info/data/ftp/index.html)
(For `seqkit subseq`)
- [`Homo_sapiens.GRCh38.dna_sm.primary_assembly.fa.gz`](ftp://ftp.ensembl.org/pub/release-84/fasta/homo_sapiens/dna/Homo_sapiens.GRCh38.dna_sm.primary_assembly.fa.gz)
- [`Homo_sapiens.GRCh38.84.gtf.gz`](ftp://ftp.ensembl.org/pub/release-84/gtf/homo_sapiens/Homo_sapiens.GRCh38.84.gtf.gz)
- `Homo_sapiens.GRCh38.84.bed.gz` is converted from `Homo_sapiens.GRCh38.84.gtf.gz`
by [`gtf2bed`](http://bedops.readthedocs.org/en/latest/content/reference/file-management/conversion/gtf2bed.html?highlight=gtf2bed)
with command
zcat Homo_sapiens.GRCh38.84.gtf.gz \
| gtf2bed --do-not-sort \
| gzip -c > Homo_sapiens.GRCh38.84.bed.gz
Only DNA and gtf/bed data of Chr1 were used:
- `chr1.fa.gz`
seqkit grep -p 1 Homo_sapiens.GRCh38.dna_sm.primary_assembly.fa.gz -o chr1.fa.gz
- `chr1.gtf.gz`
zcat Homo_sapiens.GRCh38.84.gtf.gz | grep -w '^1' | gzip -c > chr1.gtf.gz
- `chr1.bed.gz`
zcat Homo_sapiens.GRCh38.84.bed.gz | grep -w '^1' | gzip -c > chr1.bed.gz
## seq
Usage
``` text
transform sequences (extract ID, filter by length, remove gaps, reverse complement...)
Usage:
seqkit seq [flags]
Flags:
-k, --color colorize sequences - to be piped into "less -R"
-p, --complement complement sequence, flag '-v' is recommended to switch on
--dna2rna DNA to RNA
-G, --gap-letters string gap letters (default "- \t.")
-h, --help help for seq
-l, --lower-case print sequences in lower case
-M, --max-len int only print sequences shorter than the maximum length (-1 for no limit) (default -1)
-R, --max-qual float only print sequences with average quality less than this limit (-1 for no limit) (default -1)
-m, --min-len int only print sequences longer than the minimum length (-1 for no limit) (default -1)
-Q, --min-qual float only print sequences with average quality qreater or equal than this limit (-1 for no limit) (default -1)
-n, --name only print names
-i, --only-id print ID instead of full head
-q, --qual only print qualities
-b, --qual-ascii-base int ASCII BASE, 33 for Phred+33 (default 33)
-g, --remove-gaps remove gaps
-r, --reverse reverse sequence
--rna2dna RNA to DNA
-s, --seq only print sequences
-u, --upper-case print sequences in upper case
-v, --validate-seq validate bases according to the alphabet
-V, --validate-seq-length int length of sequence to validate (0 for whole seq) (default 10000)
```
Examples
1. Read and print
- From file:
$ seqkit seq hairpin.fa.gz
>cel-let-7 MI0000001 Caenorhabditis elegans let-7 stem-loop
UACACUGUGGAUCCGGUGAGGUAGUAGGUUGUAUAGUUUGGAAUAUUACCACCGGUGAAC
UAUGCAAUUUUCUACCUUACCGGAGACAGAACUCUUCGA
$ seqkit seq reads_1.fq.gz
@HWI-D00523:240:HF3WGBCXX:1:1101:2574:2226 1:N:0:CTGTAG
TGAGGAATATTGGTCAATGGGCGCGAGCCTGAACCAGCCAAGTAGCGTGAAGGATGACTGCCCTACGGG
+
HIHIIIIIHIIHGHHIHHIIIIIIIIIIIIIIIHHIIIIIHHIHIIIIIGIHIIIIHHHHHHGHIHIII
- From stdin:
zcat hairpin.fa.gz | seqkit seq
1. Sequence types
- By default, `seqkit seq` automatically detect the sequence type
$ echo -e ">seq\nacgtryswkmbdhvACGTRYSWKMBDHV" | seqkit stats
file format type num_seqs sum_len min_len avg_len max_len
- FASTA DNA 1 28 28 28 28
$ echo -e ">seq\nACGUN ACGUN" | seqkit stats
file format type num_seqs sum_len min_len avg_len max_len
- FASTA RNA 1 11 11 11 11
$ echo -e ">seq\nabcdefghijklmnpqrstvwyz" | seqkit stats
file format type num_seqs sum_len min_len avg_len max_len
- FASTA Protein 1 23 23 23 23
$ echo -e "@read\nACTGCN\n+\n@IICCG" | seqkit stats
file format type num_seqs sum_len min_len avg_len max_len
- FASTQ DNA 1 6 6 6 6
- You can also set sequence type by flag `-t` (`--seq-type`).
But this only take effect on subcommands `seq` and `locate`.
$ echo -e ">seq\nabcdefghijklmnpqrstvwyz" | seqkit seq -t dna
[INFO] when flag -t (--seq-type) given, flag -v (--validate-seq) is automatically switched on
[ERRO] error when parsing seq: seq (invalid DNAredundant letter: e)
1. Only print names
- Full name:
$ seqkit seq hairpin.fa.gz -n
cel-let-7 MI0000001 Caenorhabditis elegans let-7 stem-loop
cel-lin-4 MI0000002 Caenorhabditis elegans lin-4 stem-loop
cel-mir-1 MI0000003 Caenorhabditis elegans miR-1 stem-loop
- Only ID:
$ seqkit seq hairpin.fa.gz -n -i
cel-let-7
cel-lin-4
cel-mir-1
- Custom ID region by regular expression (this could be applied to all subcommands):
$ seqkit seq hairpin.fa.gz -n -i --id-regexp "^[^\s]+\s([^\s]+)\s"
MI0000001
MI0000002
MI0000003
1. Only print seq (global flag `-w` defines the output line width, `0` for no wrap)
$ seqkit seq hairpin.fa.gz -s -w 0
UACACUGUGGAUCCGGUGAGGUAGUAGGUUGUAUAGUUUGGAAUAUUACCACCGGUGAACUAUGCAAUUUUCUACCUUACCGGAGACAGAACUCUUCGA
AUGCUUCCGGCCUGUUCCCUGAGACCUCAAGUGUGAGUGUACUAUUGAUGCUUCACACCUGGGCUCUCCGGGUACCAGGACGGUUUGAGCAGAU
AAAGUGACCGUACCGAGCUGCAUACUUCCUUACAUGCCCAUACUAUAUCAUAAAUGGAUAUGGAAUGUAAAGAAGUAUGUAGAACGGGGUGGUAGU
1. Convert multi-line FASTQ to 4-line FASTQ
$ seqkit seq reads_1.fq.gz -w 0
1. Reverse comlement sequence
$ seqkit seq hairpin.fa.gz -r -p
>cel-let-7 MI0000001 Caenorhabditis elegans let-7 stem-loop
UCGAAGAGUUCUGUCUCCGGUAAGGUAGAAAAUUGCAUAGUUCACCGGUGGUAAUAUUCC
AAACUAUACAACCUACUACCUCACCGGAUCCACAGUGUA
1. Remove gaps and to lower/upper case
$ echo -e ">seq\nACGT-ACTGC-ACC" | seqkit seq -g -u
>seq
ACGTACTGCACC
1. RNA to DNA
$ echo -e ">seq\nUCAUAUGCUUGUCUCAAAGAUUA" | seqkit seq --rna2dna
>seq
TCATATGCTTGTCTCAAAGATTA
1. Filter by sequence length
$ cat hairpin.fa | seqkit seq | seqkit stats
file format type num_seqs sum_len min_len avg_len max_len
- FASTA RNA 28,645 2,949,871 39 103 2,354
$ cat hairpin.fa | seqkit seq -m 100 | seqkit stats
file format type num_seqs sum_len min_len avg_len max_len
- FASTA RNA 10,975 1,565,486 100 142.6 2,354
$ cat hairpin.fa | seqkit seq -m 100 -M 1000 | seqkit stats
file format type num_seqs sum_len min_len avg_len max_len
- FASTA RNA 10,972 1,560,270 100 142.2 938
## subseq
Usage
``` text
get subsequences by region/gtf/bed, including flanking sequences.
Attentions:
1. Use "seqkit grep" for extract subsets of sequences.
"seqtk subseq seqs.fasta id.txt" equals to
"seqkit grep -f id.txt seqs.fasta"
Recommendation:
1. use plain FASTA file, so seqkit could utilize FASTA index.
The definition of region is 1-based and with some custom design.
Examples:
1-based index 1 2 3 4 5 6 7 8 9 10
negative index 0-9-8-7-6-5-4-3-2-1
seq A C G T N a c g t n
1:1 A
2:4 C G T
-4:-2 c g t
-4:-1 c g t n
-1:-1 n
2:-2 C G T N a c g t
1:-1 A C G T N a c g t n
1:12 A C G T N a c g t n
-12:-1 A C G T N a c g t n
Usage:
seqkit subseq [flags]
Flags:
--bed string by tab-delimited BED file
--chr strings select limited sequence with sequence IDs when using --gtf or --bed (multiple value supported, case ignored)
-d, --down-stream int down stream length
--feature strings select limited feature types (multiple value supported, case ignored, only works with GTF)
--gtf string by GTF (version 2.2) file
--gtf-tag string output this tag as sequence comment (default "gene_id")
-h, --help help for subseq
-f, --only-flank only return up/down stream sequence
-r, --region string by region. e.g 1:12 for first 12 bases, -12:-1 for last 12 bases, 13:-1 for cutting first 12 bases. type "seqkit subseq -h" for more examples
-u, --up-stream int up stream length
```
Examples
***Recommendation: use plain FASTA file, so seqkit could utilize FASTA index.***
1. First 12 bases
$ zcat hairpin.fa.gz | seqkit subseq -r 1:12
1. Last 12 bases
$ zcat hairpin.fa.gz | seqkit subseq -r -12:-1
1. Subsequences without first and last 12 bases
$ zcat hairpin.fa.gz | seqkit subseq -r 13:-13
1. Get subsequence by GTF file
$ cat t.fa
>seq
actgACTGactgn
$ cat t.gtf
seq test CDS 5 8 . . . gene_id "A"; transcript_id "";
seq test CDS 5 8 . - . gene_id "B"; transcript_id "";
$ seqkit subseq --gtf t.gtf t.fa
>seq_5:8:. A
ACTG
>seq_5:8:- B
CAGT
Human genome example:
***AVOID loading all data from Homo_sapiens.GRCh38.84.gtf.gz,
the uncompressed data are so big and may exhaust your RAM.***
We could specify chromesomes and features.
$ seqkit subseq --gtf Homo_sapiens.GRCh38.84.gtf.gz --chr 1 --feature cds hsa.fa > chr1.gtf.cds.fa
$ seqkit stats chr1.gtf.cds.fa
file format type num_seqs sum_len min_len avg_len max_len
chr1.gtf.cds.fa FASTA DNA 65,012 9,842,274 1 151.4 12,045
1. Get CDS and 3bp up-stream sequences
$ seqkit subseq --gtf t.gtf t.fa -u 3
>seq_5:8:._us:3 A
ctgACTG
>seq_5:8:-_us:3 B
agtCAGT
1. Get 3bp up-stream sequences of CDS, not including CDS
$ seqkit subseq --gtf t.gtf t.fa -u 3 -f
>seq_5:8:._usf:3 A
ctg
>seq_5:8:-_usf:3 B
agt
1. Get subsequences by BED file.
***AVOID loading all data from Homo_sapiens.GRCh38.84.gtf.gz,
the uncompressed data are so big and may exhaust your RAM.***
$ seqkit subseq --bed Homo_sapiens.GRCh38.84.bed.gz --chr 1 hsa.fa \
> chr1.bed.gz.fa
We may need to remove duplicated sequences
$ seqkit subseq --bed Homo_sapiens.GRCh38.84.bed.gz --chr 1 hsa.fa \
| seqkit rmdup > chr1.bed.rmdup.fa
[INFO] 141060 duplicated records removed
Summary:
$ seqkit stats chr1.gz.*.gz
file seq_format seq_type num_seqs min_len avg_len max_len
chr1.gz.fa FASTA DNA 231,974 1 3,089.5 1,551,957
chr1.gz.rmdup.fa FASTA DNA 90,914 1 6,455.8 1,551,957
## sliding
Usage
``` text
extract subsequences in sliding windows
Usage:
seqkit sliding [flags]
Flags:
-c, --circular circular genome (same to -C/--circular-genome)
-C, --circular-genome circular genome (same to -c/--circular)
-g, --greedy greedy mode, i.e., exporting last subsequences even shorter than windows size
-h, --help help for sliding
-s, --step int step size
-W, --window int window size
```
Examples
1. General use
$ echo -e ">seq\nACGTacgtNN" | seqkit sliding -s 3 -W 6
>seq_sliding:1-6
ACGTac
>seq_sliding:4-9
TacgtN
1. Greedy mode
$ echo -e ">seq\nACGTacgtNN" | seqkit sliding -s 3 -W 6 -g
>seq_sliding:1-6
ACGTac
>seq_sliding:4-9
TacgtN
>seq_sliding:7-12
gtNN
>seq_sliding:10-15
N
2. Circular genome
$ echo -e ">seq\nACGTacgtNN" | seqkit sliding -s 3 -W 6 -C
>seq_sliding:1-6
ACGTac
>seq_sliding:4-9
TacgtN
>seq_sliding:7-2
gtNNAC
>seq_sliding:10-5
NACGTa
3. Generate GC content for ploting
$ zcat hairpin.fa.gz \
| seqkit sliding -s 5 -W 30 \
| seqkit fx2tab -n -g
cel-let-7_sliding:1-30 50.00
cel-let-7_sliding:6-35 46.67
cel-let-7_sliding:11-40 43.33
cel-let-7_sliding:16-45 36.67
cel-let-7_sliding:21-50 33.33
cel-let-7_sliding:26-55 40.00
...
## stats
Usage
``` text
simple statistics of FASTA/Q files
Tips:
1. For lots of small files (especially on SDD), use big value of '-j' to
parallelize counting.
Usage:
seqkit stats [flags]
Aliases:
stats, stat
Flags:
-a, --all all statistics, including quartiles of seq length, sum_gap, N50
-b, --basename only output basename of files
-E, --fq-encoding string fastq quality encoding. available values: 'sanger', 'solexa', 'illumina-1.3+', 'illumina-1.5+', 'illumina-1.8+'. (default "sanger")
-G, --gap-letters string gap letters (default "- .")
-h, --help help for stats
-e, --skip-err skip error, only show warning message
-i, --stdin-label string label for replacing default "-" for stdin (default "-")
-T, --tabular output in machine-friendly tabular format
```
Eexamples
1. General use
$ seqkit stats *.f{a,q}.gz
file format type num_seqs sum_len min_len avg_len max_len
hairpin.fa.gz FASTA RNA 28,645 2,949,871 39 103 2,354
mature.fa.gz FASTA RNA 35,828 781,222 15 21.8 34
reads_1.fq.gz FASTQ DNA 2,500 567,516 226 227 229
reads_2.fq.gz FASTQ DNA 2,500 560,002 223 224 225
1. Machine-friendly tabular format
$ seqkit stats *.f{a,q}.gz -T
file format type num_seqs sum_len min_len avg_len max_len
hairpin.fa.gz FASTA RNA 28645 2949871 39 103.0 2354
mature.fa.gz FASTA RNA 35828 781222 15 21.8 34
Illimina1.8.fq.gz FASTQ DNA 10000 1500000 150 150.0 150
reads_1.fq.gz FASTQ DNA 2500 567516 226 227.0 229
reads_2.fq.gz FASTQ DNA 2500 560002 223 224.0 225
# So you can process the result with tools like csvtk: http://bioinf.shenwei.me/csvtk
$ seqkit stats *.f{a,q}.gz -T | csvtk pretty -t
file format type num_seqs sum_len min_len avg_len max_len
----------------- ------ ---- -------- ------- ------- ------- -------
hairpin.fa.gz FASTA RNA 28645 2949871 39 103.0 2354
mature.fa.gz FASTA RNA 35828 781222 15 21.8 34
Illimina1.8.fq.gz FASTQ DNA 10000 1500000 150 150.0 150
reads_1.fq.gz FASTQ DNA 2500 567516 226 227.0 229
reads_2.fq.gz FASTQ DNA 2500 560002 223 224.0 225
# To markdown
$ seqkit stats *.f{a,q}.gz -T | csvtk csv2md -t
|file |format|type|num_seqs|sum_len|min_len|avg_len|max_len|
|:----------------|:-----|:---|:-------|:------|:------|:------|:------|
|hairpin.fa.gz |FASTA |RNA |28645 |2949871|39 |103.0 |2354 |
|mature.fa.gz |FASTA |RNA |35828 |781222 |15 |21.8 |34 |
|Illimina1.8.fq.gz|FASTQ |DNA |10000 |1500000|150 |150.0 |150 |
|reads_1.fq.gz |FASTQ |DNA |2500 |567516 |226 |227.0 |229 |
|reads_2.fq.gz |FASTQ |DNA |2500 |560002 |223 |224.0 |225 |
|file |format|type|num_seqs|sum_len|min_len|avg_len|max_len|
|:----------------|:-----|:---|:-------|:------|:------|:------|:------|
|hairpin.fa.gz |FASTA |RNA |28645 |2949871|39 |103.0 |2354 |
|mature.fa.gz |FASTA |RNA |35828 |781222 |15 |21.8 |34 |
|Illimina1.8.fq.gz|FASTQ |DNA |10000 |1500000|150 |150.0 |150 |
|reads_1.fq.gz |FASTQ |DNA |2500 |567516 |226 |227.0 |229 |
|reads_2.fq.gz |FASTQ |DNA |2500 |560002 |223 |224.0 |225 |
1. Extra information
$ seqkit stats *.f{a,q}.gz -a
file format type num_seqs sum_len min_len avg_len max_len Q1 Q2 Q3 sum_gap N50 Q20(%) Q30(%) GC(%)
hairpin.fa.gz FASTA RNA 28,645 2,949,871 39 103 2,354 76 91 111 0 101 0 0 45.77
mature.fa.gz FASTA RNA 35,828 781,222 15 21.8 34 21 22 22 0 22 0 0 47.6
Illimina1.8.fq.gz FASTQ DNA 10,000 1,500,000 150 150 150 75 150 75 0 150 96.16 89.71 49.91
nanopore.fq.gz FASTQ DNA 4,000 1,798,723 153 449.7 6,006 271 318 391 0 395 40.79 12.63 46.66
reads_1.fq.gz FASTQ DNA 2,500 567,516 226 227 229 227 227 227 0 227 91.24 86.62 53.63
reads_2.fq.gz FASTQ DNA 2,500 560,002 223 224 225 224 224 224 0 224 91.06 87.66 54.77
1. **Parallelize counting files, it's much faster for lots of small files, especially for files on SSD**
seqkit stats -j 10 refseq/virual/*.fna.gz
1. Skip error
$ seqkit stats tests/*
[ERRO] tests/hairpin.fa.fai: fastx: invalid FASTA/Q format
$ seqkit stats tests/* -e
[WARN] tests/hairpin.fa.fai: fastx: invalid FASTA/Q format
[WARN] tests/hairpin.fa.seqkit.fai: fastx: invalid FASTA/Q format
[WARN] tests/miRNA.diff.gz: fastx: invalid FASTA/Q format
[WARN] tests/test.sh: fastx: invalid FASTA/Q format
file format type num_seqs sum_len min_len avg_len max_len
tests/contigs.fa FASTA DNA 9 54 2 6 10
tests/hairpin.fa FASTA RNA 28,645 2,949,871 39 103 2,354
tests/Illimina1.5.fq FASTQ DNA 1 100 100 100 100
tests/Illimina1.8.fq.gz FASTQ DNA 10,000 1,500,000 150 150 150
tests/hairpin.fa.gz FASTA RNA 28,645 2,949,871 39 103 2,354
tests/reads_1.fq.gz FASTQ DNA 2,500 567,516 226 227 229
tests/mature.fa.gz FASTA RNA 35,828 781,222 15 21.8 34
tests/reads_2.fq.gz FASTQ DNA 2,500 560,002 223 224 225
1. Output basename instead of full path (`-b/--basename`)
## sum
Usage
```text
compute message digest for all sequences in FASTA/Q files
Attentions:
1. Sequence headers and qualities are skipped, only sequences matter.
2. The order of sequences records does not matter.
3. Circular complete genomes are supported with the flag -c/--circular.
- The same double-stranded genomes with different start positions or
in reverse complement strand will not affect the result.
- For single-stranded genomes like ssRNA genomes, use -s/--single-strand.
- The message digest would change with different values of k-mer size.
4. Multiple files are processed in parallel (-j/--threads).
Method:
1. Converting the sequences to low cases, optionally removing gaps (-g).
2. Computing the hash (xxhash) for all sequences or k-mers of a circular
complete genome (-c/--circular).
3. Sorting all hash values, for ignoring the order of sequences.
4. Computing MD5 digest from the hash values, sequences length, and
the number of sequences.
Following the seqhash in Poly (https://github.com/TimothyStiles/poly/),
We add meta information to the message digest, with the format of:
seqkit.<version>_<seq type><seq structure><strand>_<kmer size>_<seq digest>
<version>: digest version
<seq type>: 'D' for DNA, 'R' for RNA, 'P' for protein, 'N' for others
<seq structure>: 'L' for linear sequence, 'C' for circular genome
<strand>: 'D' for double-stranded, 'S' for single-stranded
<kmer size>: 0 for linear sequence, other values for circular genome
Examples:
seqkit.v0.1_DLS_k0_176250c8d1cde6c385397df525aa1a94 DNA.fq.gz
seqkit.v0.1_PLS_k0_c244954e4960dd2a1409cd8ee53d92b9 Protein.fasta
seqkit.v0.1_RLS_k0_0f1fb263f0c05a259ae179a61a80578d single-stranded RNA.fasta
seqkit.v0.1_DCD_k31_e59dad6d561f1f1f28ebf185c6f4c183 double-stranded-circular DNA.fasta
seqkit.v0.1_DCS_k31_dd050490cd62ea5f94d73d4d636b7d60 single-stranded-circular DNA.fasta
Usage:
seqkit sum [flags]
Flags:
-a, --all show all information, including the sequences length and the number of sequences
-b, --basename only output basename of files
-c, --circular the file contains a single cicular genome sequence
-G, --gap-letters string gap letters (default "- \t.*")
-h, --help help for sum
-k, --kmer-size int k-mer size for processing circular genomes (default 1000)
-g, --remove-gaps remove gaps
--rna2dna convert RNA to DNA
-s, --single-strand only consider the positive strand of a circular genome, e.g., ssRNA virus genomes
```
Examples:
A, B, C, D are the same vircular genomes with different starting positions or strands:
$ cat virus-{A,B,C,D}.fasta
>seq
TGGTAGGGAGTTGAGTAGCATGGGTATAGTATAGTGTCATGATGCCAGATTTTAAAAAAA
>seq.revcom
TTTTTTTAAAATCTGGCATCATGACACTATACTATACCCATGCTACTCAACTCCCTACCA
>seq.new-start
GGTAGGGAGTTGAGTAGCATGGGTATAGTATAGTGTCATGATGCCAGATTTTAAAAAAAT
>seq.revcom.new-start
TTTTTTAAAATCTGGCATCATGACACTATACTATACCCATGCTACTCAACTCCCTACCAT
# cat to one file
$ cat virus-{A,B,C,D}.fasta > virues.fasta
# shuffle and rename
$ cat virus-{A,B,C,D}.fasta \
| seqkit shuffle \
| seqkit replace -p '.*' -r '{nr}' \
| tee virues.shuffled.fasta
>1
TTTTTTAAAATCTGGCATCATGACACTATACTATACCCATGCTACTCAACTCCCTACCAT
>2
TGGTAGGGAGTTGAGTAGCATGGGTATAGTATAGTGTCATGATGCCAGATTTTAAAAAAA
>3
GGTAGGGAGTTGAGTAGCATGGGTATAGTATAGTGTCATGATGCCAGATTTTAAAAAAAT
>4
TTTTTTTAAAATCTGGCATCATGACACTATACTATACCCATGCTACTCAACTCCCTACCA
Sum of all files (the sequences order does not matter):
$ seqkit sum viru*.fasta
seqkit.v0.1_DLS_k0_9bbe0abefc26013dffdde952a6725b17 virues.fasta
seqkit.v0.1_DLS_k0_9bbe0abefc26013dffdde952a6725b17 virues.shuffled.fasta
seqkit.v0.1_DLS_k0_176250c8d1cde6c385397df525aa1a94 virus-A.fasta
seqkit.v0.1_DLS_k0_7a813339f9ae686b376b1df55cd596ca virus-B.fasta
seqkit.v0.1_DLS_k0_0fd51028bfbfa85ddbdd2b86ef7bd1c1 virus-C.fasta
seqkit.v0.1_DLS_k0_88b1d20dd0fe0dbf41c00b075fee4e4e virus-D.fasta
Circular genomes (the same genomes with different start positions or in reverse
complement strand will not affect the result):
$ seqkit sum -c -k 21 virus-*.fasta
seqkit.v0.1_DCD_k21_7efd18ce33380268d3aa335ffd2dd1cc virus-A.fasta
seqkit.v0.1_DCD_k21_7efd18ce33380268d3aa335ffd2dd1cc virus-B.fasta
seqkit.v0.1_DCD_k21_7efd18ce33380268d3aa335ffd2dd1cc virus-C.fasta
seqkit.v0.1_DCD_k21_7efd18ce33380268d3aa335ffd2dd1cc virus-D.fasta
$ seqkit sum -c -k 51 virus-*.fasta
seqkit.v0.1_DCD_k51_39e267864fddeafd7a5cacd77e0a6a11 virus-A.fasta
seqkit.v0.1_DCD_k51_39e267864fddeafd7a5cacd77e0a6a11 virus-B.fasta
seqkit.v0.1_DCD_k51_39e267864fddeafd7a5cacd77e0a6a11 virus-C.fasta
seqkit.v0.1_DCD_k51_39e267864fddeafd7a5cacd77e0a6a11 virus-D.fasta
# collect files with the same genomes
$ seqkit sum -c -k 51 virus-*.fasta | csvtk fold -Ht -f 1 -v 2
seqkit.v0.1_DCD_k51_39e267864fddeafd7a5cacd77e0a6a11 virus-A.fasta; virus-B.fasta; virus-C.fasta; virus-D.fasta
## faidx
Usage
``` text
create FASTA index file and extract subsequence
This command is similar with "samtools faidx" but has some extra features:
1. output full header line with the flag -f
2. support regular expression as sequence ID with the flag -r
3. if you have large number of IDs, you can use:
seqkit faidx seqs.fasta -l IDs.txt
The definition of region is 1-based and with some custom design.
Examples:
1-based index 1 2 3 4 5 6 7 8 9 10
negative index 0-9-8-7-6-5-4-3-2-1
seq A C G T N a c g t n
1:1 A
2:4 C G T
-4:-2 c g t
-4:-1 c g t n
-1:-1 n
2:-2 C G T N a c g t
1:-1 A C G T N a c g t n
1:12 A C G T N a c g t n
-12:-1 A C G T N a c g t n
Usage:
seqkit faidx [flags] <fasta-file> [regions...]
Flags:
-f, --full-head print full header line instead of just ID. New fasta index file ending with .seqkit.fai will be created
-h, --help help for faidx
-i, --ignore-case ignore case
-I, --immediate-output print output immediately, do not use write buffer
-l, --region-file string file containing a list of regions
-r, --use-regexp IDs are regular expression. But subseq region is not suppored here.
```
Example
1. common usage like `samtools faidx`
$ seqkit faidx tests/hairpin.fa hsa-let-7a-1 hsa-let-7a-2
>hsa-let-7a-1
UGGGAUGAGGUAGUAGGUUGUAUAGUUUUAGGGUCACACCCACCACUGGGAGAUAACUAU
ACAAUCUACUGUCUUUCCUA
>hsa-let-7a-2
AGGUUGAGGUAGUAGGUUGUAUAGUUUAGAAUUACAUCAAGGGAGAUAACUGUACAGCCU
CCUAGCUUUCCU
2. output full header, not supported by `samtools faidx`
$ seqkit faidx tests/hairpin.fa hsa-let-7a-1 hsa-let-7a-2 -f
>hsa-let-7a-1 MI0000060 Homo sapiens let-7a-1 stem-loop
UGGGAUGAGGUAGUAGGUUGUAUAGUUUUAGGGUCACACCCACCACUGGGAGAUAACUAU
ACAAUCUACUGUCUUUCCUA
>hsa-let-7a-2 MI0000061 Homo sapiens let-7a-2 stem-loop
AGGUUGAGGUAGUAGGUUGUAUAGUUUAGAAUUACAUCAAGGGAGAUAACUGUACAGCCU
CCUAGCUUUCCU
3. extract subsequence of specific region
$ seqkit faidx tests/hairpin.fa hsa-let-7a-1:1-10
>hsa-let-7a-1:1-10
UGGGAUGAGG
$ seqkit faidx tests/hairpin.fa hsa-let-7a-1:-10--1
>hsa-let-7a-1:-10--1
GUCUUUCCUA
$ seqkit faidx tests/hairpin.fa hsa-let-7a-1:1
>hsa-let-7a-1:1-1
U
3. supporting `begin` > `start`, i.e., returning reverse complement sequence, not supported by `samtools faidx`
$ seqkit faidx tests/hairpin.fa hsa-let-7a-1:10-1
>hsa-let-7a-1:10-1
CCUCAUCCCA
4. use regular expression
$ seqkit faidx tests/hairpin.fa hsa -r | seqkit stats
file format type num_seqs sum_len min_len avg_len max_len
- FASTA RNA 1,881 154,002 41 81.9 180
## watch
Usage
``` text
monitoring and online histograms of sequence features
Usage:
seqkit watch [flags]
Flags:
-B, --bins int number of histogram bins (default -1)
-W, --delay int sleep this many seconds after online plotting (default 1)
-y, --dump print histogram data to stderr instead of plotting
-f, --fields string target fields, available values: ReadLen, MeanQual, GC, GCSkew (default "ReadLen")
-h, --help help for watch
-O, --img string save histogram to this PDF/image file
-H, --list-fields print out a list of available fields
-L, --log log10(x+1) transform numeric values
-x, --pass pass through mode (write input to stdout)
-p, --print-freq int print/report after this many records (-1 for print after EOF) (default -1)
-b, --qual-ascii-base int ASCII BASE, 33 for Phred+33 (default 33)
-Q, --quiet-mode supress all plotting to stderr
-R, --reset reset histogram after every report
-v, --validate-seq validate bases according to the alphabet
-V, --validate-seq-length int length of sequence to validate (0 for whole seq) (default 10000)
```
Examples
1. Histogram of sequence length
seqkit watch --fields ReadLen nanopore.fq.gz -O len.png

1. Dynamic histogram of log sequence length
seqkit watch --log --fields ReadLen nanopore.fq.gz

2. Histogram of mean base qualities every 500 record, also saved as png
seqkit watch -p 500 -O qhist.png -f MeanQual nanopore.fq.gz
## sana
Usage
``` text
sanitize broken single line FASTQ files
Usage:
seqkit sana [flags]
Flags:
-A, --allow-gaps allow gap character (-) in sequences
-i, --format string input and output format: fastq or fasta (default "fastq")
-h, --help help for sana
-I, --in-format string input format: fastq or fasta
-O, --out-format string output format: fastq or fasta
-b, --qual-ascii-base int ASCII BASE, 33 for Phred+33 (default 33)
```
Examples
1. Rescue usable reads from fastq file with malformed records.
seqkit sana broken.fq.gz -o rescued.fq.gz
## scat
Usage
```text
real time recursive concatenation and streaming of fastx files
Usage:
seqkit scat [flags]
Flags:
-A, --allow-gaps allow gap character (-) in sequences
-d, --delta int minimum size increase in kilobytes to trigger parsing (default 5)
-D, --drop-time string Notification drop interval (default "500ms")
-f, --find-only concatenate exisiting files and quit
-i, --format string input and output format: fastq or fasta (fastq) (default "fastq")
-g, --gz-only only look for gzipped files (.gz suffix)
-h, --help help for scat
-I, --in-format string input format: fastq or fasta (fastq)
-O, --out-format string output format: fastq or fasta
-b, --qual-ascii-base int ASCII BASE, 33 for Phred+33 (default 33)
-r, --regexp string regexp for watched files, by default guessed from the input format
-T, --time-limit string quit after inactive for this time period
-p, --wait-pid int after process with this PID exited (default -1)
```
Examples
1. Concatenate all fastq files recursively under a directory
seqkit scat -j 4 -f fastq_dir > all_records.fq
2. Watch a directory and stream fastq records in real time until interrupt is recieved and plot read lengths using `seqkit watch`:
seqkit scat -j 4 fastq_dir | seqkit watch -f ReadLen -
3. Watch a directory and stream fastq records in real time until there is no write activity under the directory for 5 seconds:
seqkit scat -j 4 -T "5s" fastq_dir > all_records.fq
4. Watch a directory and stream fastq records in real time until a process with a specified PID is alive:
seqkit scat -j 4 -p $PID fastq_dir > all_records.fq
**Notes**: You might need to increase the `ulimit` allowance on open files if you intend to stream fastx records from a large number of files.
## fq2fa
Usage
```text
convert FASTQ to FASTA
Usage:
seqkit fq2fa [flags]
```
Examples
seqkit fq2fa reads_1.fq.gz -o reads_1.fa.gz
## fa2fq
Usage
```text
retrieve corresponding FASTQ records by a FASTA file
Attention:
1. We assume the FASTA file comes from the FASTQ file,
so they share sequence IDs, and sequences in FASTA
should be subseq of sequences in FASTQ file.
Usage:
seqkit fa2fq [flags]
Flags:
-f, --fasta-file string FASTA file)
-h, --help help for fa2fq
-P, --only-positive-strand only search on positive strand
```
## fx2tab & tab2fx
Usage (fx2tab)
``` text
convert FASTA/Q to tabular format, and provide various information,
like sequence length, GC content/GC skew.
Attention:
1. Fixed three columns (ID, sequence, quality) are outputted for either FASTA
or FASTQ, except when flag -n/--name is on. This is for format compatibility.
Usage:
seqkit fx2tab [flags]
Flags:
-a, --alphabet print alphabet letters
-q, --avg-qual print average quality of a read
-B, --base-content strings print base content. (case ignored, multiple values supported) e.g. -B AT -B N
-C, --base-count strings print base count. (case ignored, multiple values supported) e.g. -C AT -C N
-I, --case-sensitive calculate case sensitive base content/sequence hash
-g, --gc print GC content
-G, --gc-skew print GC-Skew
-H, --header-line print header line
-h, --help help for fx2tab
-l, --length print sequence length
-n, --name only print names (no sequences and qualities)
-Q, --no-qual only output two column even for FASTQ file
-i, --only-id print ID instead of full head
-b, --qual-ascii-base int ASCII BASE, 33 for Phred+33 (default 33)
-s, --seq-hash print hash (MD5) of sequence
```
Usage (tab2fx)
``` text
convert tabular format (first two/three columns) to FASTA/Q format
Usage:
seqkit tab2fx [flags]
Flags:
-b, --buffer-size string size of buffer, supported unit: K, M, G. You need increase the value when "bufio.Scanner: token too long" error reported (default "1G")
-p, --comment-line-prefix strings comment line prefix (default [#,//])
-h, --help help for tab2fx
```
Examples
1. Default output
$ seqkit fx2tab hairpin.fa.gz | head -n 2
cel-let-7 MI0000001 Caenorhabditis elegans let-7 stem-loop UACACUGUGGAUCCGGUGAGGUAGUAGGUUGUAUAGUUUGGAAUAUUACCACCGGUGAACUAUGCAAUUUUCUACCUUACCGGAGACAGAACUCUUCGA
cel-lin-4 MI0000002 Caenorhabditis elegans lin-4 stem-loop AUGCUUCCGGCCUGUUCCCUGAGACCUCAAGUGUGAGUGUACUAUUGAUGCUUCACACCUGGGCUCUCCGGGUACCAGGACGGUUUGAGCAGAU
1. Print sequence length, GC content, and only print names (no sequences),
we could also print title line by flag `-H`.
$ seqkit fx2tab hairpin.fa.gz -l -g -n -i -H | head -n 4 | csvtk -t -C '&' pretty
#name seq qual length GC
cel-let-7 99 43.43
cel-lin-4 94 54.26
cel-mir-1 96 40.62
1. Use fx2tab and tab2fx in pipe
$ zcat hairpin.fa.gz | seqkit fx2tab | seqkit tab2fx
$ zcat reads_1.fq.gz | seqkit fx2tab | seqkit tab2fx
1. Sort sequences by length (use `seqkit sort -l`)
$ zcat hairpin.fa.gz \
| seqkit fx2tab -l \
| sort -t"`echo -e '\t'`" -n -k4,4 \
| seqkit tab2fx
>cin-mir-4129 MI0015684 Ciona intestinalis miR-4129 stem-loop
UUCGUUAUUGGAAGACCUUAGUCCGUUAAUAAAGGCAUC
>mmu-mir-7228 MI0023723 Mus musculus miR-7228 stem-loop
UGGCGACCUGAACAGAUGUCGCAGUGUUCGGUCUCCAGU
>cin-mir-4103 MI0015657 Ciona intestinalis miR-4103 stem-loop
ACCACGGGUCUGUGACGUAGCAGCGCUGCGGGUCCGCUGU
$ seqkit sort -l hairpin.fa.gz
Sorting or filtering by GC (or other base by -flag `-B`) content could also achieved in similar way.
1. Get first 1000 sequences (use `seqkit head -n 1000`)
$ seqkit fx2tab hairpin.fa.gz | head -n 1000 | seqkit tab2fx
$ seqkit fx2tab reads_1.fq.gz | head -n 1000 | seqkit tab2fx
**Extension**
After converting FASTA to tabular format with `seqkit fx2tab`,
it could be handled with CSV/TSV tools,
e.g. [csvtk](https://github.com/shenwei356/csvtkt), a cross-platform, efficient and practical CSV/TSV toolkit
- `csvtk grep` could be used to filter sequences (similar with `seqkit grep`)
- `csvtk inter`
computates intersection of multiple files. It could achieve similar function
as `seqkit common -n` along with shell.
- `csvtk join` joins multiple CSV/TSV files by multiple IDs.
## convert
Usage
``` text
convert FASTQ quality encoding between Sanger, Solexa and Illumina
Usage:
seqkit convert [flags]
Flags:
-d, --dry-run dry run
-f, --force for Illumina-1.8+ -> Sanger, truncate scores > 40 to 40
--from string source quality encoding. if not given, we'll guess it
-h, --help help for convert
-n, --nrecords int number of records for guessing quality encoding (default 1000)
-N, --thresh-B-in-n-most-common int threshold of 'B' in top N most common quality for guessing Illumina 1.5. (default 4)
-F, --thresh-illumina1.5-frac float threshold of faction of Illumina 1.5 in the leading N records (default 0.1)
--to string target quality encoding (default "Sanger")
```
Examples:
Note that `seqkit convert` always output sequences.
The test dataset contains score 41 (`J`):
```
$ seqkit head -n 1 tests/Illimina1.8.fq.gz
@ST-E00493:56:H33MFALXX:4:1101:23439:1379 1:N:0:NACAACCA
NCGTGGAAAGACGCTAAGATTGTGATGTGCTTCCCTGACGATTACAACTGGCGTAAGGACGTTTTGCCTACCTATAAGGCTAACCGTAAGGGTTCTCGCAAGCCTGTAGGTTACAAGAGGTTCGTAGCCGAAGTGATGGCTGACTCACGG
+
#AAAFAAJFFFJJJ<JJJJJFFFJFJJJJJFJJAJJJFJJFJFJJJJFAFJ<JA<FFJ7FJJFJJAAJJJJ<JJJJJJJFJJJAJJJJJFJJ77<JJJJ-F7A-FJFFJJJJJJ<FFJ-<7FJJJFJJ)A7)7AA<7--)<-7F-A7FA<
```
By default, nothing changes when converting Illumina 1.8 to Sanger. A warning message show that source and target quality encoding match.
```
$ seqkit convert tests/Illimina1.8.fq.gz | seqkit head -n 1
[INFO] possible quality encodings: [Illumina-1.8+]
[INFO] guessed quality encoding: Illumina-1.8+
[INFO] converting Illumina-1.8+ -> Sanger
[WARN] source and target quality encoding match.
@ST-E00493:56:H33MFALXX:4:1101:23439:1379 1:N:0:NACAACCA
NCGTGGAAAGACGCTAAGATTGTGATGTGCTTCCCTGACGATTACAACTGGCGTAAGGACGTTTTGCCTACCTATAAGGCTAACCGTAAGGGTTCTCGCAAGCCTGTAGGTTACAAGAGGTTCGTAGCCGAAGTGATGGCTGACTCACGG
+
#AAAFAAJFFFJJJ<JJJJJFFFJFJJJJJFJJAJJJFJJFJFJJJJFAFJ<JA<FFJ7FJJFJJAAJJJJ<JJJJJJJFJJJAJJJJJFJJ77<JJJJ-F7A-FJFFJJJJJJ<FFJ-<7FJJJFJJ)A7)7AA<7--)<-7F-A7FA<
```
When switching flag `--force` on, `J` (41) was converted to `I` (40).
```
$ seqkit convert tests/Illimina1.8.fq.gz -f | seqkit head -n 1
[INFO] possible quality encodings: [Illumina-1.8+]
[INFO] guessed quality encoding: Illumina-1.8+
[INFO] converting Illumina-1.8+ -> Sanger
@ST-E00493:56:H33MFALXX:4:1101:23439:1379 1:N:0:NACAACCA
NCGTGGAAAGACGCTAAGATTGTGATGTGCTTCCCTGACGATTACAACTGGCGTAAGGACGTTTTGCCTACCTATAAGGCTAACCGTAAGGGTTCTCGCAAGCCTGTAGGTTACAAGAGGTTCGTAGCCGAAGTGATGGCTGACTCACGG
+
#AAAFAAIFFFIII<IIIIIFFFIFIIIIIFIIAIIIFIIFIFIIIIFAFI<IA<FFI7FIIFIIAAIIII<IIIIIIIFIIIAIIIIIFII77<IIII-F7A-FIFFIIIIII<FFI-<7FIIIFII)A7)7AA<7--)<-7F-A7FA<
```
Other cases:
To Illumina-1.5.
```
$ seqkit convert tests/Illimina1.8.fq.gz --to Illumina-1.5+ | seqkit head -n 1
[INFO] possible quality encodings: [Illumina-1.8+]
[INFO] guessed quality encoding: Illumina-1.8+
[INFO] converting Illumina-1.8+ -> Illumina-1.5+
@ST-E00493:56:H33MFALXX:4:1101:23439:1379 1:N:0:NACAACCA
NCGTGGAAAGACGCTAAGATTGTGATGTGCTTCCCTGACGATTACAACTGGCGTAAGGACGTTTTGCCTACCTATAAGGCTAACCGTAAGGGTTCTCGCAAGCCTGTAGGTTACAAGAGGTTCGTAGCCGAAGTGATGGCTGACTCACGG
+
B```e``ieeeiii[iiiiieeeieiiiiieii`iiieiieieiiiie`ei[i`[eeiVeiieii``iiii[iiiiiiieiii`iiiiieiiVV[iiiiLeV`Leieeiiiiii[eeiL[VeiiieiiH`VHV``[VLLH[LVeL`Ve`[
```
To Illumina-1.5 and back to Sanger.
```
$ seqkit convert tests/Illimina1.8.fq.gz --to Illumina-1.5+ | seqkit convert | seqkit head -n 1
[INFO] possible quality encodings: [Illumina-1.8+]
[INFO] guessed quality encoding: Illumina-1.8+
[INFO] converting Illumina-1.8+ -> Illumina-1.5+
[INFO] possible quality encodings: [Illumina-1.5+]
[INFO] guessed quality encoding: Illumina-1.5+
[INFO] converting Illumina-1.5+ -> Sanger
@ST-E00493:56:H33MFALXX:4:1101:23439:1379 1:N:0:NACAACCA
NCGTGGAAAGACGCTAAGATTGTGATGTGCTTCCCTGACGATTACAACTGGCGTAAGGACGTTTTGCCTACCTATAAGGCTAACCGTAAGGGTTCTCGCAAGCCTGTAGGTTACAAGAGGTTCGTAGCCGAAGTGATGGCTGACTCACGG
+
!AAAFAAJFFFJJJ<JJJJJFFFJFJJJJJFJJAJJJFJJFJFJJJJFAFJ<JA<FFJ7FJJFJJAAJJJJ<JJJJJJJFJJJAJJJJJFJJ77<JJJJ-F7A-FJFFJJJJJJ<FFJ-<7FJJJFJJ)A7)7AA<7--)<-7F-A7FA<
```
Checking encoding
```
$ seqkit convert tests/Illimina1.8.fq.gz --from Solexa
[INFO] converting Solexa -> Sanger
[ERRO] seq: invalid Solexa quality
```
Real Illumina 1.5+ data
```
$ seqkit seq tests/Illimina1.5.fq
@HWI-EAS209_0006_FC706VJ:5:58:5894:21141#ATCACG/1
TTAATTGGTAAATAAATCTCCTAATAGCTTAGATNTTACCTTNNNNNNNNNNTAGTTTCTTGAGATTTGTTGGGGGAGACATTTTTGTGATTGCCTTGAT
+
efcfffffcfeefffcffffffddf`feed]`]_Ba_^__[YBBBBBBBBBBRTT\]][]dddd`ddd^dddadd^BBBBBBBBBBBBBBBBBBBBBBBB
$ seqkit convert tests/Illimina1.5.fq | seqkit head -n 1
[INFO] possible quality encodings: [Illumina-1.5+]
[INFO] guessed quality encoding: Illumina-1.5+
[INFO] converting Illumina-1.5+ -> Sanger
@HWI-EAS209_0006_FC706VJ:5:58:5894:21141#ATCACG/1
TTAATTGGTAAATAAATCTCCTAATAGCTTAGATNTTACCTTNNNNNNNNNNTAGTTTCTTGAGATTTGTTGGGGGAGACATTTTTGTGATTGCCTTGAT
+
FGDGGGGGDGFFGGGDGGGGGGEEGAGFFE>A>@!B@?@@<:!!!!!!!!!!355=>><>EEEEAEEE?EEEBEE?!!!!!!!!!!!!!!!!!!!!!!!!
```
## translate
Usage
``` text
translate DNA/RNA to protein sequence (supporting ambiguous bases)
Note:
1. This command supports codons containing any ambiguous base.
Please switch on flag -L INT for details. e.g., for standard table:
ACN -> T
CCN -> P
CGN -> R
CTN -> L
GCN -> A
GGN -> G
GTN -> V
TCN -> S
MGR -> R
YTR -> L
Translate Tables/Genetic Codes:
# https://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/index.cgi?chapter=tgencodes
1: The Standard Code
2: The Vertebrate Mitochondrial Code
3: The Yeast Mitochondrial Code
4: The Mold, Protozoan, and Coelenterate Mitochondrial Code and the Mycoplasma/Spiroplasma Code
5: The Invertebrate Mitochondrial Code
6: The Ciliate, Dasycladacean and Hexamita Nuclear Code
9: The Echinoderm and Flatworm Mitochondrial Code
10: The Euplotid Nuclear Code
11: The Bacterial, Archaeal and Plant Plastid Code
12: The Alternative Yeast Nuclear Code
13: The Ascidian Mitochondrial Code
14: The Alternative Flatworm Mitochondrial Code
16: Chlorophycean Mitochondrial Code
21: Trematode Mitochondrial Code
22: Scenedesmus obliquus Mitochondrial Code
23: Thraustochytrium Mitochondrial Code
24: Pterobranchia Mitochondrial Code
25: Candidate Division SR1 and Gracilibacteria Code
26: Pachysolen tannophilus Nuclear Code
27: Karyorelict Nuclear
28: Condylostoma Nuclear
29: Mesodinium Nuclear
30: Peritrich Nuclear
31: Blastocrithidia Nuclear
Usage:
seqkit translate [flags]
Flags:
-x, --allow-unknown-codon translate unknown code to 'X'. And you may not use flag --trim which removes 'X'
-F, --append-frame append frame information to sequence ID
--clean change all STOP codon positions from the '*' character to 'X' (an unknown residue)
-f, --frame strings frame(s) to translate, available value: 1, 2, 3, -1, -2, -3, and 6 for all six frames (default [1])
-h, --help help for translate
-M, --init-codon-as-M translate initial codon at beginning to 'M'
-l, --list-transl-table int show details of translate table N, 0 for all (default -1)
-L, --list-transl-table-with-amb-codons int show details of translate table N (including ambigugous codons), 0 for all. (default -1)
-T, --transl-table int translate table/genetic code, type 'seqkit translate --help' for more details (default 1)
--trim remove all 'X' and '*' characters from the right end of the translation
```
Examples
1. common usage
$ seqkit translate tests/mouse-p53-cds.fna
>lcl|AB021961.1_cds_BAA82344.1_1 [gene=p53] [protein=P53] [protein_id=BAA82344.1] [location=101..1273] [gbkey=CDS]
MTAMEESQSDISLELPLSQETFSGLWKLLPPEDILPSPHCMDDLLLPQDVEEFFEGPSEA
LRVSGAPAAQDPVTETPGPVAPAPATPWPLSSFVPSQKTYQGNYGFHLGFLQSGTAKSVM
CTYSPPLNKLFCQLAKTCPVQLWVSATPPAGSRVRAMAIYKKSQHMTEVVRRCPHHERCS
DGDGLAPPQHRIRVEGNLYPEYLEDRQTFRHSVVVPYEPPEAGSEYTTIHYKYMCNSSCM
GGMNRRPILTIITLEDSSGNLLGRDSFEVRVCACPGRDRRTEEENFRKKEVLCPELPPGS
AKRALPTCTSASPPQKKKPLDGEYFTLKIRGRKRFEMFRELNEALELKDAHATEESGDSR
AHSSYLKTKKGQSTSRHKKTMVKKVGPDSD*
1. trim the `*`
$ seqkit translate tests/mouse-p53-cds.fna --trim
>lcl|AB021961.1_cds_BAA82344.1_1 [gene=p53] [protein=P53] [protein_id=BAA82344.1] [location=101..1273] [gbkey=CDS]
MTAMEESQSDISLELPLSQETFSGLWKLLPPEDILPSPHCMDDLLLPQDVEEFFEGPSEA
LRVSGAPAAQDPVTETPGPVAPAPATPWPLSSFVPSQKTYQGNYGFHLGFLQSGTAKSVM
CTYSPPLNKLFCQLAKTCPVQLWVSATPPAGSRVRAMAIYKKSQHMTEVVRRCPHHERCS
DGDGLAPPQHRIRVEGNLYPEYLEDRQTFRHSVVVPYEPPEAGSEYTTIHYKYMCNSSCM
GGMNRRPILTIITLEDSSGNLLGRDSFEVRVCACPGRDRRTEEENFRKKEVLCPELPPGS
AKRALPTCTSASPPQKKKPLDGEYFTLKIRGRKRFEMFRELNEALELKDAHATEESGDSR
AHSSYLKTKKGQSTSRHKKTMVKKVGPDSD
1. different translate table
$ cat tests/Lactococcus-lactis-phage-BK5-T-ORF25.fasta \
| seqkit translate -T 11 --trim
>CAC80166.1 hypothetical protein [Lactococcus phage BK5-T]
MEEQAWREVLERLARIETKLDNYETVRDKAERALLIAQSNAKLIEKMEANNKWAWGFMLT
LAVTVIGYLFTKIRF
1. different frame
$ cat tests/Lactococcus-lactis-phage-BK5-T-ORF25.fasta \
| seqkit translate -T 11 --frame -1
>CAC80166.1 hypothetical protein [Lactococcus phage BK5-T]
SESNFSE*ITNNSYGKSKHKAPSPLIISFHFFYKFRI*LSY*ERSFCFISNCFIVI*LCF
NSS*TFEDFSPCLFLH
$ cat tests/Lactococcus-lactis-phage-BK5-T-ORF25.fasta \
| seqkit seq -r -p \
| seqkit translate -T 11 --frame -1
>CAC80166.1 hypothetical protein [Lactococcus phage BK5-T]
MEEQAWREVLERLARIETKLDNYETVRDKAERALLIAQSNAKLIEKMEANNKWAWGFMLT
LAVTVIGYLFTKIRF*
1. show details of translate table 1
$ seqkit translate -l 1
The Standard Code (transl_table=1)
Source: https://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/index.cgi?chapter=tgencodes#SG1
Initiation Codons:
ATG, CTG, TTG
Stop Codons:
TAA, TAG, TGA
Stranslate Table:
AAA: K, AAC: N, AAG: K, AAT: N
ACA: T, ACC: T, ACG: T, ACT: T
AGA: R, AGC: S, AGG: R, AGT: S
ATA: I, ATC: I, ATG: M, ATT: I
CAA: Q, CAC: H, CAG: Q, CAT: H
CCA: P, CCC: P, CCG: P, CCT: P
CGA: R, CGC: R, CGG: R, CGT: R
CTA: L, CTC: L, CTG: L, CTT: L
GAA: E, GAC: D, GAG: E, GAT: D
GCA: A, GCC: A, GCG: A, GCT: A
GGA: G, GGC: G, GGG: G, GGT: G
GTA: V, GTC: V, GTG: V, GTT: V
TAA: *, TAC: Y, TAG: *, TAT: Y
TCA: S, TCC: S, TCG: S, TCT: S
TGA: *, TGC: C, TGG: W, TGT: C
TTA: L, TTC: F, TTG: L, TTT: F
1. show details of translate table 1, including ambigugous codons
$ seqkit translate -L 1
The Standard Code (transl_table=1)
Source: https://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/index.cgi?chapter=tgencodes#SG1
Initiation Codons:
ATG, CTG, TTG
Stop Codons:
TAA, TAG, TGA
Stranslate Table:
AAA: K, AAC: N, AAG: K, AAR: K, AAT: N, AAY: N
ACA: T, ACC: T, ACM: T, ACG: T, ACR: T, ACS: T, ACV: T, ACT: T, ACW: T, ACY: T, ACH: T, ACK: T, ACD: T, ACB: T, ACN: T
AGA: R, AGC: S, AGG: R, AGR: R, AGT: S, AGY: S
ATA: I, ATC: I, ATM: I, ATG: M, ATT: I, ATW: I, ATY: I, ATH: I
CAA: Q, CAC: H, CAG: Q, CAR: Q, CAT: H, CAY: H
CCA: P, CCC: P, CCM: P, CCG: P, CCR: P, CCS: P, CCV: P, CCT: P, CCW: P, CCY: P, CCH: P, CCK: P, CCD: P, CCB: P, CCN: P
CGA: R, CGC: R, CGM: R, CGG: R, CGR: R, CGS: R, CGV: R, CGT: R, CGW: R, CGY: R, CGH: R, CGK: R, CGD: R, CGB: R, CGN: R
CTA: L, CTC: L, CTM: L, CTG: L, CTR: L, CTS: L, CTV: L, CTT: L, CTW: L, CTY: L, CTH: L, CTK: L, CTD: L, CTB: L, CTN: L
MGA: R, MGG: R, MGR: R
GAA: E, GAC: D, GAG: E, GAR: E, GAT: D, GAY: D
GCA: A, GCC: A, GCM: A, GCG: A, GCR: A, GCS: A, GCV: A, GCT: A, GCW: A, GCY: A, GCH: A, GCK: A, GCD: A, GCB: A, GCN: A
GGA: G, GGC: G, GGM: G, GGG: G, GGR: G, GGS: G, GGV: G, GGT: G, GGW: G, GGY: G, GGH: G, GGK: G, GGD: G, GGB: G, GGN: G
GTA: V, GTC: V, GTM: V, GTG: V, GTR: V, GTS: V, GTV: V, GTT: V, GTW: V, GTY: V, GTH: V, GTK: V, GTD: V, GTB: V, GTN: V
TAA: *, TAC: Y, TAG: *, TAR: *, TAT: Y, TAY: Y
TCA: S, TCC: S, TCM: S, TCG: S, TCR: S, TCS: S, TCV: S, TCT: S, TCW: S, TCY: S, TCH: S, TCK: S, TCD: S, TCB: S, TCN: S
TGA: *, TGC: C, TGG: W, TGT: C, TGY: C
TRA: *
TTA: L, TTC: F, TTG: L, TTR: L, TTT: F, TTY: F
YTA: L, YTG: L, YTR: L
## grep
Usage
``` text
search sequences by ID/name/sequence/sequence motifs, mismatch allowed
Attentions:
0. By default, we match sequence ID with patterns, use "-n/--by-name"
for matching full name instead of just ID.
1. Unlike POSIX/GNU grep, we compare the pattern to the whole target
(ID/full header) by default. Please switch "-r/--use-regexp" on
for partly matching.
2. When searching by sequences, it's partly matching, and both positive
and negative strands are searched.
Mismatch is allowed using flag "-m/--max-mismatch", you can increase
the value of "-j/--threads" to accelerate processing.
3. Degenerate bases/residues like "RYMM.." are also supported by flag -d.
But do not use degenerate bases/residues in regular expression, you need
convert them to regular expression, e.g., change "N" or "X" to ".".
4. When providing search patterns (motifs) via flag '-p',
please use double quotation marks for patterns containing comma,
e.g., -p '"A{2,}"' or -p "\"A{2,}\"". Because the command line argument
parser accepts comma-separated-values (CSV) for multiple values (motifs).
Patterns in file do not follow this rule.
5. The order of sequences in result is consistent with that in original
file, not the order of the query patterns.
But for FASTA file, you can use:
seqkit faidx seqs.fasta --infile-list IDs.txt
6. For multiple patterns, you can either set "-p" multiple times, i.e.,
-p pattern1 -p pattern2, or give a file of patterns via "-f/--pattern-file".
You can specify the sequence region for searching with the flag -R (--region).
The definition of region is 1-based and with some custom design.
Examples:
1-based index 1 2 3 4 5 6 7 8 9 10
negative index 0-9-8-7-6-5-4-3-2-1
seq A C G T N a c g t n
1:1 A
2:4 C G T
-4:-2 c g t
-4:-1 c g t n
-1:-1 n
2:-2 C G T N a c g t
1:-1 A C G T N a c g t n
1:12 A C G T N a c g t n
-12:-1 A C G T N a c g t n
Usage:
seqkit grep [flags]
Flags:
-n, --by-name match by full name instead of just ID
-s, --by-seq search subseq on seq, both positive and negative strand are searched, and mismatch allowed using flag -m/--max-mismatch
-c, --circular circular genome
-C, --count just print a count of matching records. with the -v/--invert-match flag, count non-matching records
-d, --degenerate pattern/motif contains degenerate base
--delete-matched delete a pattern right after being matched, this keeps the firstly matched data and speedups when using regular expressions
-h, --help help for grep
-i, --ignore-case ignore case
-I, --immediate-output print output immediately, do not use write buffer
-v, --invert-match invert the sense of matching, to select non-matching records
-m, --max-mismatch int max mismatch when matching by seq. For large genomes like human genome, using mapping/alignment tools would be faster
-P, --only-positive-strand only search on positive strand
-p, --pattern strings search pattern (multiple values supported. Attention: use double quotation marks for patterns containing comma, e.g., -p '"A{2,}"'))
-f, --pattern-file string pattern file (one record per line)
-R, --region string specify sequence region for searching. e.g 1:12 for first 12 bases, -12:-1 for last 12 bases
-r, --use-regexp patterns are regular expression
```
Examples
1. Searching with list of sequence IDs (do not contain whitespace)
$ seqkit grep -f id.txt seqs.fq.gz -o result.fq.gz
# ignore case
$ seqkit grep -i -f id.txt seqs.fq.gz -o result.fq.gz
1. Just print the matched number, like GNU grep (`grep -c`)
$ seqkit grep -f id.txt seqs.fq.gz -C
1. Serching non-canonical sequence IDs, Using `--id-regexp` to capture IDs.
Refer to [section Sequence ID](#sequence-id) and [seqkit seq](#seq) for examples.
1. Searching with list of sequence names (they may contain whitespace).
$ seqkit grep -n -f name.txt seqs.fa.gz -o result.fa.gz
1. Useq `-r/--use-regexp` for partly matching, but **this may produce "false positive" matches**.
For example, `seq_1` matches `seq_10` with `-nri`.
1. Extract human hairpins (i.e. sequences with name starting with `hsa`)
$ zcat hairpin.fa.gz | seqkit grep -r -p ^hsa
>hsa-let-7a-1 MI0000060 Homo sapiens let-7a-1 stem-loop
UGGGAUGAGGUAGUAGGUUGUAUAGUUUUAGGGUCACACCCACCACUGGGAGAUAACUAU
ACAAUCUACUGUCUUUCCUA
>hsa-let-7a-2 MI0000061 Homo sapiens let-7a-2 stem-loop
AGGUUGAGGUAGUAGGUUGUAUAGUUUAGAAUUACAUCAAGGGAGAUAACUGUACAGCCU
CCUAGCUUUCCU
1. Remove human and mice hairpins (invert match with `-v`)
$ zcat hairpin.fa.gz | seqkit grep -r -p ^hsa -p ^mmu -v
1. Extract new entries by information from miRNA.diff.gz
1. Get IDs of new entries.
$ zcat miRNA.diff.gz | grep ^# -v | grep NEW | cut -f 2 > list
$ more list
cfa-mir-486
cfa-mir-339-1
pmi-let-7
2. Extract by ID list file
$ zcat hairpin.fa.gz | seqkit grep -f list > new.fa
1. Extract sequences containing AGGCG
$ cat hairpin.fa.gz | seqkit grep -s -i -p aggcg
1. Circular genome
$ echo -e ">seq\nACGTTGCA"
>seq
ACGTTGCA
$ echo -e ">seq\nACGTTGCA" | seqkit grep -s -i -p AA
$ echo -e ">seq\nACGTTGCA" | seqkit grep -s -i -p AA -c
>seq
ACGTTGCA
1. Extract sequences containing AGGCG (allow mismatch)
$ time cat hairpin.fa.gz | seqkit grep -s -i -p aggcg | seqkit stats
file format type num_seqs sum_len min_len avg_len max_len
- FASTA RNA 1,181 145,789 49 123.4 2,354
real 0m0.058s
user 0m0.100s
sys 0m0.017s
$ time zcat hairpin.fa.gz | seqkit grep -s -i -p aggcg -m 1 | seqkit stats
file format type num_seqs sum_len min_len avg_len max_len
- FASTA RNA 22,290 2,375,819 39 106.6 2,354
real 0m1.081s
user 0m1.305s
sys 0m0.158s
1. Extract sequences starting with AGGCG
$ zcat hairpin.fa.gz | seqkit grep -s -r -i -p ^aggcg
1. Extract sequences with TTSAA (AgsI digest site) in SEQUENCE. Base S stands for C or G.
$ zcat hairpin.fa.gz | seqkit grep -s -d -i -p TTSAA
It's equal to but simpler than:
$ zcat hairpin.fa.gz | seqkit grep -s -r -i -p TT[CG]AA
1. Specify sequence regions for searching. e.g., leading 30 bases.
$ seqkit grep -s -R 1:30 -i -r -p GCTGG
## locate
Usage
``` text
locate subsequences/motifs, mismatch allowed
Attentions:
1. Motifs could be EITHER plain sequence containing "ACTGN" OR regular
expression like "A[TU]G(?:.{3})+?[TU](?:AG|AA|GA)" for ORFs.
2. Degenerate bases/residues like "RYMM.." are also supported by flag -d.
But do not use degenerate bases/residues in regular expression, you need
convert them to regular expression, e.g., change "N" or "X" to ".".
3. When providing search patterns (motifs) via flag '-p',
please use double quotation marks for patterns containing comma,
e.g., -p '"A{2,}"' or -p "\"A{2,}\"". Because the command line argument
parser accepts comma-separated-values (CSV) for multiple values (motifs).
Patterns in file do not follow this rule.
4. Mismatch is allowed using flag "-m/--max-mismatch",
you can increase the value of "-j/--threads" to accelerate processing.
5. When using flag --circular, end position of matched subsequence that
crossing genome sequence end would be greater than sequence length.
Usage:
seqkit locate [flags]
Flags:
--bed output in BED6 format
-c, --circular circular genome. type "seqkit locate -h" for details
-d, --degenerate pattern/motif contains degenerate base
--gtf output in GTF format
-h, --help help for locate
-M, --hide-matched do not show matched sequences
-i, --ignore-case ignore case
-I, --immediate-output print output immediately, do not use write buffer
-m, --max-mismatch int max mismatch when matching by seq. For large genomes like human genome, using mapping/alignment tools would be faster
-G, --non-greedy non-greedy mode, faster but may miss motifs overlapping with others
-P, --only-positive-strand only search on positive strand
-p, --pattern strings pattern/motif (multiple values supported. Attention: use double quotation marks for patterns containing comma, e.g., -p '"A{2,}"')
-f, --pattern-file string pattern/motif file (FASTA format)
-F, --use-fmi use FM-index for much faster search of lots of sequence patterns
-r, --use-regexp patterns/motifs are regular expression
-V, --validate-seq-length int length of sequence to validate (0 for whole seq) (default 10000)
```
Examples
1. Locating subsequences (mismatch allowed)
$ cat t.fa
>seq
agctggagctacc
$ cat t.fa \
| seqkit locate -p agc \
| csvtk pretty -t
seqID patternName pattern strand start end matched
seq agc agc + 1 3 agc
seq agc agc + 7 9 agc
seq agc agc - 8 10 agc
seq agc agc - 2 4 agc
# do not show matched sequences
$ cat t.fa \
| seqkit locate -p agc -M \
| csvtk pretty -t
seqID patternName pattern strand start end
seq agc agc + 1 3
seq agc agc + 7 9
seq agc agc - 8 10
seq agc agc - 2 4
# max mismatch: 1
$ cat t.fa \
| seqkit locate -p agc -m 1 \
| csvtk pretty -t
seqID patternName pattern strand start end matched
seq agc agc + 1 3 agc
seq agc agc + 7 9 agc
seq agc agc + 11 13 acc
seq agc agc - 8 10 agc
seq agc agc - 2 4 agc
# max mismatch: 2
$ cat t.fa \
| seqkit locate -p agc -m 2 \
| csvtk pretty -t
seqID patternName pattern strand start end matched
seq agc agc + 1 3 agc
seq agc agc + 4 6 tgg
seq agc agc + 5 7 gga
seq agc agc + 7 9 agc
seq agc agc + 10 12 tac
seq agc agc + 11 13 acc
seq agc agc - 11 13 ggt
seq agc agc - 8 10 agc
seq agc agc - 6 8 ctc
seq agc agc - 5 7 tcc
seq agc agc - 2 4 agc
1. Locate ORFs.
$ zcat hairpin.fa.gz \
| seqkit locate -i -p "A[TU]G(?:.{3})+?[TU](?:AG|AA|GA)" -r \
| head -n 4 \
| csvtk pretty -t
seqID patternName pattern strand start end matched
cel-lin-4 A[TU]G(?:.{3})+?[TU](?:AG|AA|GA) A[TU]G(?:.{3})+?[TU](?:AG|AA|GA) + 1 36 AUGCUUCCGGCCUGUUCCCUGAGACCUCAAGUGUGA
cel-mir-1 A[TU]G(?:.{3})+?[TU](?:AG|AA|GA) A[TU]G(?:.{3})+?[TU](?:AG|AA|GA) + 54 95 AUGGAUAUGGAAUGUAAAGAAGUAUGUAGAACGGGGUGGUAG
cel-mir-1 A[TU]G(?:.{3})+?[TU](?:AG|AA|GA) A[TU]G(?:.{3})+?[TU](?:AG|AA|GA) - 43 51 AUGAUAUAG
1. Locate Motif.
$ zcat hairpin.fa.gz \
| seqkit locate -i -d -p AUGGACUN \
| head -n 4 \
| csvtk pretty -t
seqID patternName pattern strand start end matched
cel-mir-58a AUGGACUN AUGGACUN + 81 88 AUGGACUG
ath-MIR163 AUGGACUN AUGGACUN - 122 129 AUGGACUC
cel-mir-270 AUGGACUN AUGGACUN + 84 91 AUGGACUG
1. Output in `GTF` or `BED6` format, which you can use in `seqkit subseq`
$ zcat hairpin.fa.gz | seqkit locate -i -d -p AUGGACUN --bed
cel-mir-58a 80 88 AUGGACUN 0 +
ath-MIR163 121 129 AUGGACUN 0 -
$ zcat hairpin.fa.gz | seqkit locate -i -d -p AUGGACUN --gtf
cel-mir-58a SeqKit location 81 88 0 + . gene_id "AUGGACUN";
ath-MIR163 SeqKit location 122 129 0 - . gene_id "AUGGACUN";
1. Greedy mode (default)
$ echo -e '>seq\nACGACGACGA' | seqkit locate -p ACGA | csvtk -t pretty
seqID patternName pattern strand start end matched
seq ACGA ACGA + 1 4 ACGA
seq ACGA ACGA + 4 7 ACGA
seq ACGA ACGA + 7 10 ACGA
1. Non-greedy mode (`-G`)
$ echo -e '>seq\nACGACGACGA' | seqkit locate -p ACGA -G | csvtk -t pretty
seqID patternName pattern strand start end matched
seq ACGA ACGA + 1 4 ACGA
seq ACGA ACGA + 7 10 ACGA
1. Circular genome. Note that end position of matched subsequence that
crossing genome sequence end would be greater than sequence length.
$ echo -e ">seq\nACGTTGCA"
>seq
ACGTTGCA
$ echo -e ">seq\nACGTTGCA" \
| seqkit locate -i -p aa
seqID patternName pattern strand start end matched
seq aa aa - 4 5 aa
$ echo -e ">seq\nACGTTGCA" \
| seqkit locate -i -p aa -c \
| csvtk pretty -t
seqID patternName pattern strand start end matched
seq aa aa + 8 9 aa
seq aa aa - 4 5 aa
## fish
Usage
``` text
look for short sequences in larger sequences using local alignment
Attention:
1. output coordinates are BED-like 0-based, left-close and right-open.
2. alignment information are printed to STDERR.
Usage:
seqkit fish [flags]
Flags:
-a, --all search all
-p, --aln-params string alignment parameters in format "<match>,<mismatch>,<gap_open>,<gap_extend>" (default "4,-4,-2,-1")
-h, --help help for fish
-i, --invert print out references not matching with any query
-q, --min-qual float minimum mapping quality (default 5)
-b, --out-bam string save aligmnets to this BAM file (memory intensive)
-x, --pass pass through mode (write input to stdout)
-g, --print-aln print sequence alignments
-D, --print-desc print full sequence header
-f, --query-fastx string query fasta
-F, --query-sequences string query sequences
-r, --ranges string target ranges, for example: ":10,30:40,-20:"
-s, --stranded search + strand only
-v, --validate-seq validate bases according to the alphabet
-V, --validate-seq-length int length of sequence to validate (0 for whole seq) (default 10000)
```
Examples
1. Find best local alignment of a short sequence in reads in a fasta file, print results as tabular
$ seqkit fish -q 4.7 -F GGCGGCTGTGACC -g mouse-p53-cds.fna
1. Compare to `seqkit locate`:
$ echo -e '>seq\nACGACGACGA' \
| seqkit locate -p ACGA -G | csvtk -t pretty
seqID patternName pattern strand start end matched
seq ACGA ACGA + 1 4 ACGA
seq ACGA ACGA + 7 10 ACGA
$ echo -e '>seq\nACGACGACGA' \
| seqkit fish -F ACGA -a 2>&1 | csvtk -t pretty
Ref RefStart RefEnd Query QueryStart QueryEnd Strand MapQual RawScore Acc ClipAcc QueryCov
seq 6 10 q0 0 4 + 60.00 16 100.00 100.00 100.00
seq 0 4 q0 0 4 + 60.00 16 100.00 100.00 100.00
1. Find all local alignment of a short sequences in reads in a fasta file, print results as tabular and save as BAM
seqkit fish -a -q 4.67 -f query.fas -b alignments.bam -g mouse-p53-cds.fna
## amplicon
Usage
``` text
extract amplicon (or specific region around it) via primer(s).
Attentions:
1. Only one (the longest) matching location is returned for every primer pair.
2. Mismatch is allowed, but the mismatch location (5' or 3') is not controled.
You can increase the value of "-j/--threads" to accelerate processing.
3. Degenerate bases/residues like "RYMM.." are also supported.
But do not use degenerate bases/residues in regular expression, you need
convert them to regular expression, e.g., change "N" or "X" to ".".
Examples:
0. no region given.
F
-----===============-----
F R
-----=====-----=====-----
=============== amplicon
1. inner region (-r x:y).
F
-----===============-----
1 3 5 x/y
-5-3-1 x/y
F R
-----=====-----=====----- x:y
=============== 1:-1
======= 1:7
===== 3:7
===== 6:10
===== -10:-6
===== -7:-3
-x:y (invalid)
2. flanking region (-r x:y -f)
F
-----===============-----
-3-1 x/y
1 3 5 x/y
F R
-----=====-----=====-----
===== -5:-1
=== -5:-3
===== 1:5
=== 3:5
================= -1:1
========================= -5:5
x:-y (invalid)
Usage:
seqkit amplicon [flags]
Flags:
--bed output in BED6+1 format with amplicon as the 7th column
-f, --flanking-region region is flanking region
-F, --forward string forward primer (5'-primer-3'), degenerate bases allowed
-h, --help help for amplicon
-I, --immediate-output print output immediately, do not use write buffer
-m, --max-mismatch int max mismatch when matching primers, no degenerate bases allowed
-P, --only-positive-strand only search on positive strand
-M, --output-mismatches output mismatches
-p, --primer-file string 3- or 2-column tabular primer file, with first column as primer name
-r, --region string specify region to return. type "seqkit amplicon -h" for detail
-R, --reverse string reverse primer (5'-primer-3'), degenerate bases allowed
-u, --save-unmatched also save records that do not match any primer
-s, --strict-mode strict mode, i.e., discarding seqs not fully matching (shorter) given region range
```
Examples
1. No region given.
$ echo -ne ">seq\nacgcccactgaaatga\n"
>seq
acgcccactgaaatga
$ echo -ne ">seq\nacgcccactgaaatga\n" \
| seqkit amplicon -F ccc -R ttt
>seq
cccactgaaa
$ echo -ne ">seq\nacgcccactgaaatga\n" \
| seqkit amplicon -F ccc -R ttt
# BED6+1
$ echo -ne ">seq\nacgcccactgaaatga\n" \
| seqkit amplicon -F ccc -R ttt --bed
seq 3 13 . 0 + cccactgaaa
# supporting degenerate bases.
$ echo -ne ">seq\nacgcccactgaaatga\n" \
| seqkit amplicon -F ccR -R ttt --bed
seq 4 13 . 0 + ccactgaaa
1. Output mismatches:
$ echo -ne ">seq\nacgcccactgaaatga\n" \
| seqkit amplicon -F ccc -R ttt -M
>seq mismatches=0(0+0)
cccactgaaa
$ echo -ne ">seq\nacgcccactgaaatga\n" \
| seqkit amplicon -F ccc -R ttt -m 1 -M
>seq mismatches=2(1+1)
cgcccactgaaat
$ echo -ne ">seq\nacgcccactgaaatga\n" \
| seqkit amplicon -F ccc -R ttt -m 1 -M --bed
seq 1 14 . 0 + cgcccactgaaat 2 1 1
1. Load primers from 3- or 2-column tabular primer file, with first column as primer name.
$ cat seqs4amplicon.fa
>seq1
ACGCCCACTGAAATGA
>seq2
ACGTACGGTCAGATCCA
$ cat primers.tsv
p1 ccc ttt
p2 ttt ccc
p3 ttt
p4 CG TG
P5 CG GA
# containing degenerate bases
p6 TRC WGG
$ cat seqs4amplicon.fa | seqkit amplicon -p primers.tsv --bed
seq1 3 13 p1 0 + CCCACTGAAA
seq1 1 7 p4 0 + CGCCCA
seq1 3 13 p2 0 - TTTCAGTGGG
seq1 3 6 p3 0 - TTT
seq2 1 17 p4 0 + CGTACGGTCAGATCCA
seq2 1 15 P5 0 + CGTACGGTCAGATC
seq2 3 17 p6 0 + TACGGTCAGATCCA
1. Inner region
# region right behind forward primer
$ echo -ne ">seq\nacgcccactgaaatga\n" \
| seqkit amplicon -F ccc -R ttt -r 4:7
>seq
actg
# BED
$ echo -ne ">seq\nacgcccactgaaatga\n" \
| seqkit amplicon -F ccc -R ttt -r 4:7 --bed
seq 6 10 . 0 + actg
# more common case is triming primers
$ echo -ne ">seq\nacgcccactgaaatga\n" \
| seqkit amplicon -F ccc -R ttt -r 4:-4
>seq
actg
1. flanking region
# in one of my sequencing data, I only care about
# region downstream of forward primer
$ echo -ne ">seq\nacgcccactgaaatga\n" \
| seqkit amplicon -F ccc -f -r 3:6
>seq
tgaa
$ echo -ne ">seq\nacgcccactgaaatga\n" \
| seqkit amplicon -F ccc -f -r 3:6 --bed
seq 8 12 . 0 + tgaa
# if given region if out scope of sequence. e.g,
# 2-5bp downstream of aaa, we can get part of region (2-4) by default
$ echo -ne ">seq\nacgcccactgaaatga\n" \
| seqkit amplicon -F aaa -f -r 2:5
>seq
ga
# you can also use strict mode to discard those cases
$ echo -ne ">seq\nacgcccactgaaatga\n" \
| seqkit amplicon -F aaa -f -r 2:5 -s
## duplicate
Usage
``` text
duplicate sequences N times
You may need "seqkit rename" to make the the sequence IDs unique.
Usage:
seqkit duplicate [flags]
Aliases:
duplicate, dup
Flags:
-h, --help help for duplicate
-n, --times int duplication number (default 1)
```
Examples
1. Data
$ cat tests/hairpin.fa | seqkit head -n 1
>cel-let-7 MI0000001 Caenorhabditis elegans let-7 stem-loop
UACACUGUGGAUCCGGUGAGGUAGUAGGUUGUAUAGUUUGGAAUAUUACCACCGGUGAAC
UAUGCAAUUUUCUACCUUACCGGAGACAGAACUCUUCGA
1. Duplicate 2 times
$ cat tests/hairpin.fa | seqkit head -n 1 \
| seqkit duplicate -n 2
>cel-let-7 MI0000001 Caenorhabditis elegans let-7 stem-loop
UACACUGUGGAUCCGGUGAGGUAGUAGGUUGUAUAGUUUGGAAUAUUACCACCGGUGAAC
UAUGCAAUUUUCUACCUUACCGGAGACAGAACUCUUCGA
>cel-let-7 MI0000001 Caenorhabditis elegans let-7 stem-loop
UACACUGUGGAUCCGGUGAGGUAGUAGGUUGUAUAGUUUGGAAUAUUACCACCGGUGAAC
UAUGCAAUUUUCUACCUUACCGGAGACAGAACUCUUCGA
1. use `seqkit rename` to make the the sequence IDs unique.
$ cat tests/hairpin.fa | seqkit head -n 1 \
| seqkit duplicate -n 2 | seqkit rename
>cel-let-7 MI0000001 Caenorhabditis elegans let-7 stem-loop
UACACUGUGGAUCCGGUGAGGUAGUAGGUUGUAUAGUUUGGAAUAUUACCACCGGUGAAC
UAUGCAAUUUUCUACCUUACCGGAGACAGAACUCUUCGA
>cel-let-7_2 MI0000001 Caenorhabditis elegans let-7 stem-loop
UACACUGUGGAUCCGGUGAGGUAGUAGGUUGUAUAGUUUGGAAUAUUACCACCGGUGAAC
UAUGCAAUUUUCUACCUUACCGGAGACAGAACUCUUCGA
## rmdup
Usage
``` text
remove duplicated sequences by ID/name/sequence
Attentions:
1. When comparing by sequences, both positive and negative strands are
compared. Switch on -P/--only-positive-strand for considering the
positive strand only.
2. Only the first record is saved for duplicates.
Usage:
seqkit rmdup [flags]
Flags:
-n, --by-name by full name instead of just id
-s, --by-seq by seq
-D, --dup-num-file string file to save number and list of duplicated seqs
-d, --dup-seqs-file string file to save duplicated seqs
-h, --help help for rmdup
-i, --ignore-case ignore case
-P, --only-positive-strand only considering positive strand when comparing by sequence
```
Examples
Similar to `common`.
1. General use
$ zcat hairpin.fa.gz | seqkit rmdup -s -o clean.fa.gz
[INFO] 2226 duplicated records removed
$ zcat reads_1.fq.gz | seqkit rmdup -s -o clean.fa.gz
[INFO] 1086 duplicated records removed
1. Save duplicated sequences to file
$ zcat hairpin.fa.gz \
| seqkit rmdup -s -i -o clean.fa.gz -d duplicated.fa.gz -D duplicated.detail.txt
$ cat duplicated.detail.txt # here is not the entire list
3 hsa-mir-424, mml-mir-424, ppy-mir-424
3 hsa-mir-342, mml-mir-342, ppy-mir-342
2 ngi-mir-932, nlo-mir-932
2 ssc-mir-9784-1, ssc-mir-9784-2
## common
Usage
``` text
find common sequences of multiple files by id/name/sequence
Note:
1. 'seqkit common' is designed to support 2 and MORE files.
2. When comparing by sequences, both positive and negative strands are
compared. Switch on -P/--only-positive-strand for considering the
positive strand only.
3. For 2 files, 'seqkit grep' is much faster and consumes lesser memory:
seqkit grep -f <(seqkit seq -n -i small.fq.gz) big.fq.gz # by seq ID
seqkit grep -s -f <(seqkit seq -s small.fq.gz) big.fq.gz # by seq
4. Some records in one file may have same sequences/IDs. They will ALL be
retrieved if the sequence/ID was shared in multiple files.
So the records number may be larger than that of the smallest file.
Usage:
seqkit common [flags]
Flags:
-n, --by-name match by full name instead of just id
-s, --by-seq match by sequence
-h, --help help for common
-i, --ignore-case ignore case
-P, --only-positive-strand only considering positive strand when comparing by sequence
```
Examples
1. By ID (default)
seqkit common file*.fa -o common.fasta
1. By full name
seqkit common file*.fa -n -o common.fasta
1. By sequence
seqkit common file*.fa -s -i -o common.fasta
## split
Usage
``` text
split sequences into files by name ID, subsequence of given region,
part size or number of parts.
If you just want to split by parts or sizes, please use "seqkit split2",
which also applies for paired- and single-end FASTQ.
The definition of region is 1-based and with some custom design.
Examples:
1-based index 1 2 3 4 5 6 7 8 9 10
negative index 0-9-8-7-6-5-4-3-2-1
seq A C G T N a c g t n
1:1 A
2:4 C G T
-4:-2 c g t
-4:-1 c g t n
-1:-1 n
2:-2 C G T N a c g t
1:-1 A C G T N a c g t n
1:12 A C G T N a c g t n
-12:-1 A C G T N a c g t n
Usage:
seqkit split [flags]
Flags:
-i, --by-id split squences according to sequence ID
--by-id-prefix string file prefix for --by-id
-p, --by-part int split sequences into N parts
--by-part-prefix string file prefix for --by-part
-r, --by-region string split squences according to subsequence of given region. e.g 1:12 for first 12 bases, -12:-1 for last 12 bases. type "seqkit split -h" for more examples
--by-region-prefix string file prefix for --by-region
-s, --by-size int split sequences into multi parts with N sequences
--by-size-prefix string file prefix for --by-size
-d, --dry-run dry run, just print message and no files will be created.
-e, --extension string set output file extension, e.g., ".gz", ".xz", or ".zst"
-f, --force overwrite output directory
-h, --help help for split
-k, --keep-temp keep temporary FASTA and .fai file when using 2-pass mode
-O, --out-dir string output directory (default value is $infile.split)
-2, --two-pass two-pass mode read files twice to lower memory usage. (only for FASTA format)
```
Examples
1. Split sequences into parts with at most 10000 sequences
$ seqkit split hairpin.fa.gz -s 10000
[INFO] split into 10000 seqs per file
[INFO] write 10000 sequences to file: hairpin.fa.part_001.gz
[INFO] write 10000 sequences to file: hairpin.fa.part_002.gz
[INFO] write 8645 sequences to file: hairpin.fa.part_003.gz
1. Split sequences into 4 parts
$ seqkit split hairpin.fa.gz -p 4
[INFO] split into 4 parts
[INFO] read sequences ...
[INFO] read 28645 sequences
[INFO] write 7162 sequences to file: hairpin.fa.part_001.gz
[INFO] write 7162 sequences to file: hairpin.fa.part_002.gz
[INFO] write 7162 sequences to file: hairpin.fa.part_003.gz
[INFO] write 7159 sequences to file: hairpin.fa.part_004.gz
***To reduce memory usage when spliting big file, we should alwasy use flag `--two-pass`***
$ seqkit split hairpin.fa.gz -p 4 -2
[INFO] split into 4 parts
[INFO] read and write sequences to tempory file: hairpin.fa.gz.fa ...
[INFO] create and read FASTA index ...
[INFO] read sequence IDs from FASTA index ...
[INFO] 28645 sequences loaded
[INFO] write 7162 sequences to file: hairpin.part_001.fa.gz
[INFO] write 7162 sequences to file: hairpin.part_002.fa.gz
[INFO] write 7162 sequences to file: hairpin.part_003.fa.gz
[INFO] write 7159 sequences to file: hairpin.part_004.fa.gz
1. Split sequences by species. i.e. by custom IDs (first three letters)
$ seqkit split hairpin.fa.gz -i --id-regexp "^([\w]+)\-" -2
[INFO] split by ID. idRegexp: ^([\w]+)\-
[INFO] read and write sequences to tempory file: hairpin.fa.gz.fa ...
[INFO] create and read FASTA index ...
[INFO] create FASTA index for hairpin.fa.gz.fa
[INFO] read sequence IDs from FASTA index ...
[INFO] 28645 sequences loaded
[INFO] write 48 sequences to file: hairpin.id_cca.fa.gz
[INFO] write 3 sequences to file: hairpin.id_hci.fa.gz
[INFO] write 106 sequences to file: hairpin.id_str.fa.gz
[INFO] write 1 sequences to file: hairpin.id_bkv.fa.gz
...
1. Split sequences by sequence region (for example, sequence barcode)
$ seqkit split hairpin.fa.gz -r 1:3 -2
[INFO] split by region: 1:3
[INFO] read and write sequences to tempory file: hairpin.fa.gz.fa ...
[INFO] read sequence IDs and sequence region from FASTA file ...
[INFO] create and read FASTA index ...
[INFO] write 463 sequences to file: hairpin.region_1:3_AUG.fa.gz
[INFO] write 349 sequences to file: hairpin.region_1:3_ACU.fa.gz
[INFO] write 311 sequences to file: hairpin.region_1:3_CGG.fa.gz
Sequence suffix could be defined as `-r -12:-1`
## split2
Usage
``` text
split sequences into files by part size or number of parts
This command supports FASTA and paired- or single-end FASTQ with low memory
occupation and fast speed.
The prefix of output files:
1. For stdin: stdin
2. Others: same to the input file
3. Set via the option: -o/--out-file, e.g., outputting xxx.part_001.fasta:
cat ../tests/hairpin.fa | ./seqkit split2 -p 2 -O test -o xxx
The extension of output files:
1. For stdin: .fast[aq]
2. Others: same to the input file
3. Additional extension via the option -e/--extension, e.g., outputting
gzipped files for plain text input:
seqkit split2 -p 2 -O test tests/hairpin.fa -e .gz
Usage:
seqkit split2 [flags]
Flags:
-l, --by-length string split sequences into chunks of >=N bases, supports K/M/G suffix
--by-length-prefix string file prefix for --by-length
-p, --by-part int split sequences into N parts
--by-part-prefix string file prefix for --by-part
-s, --by-size int split sequences into multi parts with N sequences
--by-size-prefix string file prefix for --by-size
-e, --extension string set output file extension, e.g., ".gz", ".xz", or ".zst"
-f, --force overwrite output directory
-h, --help help for split2
-O, --out-dir string output directory (default value is $infile.split)
-1, --read1 string (gzipped) read1 file
-2, --read2 string (gzipped) read2 file
```
Examples
1. Split sequences into parts with at most 10000 sequences:
$ seqkit split2 hairpin.fa -s 10000
[INFO] split seqs from hairpin.fa
[INFO] split into 10000 seqs per file
[INFO] write 10000 sequences to file: hairpin.fa.split/hairpin.part_001.fa
[INFO] write 10000 sequences to file: hairpin.fa.split/hairpin.part_002.fa
[INFO] write 8645 sequences to file: hairpin.fa.split/hairpin.part_003.fa
1. Force compression for plain text input by adding an extra extension:
# gzip
$ seqkit split2 hairpin.fa -O test -f -s 10000 -e .gz
[INFO] split seqs from hairpin.fa
[INFO] split into 10000 seqs per file
[INFO] write 10000 sequences to file: test/hairpin.part_001.fa.gz
[INFO] write 10000 sequences to file: test/hairpin.part_002.fa.gz
[INFO] write 8645 sequences to file: test/hairpin.part_003.fa.gz
# xz
$ seqkit split2 hairpin.fa -O test -f -s 10000 -e .xz
[INFO] split seqs from hairpin.fa
[INFO] split into 10000 seqs per file
[INFO] write 10000 sequences to file: test/hairpin.part_001.fa.xz
[INFO] write 10000 sequences to file: test/hairpin.part_002.fa.xz
[INFO] write 8645 sequences to file: test/hairpin.part_003.fa.xz
# zstd
$ seqkit split2 hairpin.fa -O test -f -s 10000 -e .zst
[INFO] split seqs from hairpin.fa
[INFO] split into 10000 seqs per file
[INFO] write 10000 sequences to file: test/hairpin.part_001.fa.zst
[INFO] write 10000 sequences to file: test/hairpin.part_002.fa.zst
[INFO] write 8645 sequences to file: test/hairpin.part_003.fa.zst
1. Change the prefix of output files:
$ seqkit split2 hairpin.fa -O test -f -s 10000 -e .gz -o xxx
[INFO] split seqs from hairpin.fa
[INFO] split into 10000 seqs per file
[INFO] write 10000 sequences to file: test/xxx.part_001.fa.gz
[INFO] write 10000 sequences to file: test/xxx.part_002.fa.gz
[INFO] write 8645 sequences to file: test/xxx.part_003.fa.gz
# here, we also change the compression format from xz to zstd
$ cat hairpin.fa.xz | seqkit split2 -O test -f -s 10000 -e .zst
[INFO] split seqs from stdin
[INFO] split into 10000 seqs per file
[INFO] write 10000 sequences to file: test/stdin.part_001.fasta.zst
[INFO] write 10000 sequences to file: test/stdin.part_002.fasta.zst
[INFO] write 8645 sequences to file: test/stdin.part_003.fasta.zst
1. Split sequences into 4 parts
$ seqkit split hairpin.fa.gz -p 4 -f
[INFO] split into 4 parts
[INFO] read sequences ...
[INFO] read 28645 sequences
[INFO] write 7162 sequences to file: hairpin.fa.gz.split/hairpin.part_001.fa.gz
[INFO] write 7162 sequences to file: hairpin.fa.gz.split/hairpin.part_002.fa.gz
[INFO] write 7162 sequences to file: hairpin.fa.gz.split/hairpin.part_003.fa.gz
[INFO] write 7159 sequences to file: hairpin.fa.gz.split/hairpin.part_004.fa.gz
1. For FASTQ files (paired-end)
$ seqkit split2 -1 reads_1.fq.gz -2 reads_2.fq.gz -p 2 -O out -f
[INFO] split seqs from reads_1.fq.gz and reads_2.fq.gz
[INFO] split into 2 parts
[INFO] write 1250 sequences to file: out/reads_2.part_001.fq.gz
[INFO] write 1250 sequences to file: out/reads_2.part_002.fq.gz
[INFO] write 1250 sequences to file: out/reads_1.part_001.fq.gz
[INFO] write 1250 sequences to file: out/reads_1.part_002.fq.gz
1. For FASTA files (single-end)
$ seqkit split2 -1 reads_1.fq.gz reads_2.fq.gz -p 2 -O out -f
[INFO] flag -1/--read1 given, ignore: reads_2.fq.gz
[INFO] split seqs from reads_1.fq.gz
[INFO] split into 2 parts
[INFO] write 1250 sequences to file: out/reads_1.part_001.fq.gz
[INFO] write 1250 sequences to file: out/reads_1.part_002.fq.gz
$ seqkit split2 reads_1.fq.gz -p 2 -O out -f
[INFO] split seqs from reads_1.fq.gz
[INFO] split into 2 parts
[INFO] write 1250 sequences to file: out/reads_1.part_001.fq.gz
[INFO] write 1250 sequences to file: out/reads_1.part_002.fq.gz
## pair
Usage
```text
match up paired-end reads from two fastq files
Attentions:
1. Orders of headers in the two files better be the same (not shuffled),
otherwise, it consumes a huge number of memory for buffering reads in memory.
2. Unpaired reads are optional outputted with the flag -u/--save-unpaired.
3. If the flag -O/--out-dir is not given, the output will be saved in the same directory
of input, with the suffix "paired", e.g., read_1.paired.fq.gz.
Otherwise, names are kept untouched in the given output directory.
4. Paired gzipped files may be slightly larger than original files, because
of using a different gzip package/library, don't worry.
Usage:
seqkit pair [flags]
Flags:
-f, --force overwrite output directory
-h, --help help for pair
-O, --out-dir string output directory
-1, --read1 string (gzipped) read1 file
-2, --read2 string (gzipped) read2 file
-u, --save-unpaired save unpaired reads if there are
```
Examples
1. Simple one
$ seqkit pair -1 reads_1.fq.gz -2 reads_2.fq.gz
# output
reads_1.paired.fq.gz
reads_2.paired.fq.gz
2. Set output directory, file names are kept untouched.
$ seqkit pair -1 reads_1.fq.gz -2 reads_2.fq.gz -O result
$ tree result
result/
├── reads_1.fq.gz
└── reads_2.fq.gz
3. Save unpaired reads if there are.
$ seqkit pair -1 reads_1.fq.gz -2 reads_2.fq.gz -O result -u
$ tree result
result
├── reads_1.fq.gz
├── reads_1.unpaired.fq.gz
├── reads_2.fq.gz
└── reads_2.unpaired.fq.gz
## sample
Usage
``` text
sample sequences by number or proportion.
Attention:
1. Do not use '-n' on large FASTQ files, it loads all seqs into memory!
use 'seqkit sample -p 0.1 seqs.fq.gz | seqkit head -n N' instead!
Usage:
seqkit sample [flags]
Flags:
-h, --help help for sample
-n, --number int sample by number (result may not exactly match), DO NOT use on large FASTQ files.
-p, --proportion float sample by proportion
-s, --rand-seed int rand seed (default 11)
-2, --two-pass 2-pass mode read files twice to lower memory usage. Not allowed when reading from stdin
```
Examples
1. Sample by proportion
$ zcat hairpin.fa.gz | seqkit sample -p 0.1 -o sample.fa.gz
[INFO] sample by proportion
[INFO] 2814 sequences outputed
1. Sample by number
$ zcat hairpin.fa.gz | seqkit sample -n 1000 -o sample.fa.gz
[INFO] sample by number
[INFO] 949 sequences outputed
949 != 1000 ??? see [Effect of random seed on results of `seqkit sample`](http:bioinf.shenwei.me/seqkit/note/#effect-of-random-seed-on-results-of-seqkit-sample)
***To reduce memory usage when spliting big file, we could use flag `--two-pass`***
***We can also use `seqkit sample -p` followed with `seqkit head -n`:***
$ zcat hairpin.fa.gz \
| seqkit sample -p 0.1 \
| seqkit head -n 1000 -o sample.fa.gz
1. Set rand seed to reproduce the result
$ zcat hairpin.fa.gz \
| seqkit sample -p 0.1 -s 11
1. Most of the time, we could shuffle after sampling
$ zcat hairpin.fa.gz \
| seqkit sample -p 0.1 \
| seqkit shuffle -o sample.fa.gz
Note that when sampling on FASTQ files, make sure using same random seed by
flag `-s` (`--rand-seed`)
## head
Usage
``` text
print first N FASTA/Q records
For returning the last N records, use:
seqkit range -N:-1 seqs.fasta
Usage:
seqkit head [flags]
Flags:
-n, --number int print first N FASTA/Q records (default 10)
```
Examples
1. FASTA
$ seqkit head -n 1 hairpin.fa.gz
>cel-let-7 MI0000001 Caenorhabditis elegans let-7 stem-loop
UACACUGUGGAUCCGGUGAGGUAGUAGGUUGUAUAGUUUGGAAUAUUACCACCGGUGAAC
UAUGCAAUUUUCUACCUUACCGGAGACAGAACUCUUCGA
1. FASTQ
$ seqkit head -n 1 reads_1.fq.gz
@HWI-D00523:240:HF3WGBCXX:1:1101:2574:2226 1:N:0:CTGTAG
TGAGGAATATTGGTCAATGGGCGCGAGCCTGAACCAGCCAAGTAGCGTGAAGGATGACTGCCCTACGGGTTGTAA
+
HIHIIIIIHIIHGHHIHHIIIIIIIIIIIIIIIHHIIIIIHHIHIIIIIGIHIIIIHHHHHHGHIHIIIIIIIII
## head-genome
Usage
```text
print sequences of the first genome with common prefixes in name
For a FASTA file containing multiple contigs of strains (see example below),
these's no list of IDs available for retrieving sequences of a certain strain,
while descriptions of each strain share the same prefix.
This command is used to restrieve sequences of the first strain,
i.e., "Vibrio cholerae strain M29".
>NZ_JFGR01000001.1 Vibrio cholerae strain M29 Contig_1, whole genome shotgun sequence
>NZ_JFGR01000002.1 Vibrio cholerae strain M29 Contig_2, whole genome shotgun sequence
>NZ_JFGR01000003.1 Vibrio cholerae strain M29 Contig_3, whole genome shotgun sequence
>NZ_JSTP01000001.1 Vibrio cholerae strain 2012HC-12 NODE_79, whole genome shotgun sequence
>NZ_JSTP01000002.1 Vibrio cholerae strain 2012HC-12 NODE_78, whole genome shotgun sequence
Attention:
1. Sequences in file should be well organized.
Usage:
seqkit head-genome [flags]
Flags:
-h, --help help for head-genome
-m, --mini-common-words int minimal shared prefix words (default 4)
```
## range
Usage
```text
print FASTA/Q records in a range (start:end)
Examples:
1. leading 100 records (head -n 100)
seqkit range -r 1:100
2. last 100 records (tail -n 100)
seqkit range -r -100:-1
3. remove leading 100 records (tail -n +101)
seqkit range -r 101:-1
4. other ranges:
seqkit range -r 10:100
seqkit range -r -100:-10
Usage:
seqkit range [flags]
Flags:
-h, --help help for range
-r, --range string range. e.g., 1:12 for first 12 records (head -n 12), -12:-1 for last 12 records (tail -n 12)
```
Examples
1. leading N records (head)
$ cat tests/hairpin.fa | seqkit head -n 100 | md5sum
f65116af7d9298d93ba4b3d19077bbf1 -
$ cat tests/hairpin.fa | seqkit range -r 1:100 | md5sum
f65116af7d9298d93ba4b3d19077bbf1 -
1. last N records (tail)
$ cat tests/hairpin.fa | seqkit range -r -100:-1 | seqkit stats
file format type num_seqs sum_len min_len avg_len max_len
- FASTA RNA 100 8,656 58 86.6 172
1. remove leading 100 records (tail -n +101)
$ seqkit range -r 101:-1 tests/hairpin.fa | seqkit sum -a
seqkit.v0.1_RLS_k0_e1feced9bb0be653afa8205dec4987db - 28545 2940929
$ seqkit fx2tab tests/hairpin.fa | tail -n +101 | seqkit tab2fx | seqkit sum -a
seqkit.v0.1_RLS_k0_e1feced9bb0be653afa8205dec4987db - 28545 2940929
1. Other ranges
$ cat tests/hairpin.fa | seqkit range -r 101:150 | seqkit stats
file format type num_seqs sum_len min_len avg_len max_len
- FASTA RNA 50 3,777 63 75.5 96
$ cat tests/hairpin.fa | seqkit range -r -100:-2 | seqkit stats
file format type num_seqs sum_len min_len avg_len max_len
- FASTA RNA 99 8,484 58 85.7 146
## replace
Usage
``` text
replace name/sequence by regular expression.
Note that the replacement supports capture variables.
e.g. $1 represents the text of the first submatch.
ATTENTION: use SINGLE quote NOT double quotes in *nix OS.
Examples: Adding space to all bases.
seqkit replace -p "(.)" -r '$1 ' -s
Or use the \ escape character.
seqkit replace -p "(.)" -r "\$1 " -s
more on: http://bioinf.shenwei.me/seqkit/usage/#replace
Special replacement symbols (only for replacing name not sequence):
{nr} Record number, starting from 1
{kv} Corresponding value of the key (captured variable $n) by key-value file,
n can be specified by flag -I (--key-capt-idx) (default: 1)
Special cases:
1. If replacements contain '$',
a). If using '{kv}', you need use '$$$$' instead of a single '$':
-r '{kv}' -k <(sed 's/\$/$$$$/' kv.txt)
b). If not, use '$$':
-r 'xxx$$xx'
Usage:
seqkit replace [flags]
Flags:
-s, --by-seq replace seq (only FASTA)
-h, --help help for replace
-i, --ignore-case ignore case
-K, --keep-key keep the key as value when no value found for the key (only for sequence name)
-U, --keep-untouch do not change anything when no value found for the key (only for sequence name)
-I, --key-capt-idx int capture variable index of key (1-based) (default 1)
-m, --key-miss-repl string replacement for key with no corresponding value
-k, --kv-file string tab-delimited key-value file for replacing key with value when using "{kv}" in -r (--replacement) (only for sequence name)
--nr-width int minimum width for {nr} in flag -r/--replacement. e.g., formating "1" to "001" by --nr-width 3 (default 1)
-p, --pattern string search regular expression
-r, --replacement string replacement. supporting capture variables. e.g. $1 represents the text of the first submatch. ATTENTION: for *nix OS, use SINGLE quote NOT double quotes or use the \ escape character. Record number is also supported by "{nr}".use ${1} instead of $1 when {kv} given!
```
Examples
1. Remove descriptions
$ echo -e ">seq1 abc-123\nACGT-ACGT"
>seq1 abc-123
ACGT-ACGT
$ echo -e ">seq1 abc-123\nACGT-ACGT" \
| seqkit replace -p "\s.+"
>seq1
ACGT-ACGT
1. Replace "-" with "="
$ echo -e ">seq1 abc-123\nACGT-ACGT" \
| seqkit replace -p "\-" -r '='
>seq1 abc=123
ACGT-ACGT
1. Remove gaps in sequences.
$ echo -e ">seq1 abc-123\nACGT-ACGT" \
| seqkit replace -p " |-" -s
>seq1 abc-123
ACGTACGT
1. Add space to every base. **ATTENTION: use SINGLE quote NOT double quotes in *nix OS**
$ echo -e ">seq1 abc-123\nACGT-ACGT" \
| seqkit replace -p "(.)" -r '$1 ' -s
>seq1 abc-123
A C G T - A C G T
$ echo -e ">seq1 abc-123\nACGT-ACGT" \
| seqkit replace -p "(.)" -r "\$1 " -s
>seq1 abc-123
A C G T - A C G T
1. Transpose sequence with [csvtk](https://github.com/shenwei356/csvtk)
$ echo -e ">seq1\nACTGACGT\n>seq2\nactgccgt" \
| seqkit replace -p "(.)" -r "\$1 " -s \
| seqkit seq -s -u \
| csvtk space2tab \
| csvtk -t transpose
A A
C C
T T
G G
A C
C C
G G
T T
1. **Rename with number of record**
$ echo -e ">abc\nACTG\n>123\nATTT" \
| seqkit replace -p .+ -r "seq_{nr}"
>seq_1
ACTG
>seq_2
ATTT
$ echo -e ">abc\nACTG\n>123\nATTT" \
| seqkit replace -p .+ -r "seq_{nr}" --nr-width 5
>seq_00001
ACTG
>seq_00002
ATTT
1. Replace key with value by key-value file
$ more test.fa
>seq1 name1
CCCCAAAACCCCATGATCATGGATC
>seq2 name2
CCCCAAAACCCCATGGCATCATTCA
>seq3 name3
CCCCAAAACCCCATGTTGCTACTAG
$ more alias.txt
name0 ABC
name1 123
name3 Hello
name4 World
$ seqkit replace -p ' (.+)$' -r ' {kv}' -k alias.txt test.fa
[INFO] read key-value file: alias.txt
[INFO] 4 pairs of key-value loaded
>seq1 123
CCCCAAAACCCCATGATCATGGATC
>seq2
CCCCAAAACCCCATGGCATCATTCA
>seq3 Hello
CCCCAAAACCCCATGTTGCTACTAG
$ seqkit replace -p ' (.+)$' -r ' {kv}' -k alias.txt test.fa --keep-key
[INFO] read key-value file: alias.txt
[INFO] 4 pairs of key-value loaded
>seq1 123
CCCCAAAACCCCATGATCATGGATC
>seq2 name2
CCCCAAAACCCCATGGCATCATTCA
>seq3 Hello
CCCCAAAACCCCATGTTGCTACTAG
1. convert fasta to genbank style
$ cat seq.fa
>seq1
TTTAAAGAGACCGGCGATTCTAGTGAAATCGAACGGGCAGGTCAATTTCCAACCAGCGAT
GACGTAATAGATAGATACAAGGAAGTCATTTTTCTTTTAAAGGATAGAAACGGTTAATGC
TCTTGGGACGGCGCTTTTCTGTGCATAACT
>seq2
AAGGATAGAAACGGTTAATGCTCTTGGGACGGCGCTTTTCTGTGCATAACTCGATGAAGC
CCAGCAATTGCGTGTTTCTCCGGCAGGCAAAAGGTTGTCGAGAACCGGTGTCGAGGCTGT
TTCCTTCCTGAGCGAAGCCTGGGGATGAACG
$ cat seq.fa \
| seqkit replace -s -p '(\w{10})' -r '$1 ' -w 66 \
| perl -ne 'if (/^>/) {print; $n=1} else {s/ \r?\n$/\n/; printf "%9d %s", $n, $_; $n+=60;}'
>seq1
1 TTTAAAGAGA CCGGCGATTC TAGTGAAATC GAACGGGCAG GTCAATTTCC AACCAGCGAT
61 GACGTAATAG ATAGATACAA GGAAGTCATT TTTCTTTTAA AGGATAGAAA CGGTTAATGC
121 TCTTGGGACG GCGCTTTTCT GTGCATAACT
>seq2
1 AAGGATAGAA ACGGTTAATG CTCTTGGGAC GGCGCTTTTC TGTGCATAAC TCGATGAAGC
61 CCAGCAATTG CGTGTTTCTC CGGCAGGCAA AAGGTTGTCG AGAACCGGTG TCGAGGCTGT
121 TTCCTTCCTG AGCGAAGCCT GGGGATGAAC G
## rename
Usage
``` text
rename duplicated IDs
Attention:
1. This command only appends "_N" to duplicated sequence IDs to make them unique.
2. Use "seqkit replace" for editing sequence IDs/headers using regular expression.
Example:
$ seqkit seq seqs.fasta
>id comment
actg
>id description
ACTG
$ seqkit rename seqs.fasta
>id comment
actg
>id_2 description
ACTG
Usage:
seqkit rename [flags]
Flags:
-n, --by-name check duplication by full name instead of just id
-f, --force overwrite output directory
-h, --help help for rename
-m, --multiple-outfiles write results into separated files for multiple input files
-O, --out-dir string output directory (default "renamed")
```
Examples
``` sh
$ echo -e ">a comment\nacgt\n>b comment of b\nACTG\n>a comment\naaaa"
>a comment
acgt
>b comment of b
ACTG
>a comment
aaaa
$ echo -e ">a comment\nacgt\n>b comment of b\nACTG\n>a comment\naaaa" \
| seqkit rename
>a comment
acgt
>b comment of b
ACTG
>a_2 comment
aaaa
```
## restart
Usage
``` text
reset start position for circular genome
Examples
$ echo -e ">seq\nacgtnACGTN"
>seq
acgtnACGTN
$ echo -e ">seq\nacgtnACGTN" | seqkit restart -i 2
>seq
cgtnACGTNa
$ echo -e ">seq\nacgtnACGTN" | seqkit restart -i -2
>seq
TNacgtnACG
Usage:
seqkit restart [flags]
Flags:
-i, --new-start int new start position (1-base, supporting negative value counting from the end) (default 1)
```
## concat
Usage
``` text
concatenate sequences with same ID from multiple files
Attentions:
1. By default, only sequences with IDs that appear in all files are outputted.
use -f/--full to output all sequences.
2. If there are more than one sequences of the same ID, we output the Cartesian
product of sequences.
3. Description are also concatenated with a separator (-s/--separator).
4. Order of sequences with different IDs are random.
Usage:
seqkit concat [flags]
Aliases:
concat, concate
Flags:
-f, --full keep all sequences, like full/outer join
-h, --help help for concat
-s, --separator string separator for descriptions of records with the same ID (default "|")
```
Examples
```
$ cat a.fa
>A 1
a1-
>A 2
a2-
>B 1
b1-
$ cat b.fa
>A x
ax-
>C 1
c1-
$ seqkit concat a.fa b.fa
>A 1|x
a1-ax-
>A 2|x
a2-ax-
$ seqkit concat a.fa b.fa --full
>C 1
c1-
>A 1|x
a1-ax-
>A 2|x
a2-ax-
>B 1
b1-
```
## mutate
Usage
``` text
edit sequence (point mutation, insertion, deletion)
Attentions:
1. Mutiple point mutations (-p/--point) are allowed, but only single
insertion (-i/--insertion) OR single deletion (-d/--deletion) is allowed.
2. Point mutation takes place before insertion/deletion.
Notes:
1. You can choose certain sequences to edit using similar flags in
'seqkit grep'.
The definition of position is 1-based and with some custom design.
Examples:
1-based index 1 2 3 4 5 6 7 8 9 10
negative index 0-9-8-7-6-5-4-3-2-1
seq A C G T N a c g t n
1:1 A
2:4 C G T
-4:-2 c g t
-4:-1 c g t n
-1:-1 n
2:-2 C G T N a c g t
1:-1 A C G T N a c g t n
1:12 A C G T N a c g t n
-12:-1 A C G T N a c g t n
Usage:
seqkit mutate [flags]
Flags:
-n, --by-name [match seqs to mutate] match by full name instead of just id
-d, --deletion string deletion mutation: deleting subsequence in a range. e.g., -d 1:2 for deleting leading two bases, -d -3:-1 for removing last 3 bases
-h, --help help for mutate
-I, --ignore-case [match seqs to mutate] ignore case of search pattern
-i, --insertion string insertion mutation: inserting bases behind of given position, e.g., -i 0:ACGT for inserting ACGT at the beginning, -1:* for add * to the end
-v, --invert-match [match seqs to mutate] invert the sense of matching, to select non-matching records
-s, --pattern strings [match seqs to mutate] search pattern (multiple values supported. Attention: use double quotation marks for patterns containing comma, e.g., -p '"A{2,}"'))
-f, --pattern-file string [match seqs to mutate] pattern file (one record per line)
-p, --point strings point mutation: changing base at given position. e.g., -p 2:C for setting 2nd base as C, -p -1:A for change last base as A
-r, --use-regexp [match seqs to mutate] search patterns are regular expression
```
Examples:
1. Point mutation:
$ echo -ne ">1\nACTGNactgn\n>2\nactgnACTGN\n"
>1
ACTGNactgn
>2
actgnACTGN
# first base
$ echo -ne ">1\nACTGNactgn\n>2\nactgnACTGN\n" \
| seqkit mutate -p 1:x
[INFO] edit seq: 1
[INFO] edit seq: 2
>1
xCTGNactgn
>2
xctgnACTGN
# 5th base
$ echo -ne ">1\nACTGNactgn\n>2\nactgnACTGN\n" \
| seqkit mutate -p 5:x --quiet
>1
ACTGxactgn
>2
actgxACTGN
# last base
$ echo -ne ">1\nACTGNactgn\n>2\nactgnACTGN\n" \
| seqkit mutate -p -1:x --quiet
>1
ACTGNactgx
>2
actgnACTGx
# mutiple locations:
$ echo -ne ">1\nACTGNactgn\n>2\nactgnACTGN\n" \
| seqkit mutate -p 1:x -p -1:x --quiet
>1
xCTGNactgx
>2
xctgnACTGx
1. Deletion
# first base
$ echo -ne ">1\nACTGNactgn\n>2\nactgnACTGN\n" \
| seqkit mutate -d 1:1 --quiet
>1
CTGNactgn
>2
ctgnACTGN
# last 3 bases
$ echo -ne ">1\nACTGNactgn\n>2\nactgnACTGN\n" \
| seqkit mutate -d -3:-1 --quiet
>1
ACTGNac
>2
actgnAC
1. Insertion: inserting bases **behind** of given position
# at the beginning
$ echo -ne ">1\nACTGNactgn\n>2\nactgnACTGN\n" \
| seqkit mutate -i 0:xx --quiet
>1
xxACTGNactgn
>2
xxactgnACTGN
# at the end
$ echo -ne ">1\nACTGNactgn\n>2\nactgnACTGN\n" \
| seqkit mutate -i -1:xx --quiet
>1
ACTGNactgnxx
>2
actgnACTGNxx
# behind of 5th base
$ echo -ne ">1\nACTGNactgn\n>2\nactgnACTGN\n" \
| seqkit mutate -i 5:x --quiet
>1
ACTGNxactgn
>2
actgnxACTGN
1. **Choosing which sequences to edit**, using similar flags in `seqkit grep`.
$ cat tests/hsa.fa
>chr1 1th seq
ACTGNactgn
>chr2 2nd seq
actgnACTGN
>chr11 11th seq
ACTGNACTGN
>MT mitochondrial seq
actgnactgn
# only edit chr1 and chr2
# or cat tests/hsa.fa | seqkit mutate -p -1:X -s chr1 -s chr2
$ cat tests/hsa.fa \
| seqkit mutate -p -1:X -s chr1,chr2
[INFO] edit seq: chr1 1th seq
[INFO] edit seq: chr2 2nd seq
>chr1 1th seq
ACTGNactgX
>chr2 2nd seq
actgnACTGX
>chr11 11th seq
ACTGNACTGN
>MT mitochondrial seq
actgnactgn
# using regular expression to match.
# e,g., editing all chrosomes:
$ cat tests/hsa.fa \
| seqkit mutate -p -1:X -r -s chr
[INFO] edit seq: chr1 1th seq
[INFO] edit seq: chr2 2nd seq
[INFO] edit seq: chr11 11th seq
>chr1 1th seq
ACTGNactgX
>chr2 2nd seq
actgnACTGX
>chr11 11th seq
ACTGNACTGX
>MT mitochondrial seq
actgnactgn
# excluding seqs
$ cat tests/hsa.fa \
| seqkit mutate -p -1:X -s chr1 -s chr2 -v
[INFO] edit seq: chr11 11th seq
[INFO] edit seq: MT mitochondrial seq
>chr1 1th seq
ACTGNactgn
>chr2 2nd seq
actgnACTGN
>chr11 11th seq
ACTGNACTGX
>MT mitochondrial seq
actgnactgX
## shuffle
Usage
``` text
shuffle sequences.
By default, all records will be readed into memory.
For FASTA format, use flag -2 (--two-pass) to reduce memory usage. FASTQ not
supported.
Firstly, seqkit reads the sequence IDs. If the file is not plain FASTA file,
seqkit will write the sequences to tempory files, and create FASTA index.
Secondly, seqkit shuffles sequence IDs and extract sequences by FASTA index.
Usage:
seqkit shuffle [flags]
Flags:
-k, --keep-temp keep tempory FASTA and .fai file when using 2-pass mode
-s, --rand-seed int rand seed for shuffle (default 23)
-2, --two-pass two-pass mode read files twice to lower memory usage. (only for FASTA format)
```
Examples
1. General use.
$ seqkit shuffle hairpin.fa.gz > shuffled.fa
[INFO] read sequences ...
[INFO] 28645 sequences loaded
[INFO] shuffle ...
[INFO] output ...
1. ***For big genome, you'd better use two-pass mode*** so seqkit could use
FASTA index to reduce memory usage
$ time seqkit shuffle -2 hsa.fa > shuffle.fa
[INFO] create and read FASTA index ...
[INFO] create FASTA index for hsa.fa
[INFO] read sequence IDs from FASTA index ...
[INFO] 194 sequences loaded
[INFO] shuffle ...
[INFO] output ...
real 0m35.080s
user 0m45.521s
sys 0m3.411s
Note that when sampling on FASTQ files, make sure using same random seed by
flag `-s` (`--rand-seed`) for read 1 and 2 files.
## sort
Usage
``` text
sort sequences by id/name/sequence/length.
By default, all records will be readed into memory.
For FASTA format, use flag -2 (--two-pass) to reduce memory usage. FASTQ not
supported.
Firstly, seqkit reads the sequence head and length information.
If the file is not plain FASTA file,
seqkit will write the sequences to tempory files, and create FASTA index.
Secondly, seqkit sorts sequence by head and length information
and extracts sequences by FASTA index.
Usage:
seqkit sort [flags]
Flags:
-b, --by-bases by non-gap bases
-l, --by-length by sequence length
-n, --by-name by full name instead of just id
-s, --by-seq by sequence
-G, --gap-letters string gap letters (default "- \t.")
-h, --help help for sort
-i, --ignore-case ignore case
-k, --keep-temp keep tempory FASTA and .fai file when using 2-pass mode
-N, --natural-order sort in natural order, when sorting by IDs/full name
-r, --reverse reverse the result
-L, --seq-prefix-length int length of sequence prefix on which seqkit sorts by sequences (0 for whole sequence) (default 10000)
-2, --two-pass two-pass mode read files twice to lower memory usage. (only for FASTA format)
```
Examples
***For FASTA format, use flag -2 (--two-pass) to reduce memory usage***
1. sort by ID
$ echo -e ">seq1\nACGTNcccc\n>SEQ2\nacgtnAAAA" \
| seqkit sort --quiet
>SEQ2
acgtnAAAA
>seq1
ACGTNcccc
1. sort by ID and in natural order
$ echo -e ">3\na\n>1\na\n>Y\na\n>x\na\n>Mt\na\n>11\na\n>2\na\n" \
| seqkit seq -n -i
3
1
Y
x
Mt
11
2
$ echo -e ">3\na\n>1\na\n>Y\na\n>x\na\n>Mt\na\n>11\na\n>2\na\n" \
| seqkit sort -N -i -2 \
| seqkit seq -n -i
1
2
3
11
Mt
x
Y
1. sort by ID, ignoring case.
$ echo -e ">seq1\nACGTNcccc\n>SEQ2\nacgtnAAAA" \
| seqkit sort --quiet -i
>seq1
ACGTNcccc
>SEQ2
acgtnAAAA
1. sort by seq, ignoring case.
$ echo -e ">seq1\nACGTNcccc\n>SEQ2\nacgtnAAAA" \
| seqkit sort --quiet -s -i
>SEQ2
acgtnAAAA
>seq1
ACGTNcccc
1. sort by sequence length
$ echo -e ">seq1\nACGTNcccc\n>SEQ2\nacgtnAAAAnnn\n>seq3\nacgt" \
| seqkit sort --quiet -l
>seq3
acgt
>seq1
ACGTNcccc
>SEQ2
acgtnAAAAnnn
## bam
``` text
monitoring and online histograms of BAM record features
Usage:
seqkit bam [flags]
Flags:
-B, --bins int number of histogram bins (default -1)
-N, --bundle int partition BAM file into loci (-1) or bundles with this minimum size
-c, --count string count reads per reference and save to this file
-W, --delay int sleep this many seconds after plotting (default 1)
-y, --dump print histogram data to stderr instead of plotting
-G, --exclude-ids string exclude records with IDs contained in this file
-e, --exec-after string execute command after reporting
-E, --exec-before string execute command before reporting
-f, --field string target fields
-g, --grep-ids string only keep records with IDs contained in this file
-h, --help help for bam
-C, --idx-count fast read per reference counting based on the BAM index
-i, --idx-stat fast statistics based on the BAM index
-O, --img string save histogram to this PDF/image file
-H, --list-fields list all available BAM record features
-L, --log log10(x+1) transform numeric values
-q, --map-qual int minimum mapping quality
-x, --pass passthrough mode (forward filtered BAM to output)
-k, --pretty pretty print certain TSV outputs
-F, --prim-only filter out non-primary alignment records
-p, --print-freq int print/report after this many records (-1 for print after EOF) (default -1)
-Q, --quiet-mode supress all plotting to stderr
-M, --range-max float discard record with field (-f) value greater than this flag (default NaN)
-m, --range-min float discard record with field (-f) value less than this flag (default NaN)
-R, --reset reset histogram after every report
-Z, --silent-mode supress TSV output to stderr
-s, --stat print BAM satistics of the input files
-T, --tool string invoke toolbox in YAML format (see documentation)
-@, --top-bam string save the top -? records to this bam file
-?, --top-size int size of the top-mode buffer (default 100)
```
Examples
1. Get detailed statistics from multiple BAM files.
seqkit bam -s *.bam
2. Get rough statistics from multiple indexed BAM files.
seqkit bam -i *.bam
3. Count reads mapped to references from a BAM stream.
cat sample.bam | seqkit bam -c counts.tsv -
4. Count reads mapped to references using the BAM index.
seqkit bam -C sorted_indexed.bam
5. Monitor alignment accuracy from a bam stream and report after every 1000 records, use 20 bins.
cat sample.bam | seqkit bam -B -f Acc -p 1000 -
6. Dump selected fields to TSV.
seqkit bam -f Ref,Acc,RefCov,Strand sample.bam
7. Save the best 100 records in terms of alignment accuracy to a BAM file.
seqkit bam -f Acc -@ top_acc_100.bam -? 100 -Q sample.bam
8. Inkvoke the BAM toolbox.
The BAM toolbox is a collection of filters acting on a stream of BAM records, configured via YAML.
The currently available tools can be listed by `seqkit bam -T help`:
```text
Tool Description
---- -----------
AccStats calculates mean accuracy weighted by aligment lengths
AlnContext filter records by the sequence context at start and end
Dump dump various record properties in TSV format
help list all tools with description
```
Example YAML configs:
Invoking the AccStats tool directly from the command line or YAML config:
```text
seqkit bam -T '{AccStats: {Tsv: "-"}, Sink: True}' input.bam
seqkit bam -T '{Yaml: "tests/examples/bam_tool_acc_stats.yml"}' input.bam
```
Where the contents of `bam_tool_acc_stats.yml` are:
```text
AccStats:
Tsv: "-"
Sink: True
```
Invoking the AlnContext tool using YAML:
```text
AlnContext:
Tsv: "-"
Ref: "../SIRV_150601a.fasta"
LeftShift: -10
RightShift: 10
RegexStart: "T{4,}"
RegexEnd: "A{4,}"
Stranded: True
Invert: True
Sink: True
```
Invoking the Dump tool using YAML:
```text
Dump:
Tsv: "-"
Fields: ["Read", "Ref", "Pos", "EndPos", "MapQual", "Acc", "Match", "Mismatch", "Ins", "Del", "AlnLen", " ReadLen", "RefLen", "RefAln", "RefCov", "ReadAln", "ReadCov", "Strand", "MeanQual", "LeftClip", "RightClip", "Flags", "IsSec", " IsSup", "ReadSeq", "ReadAlnSeq", "LeftSoftClipSeq", "RightSoftClip", "LeftHardClip", "RightHardClip"]
Sink: True
```
The tools can be chained together, for example the YAML using all three tools look like:
```text
AlnContext:
Tsv: "context.tsv"
Ref: "../SIRV_150601a.fasta"
LeftShift: -10
RightShift: 10
RegexStart: "T{4,}"
RegexEnd: "A{4,}"
Stranded: True
Invert: True
Dump:
Tsv: "dump.tsv"
Fields: ["Read", "Ref", "Pos", "EndPos", "MapQual", "Acc", "Match", "Mismatch", "Ins", "Del", "AlnLen", " ReadLen", "RefLen", "RefAln", "RefCov", "ReadAln", "ReadCov", "Strand", "MeanQual", "LeftClip", "RightClip", "Flags", "IsSec", " IsSup", "ReadSeq", "ReadAlnSeq", "LeftSoftClipSeq", "RightSoftClip", "LeftHardClip", "RightHardClip"]
AccStats:
Tsv: "-"
```
If the "Sink" parameter is not specified in the last pipeline step, the output BAM records are streamed to the standard output and can be piped into standard tools, for example:
```text
seqkit bam -T '{Yaml: "bam_tool_pipeline.yml"}' ../pcs109_5k_spliced.bam | samtools flagstat -
```
## genautocomplete
Usage
``` text
generate shell autocompletion script
Supported shell: bash|zsh|fish|powershell
Bash:
# generate completion shell
seqkit genautocomplete --shell bash
# configure if never did.
# install bash-completion if the "complete" command is not found.
echo "for bcfile in ~/.bash_completion.d/* ; do source \$bcfile; done" >> ~/.bash_completion
echo "source ~/.bash_completion" >> ~/.bashrc
Zsh:
# generate completion shell
seqkit genautocomplete --shell zsh --file ~/.zfunc/_seqkit
# configure if never did
echo 'fpath=( ~/.zfunc "${fpath[@]}" )' >> ~/.zshrc
echo "autoload -U compinit; compinit" >> ~/.zshrc
fish:
seqkit genautocomplete --shell fish --file ~/.config/fish/completions/seqkit.fish
Usage:
seqkit genautocomplete [flags]
Flags:
--file string autocompletion file (default "/home/shenwei/.bash_completion.d/seqkit.sh")
-h, --help help for genautocomplete
--type string autocompletion type (currently only bash supported) (default "bash")
```
<div id="disqus_thread"></div>
<script>
/**
* RECOMMENDED CONFIGURATION VARIABLES: EDIT AND UNCOMMENT THE SECTION BELOW TO INSERT DYNAMIC VALUES FROM YOUR PLATFORM OR CMS.
* LEARN WHY DEFINING THESE VARIABLES IS IMPORTANT: https://disqus.com/admin/universalcode/#configuration-variables*/
/*
var disqus_config = function () {
this.page.url = PAGE_URL; // Replace PAGE_URL with your page's canonical URL variable
this.page.identifier = PAGE_IDENTIFIER; // Replace PAGE_IDENTIFIER with your page's unique identifier variable
};
*/
(function() { // DON'T EDIT BELOW THIS LINE
var d = document, s = d.createElement('script');
s.src = '//seqkit.disqus.com/embed.js';
s.setAttribute('data-timestamp', +new Date());
(d.head || d.body).appendChild(s);
})();
</script>
<noscript>Please enable JavaScript to view the <a href="https://disqus.com/?ref_noscript">comments powered by Disqus.</a></noscript>
|