1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
|
/* Copyright (C) 2003 Tresys Technology, LLC
* see file 'COPYING' for use and warranty information */
/*
* Author: mayerf@tresys.com
* Modified by: don.patterson@tresys.com
* 6-17-2003: Added reverse DTA.
* 6-04-2004: Enhanced forward DTA to select by
* object class perm and/or object type.
* 6-23-2004: Added types relationship analysis.
* Modified by: kmacmillan@tresys.com (7-18-2003) - added
* information flow analysis.
*/
/* analysis.c
*
* Analysis routines for libapol
*/
#include <stdlib.h>
#include <assert.h>
#include <limits.h>
#include <time.h>
#include "policy.h"
#include "util.h"
#include "analysis.h"
#include "policy-query.h"
#include "infoflow.h"
#include "queue.h"
/* Select by object class/permissions.
* Forward domain transition - limits the query to to find transitions to domains
* that have specific permissions on object classes or entire object classes.
*/
int dta_query_add_obj_class(dta_query_t *q, int obj_class)
{
return apol_add_class_to_obj_perm_set_list(&q->obj_options, &q->num_obj_options, obj_class);
}
int dta_query_add_obj_class_perm(dta_query_t *q, int obj_class, int perm)
{
return apol_add_perm_to_obj_perm_set_list(&q->obj_options, &q->num_obj_options, obj_class, perm);
}
/* Select by object type.
* Forward domain transition - limits the query to find transitions to domains
* that have access to specific object types.
*/
int dta_query_add_end_type(dta_query_t *q, int end_type)
{
return policy_query_add_type(&q->end_types, &q->num_end_types, end_type);
}
/*************************************************************************
* domain transition analysis
*/
/* all the "free" fns below have a prototype just like free() so that
* ll_free() in util.c can use them. This makes us have to cast the
* pointer, which can also cause run-time errors since someone could
* mistakenly pass the wrong data type! BE CAREFUL!.
*/
dta_query_t *dta_query_create(void)
{
dta_query_t* q = (dta_query_t*)malloc(sizeof(dta_query_t));
if (q == NULL) {
fprintf(stderr, "Memory error!\n");
return NULL;
}
memset(q, 0, sizeof(dta_query_t));
q->start_type = -1;
q->reverse = FALSE;
return q;
}
void dta_query_destroy(dta_query_t *q)
{
int i;
assert(q != NULL);
if (q->end_types)
free(q->end_types);
if (q->filter_types)
free(q->filter_types);
for (i = 0; i < q->num_obj_options; i++) {
if (q->obj_options[i].perms)
free(q->obj_options[i].perms);
}
if (q->obj_options)
free(q->obj_options);
free(q);
}
static bool_t dta_query_does_av_rule_contain_obj_class_options(dta_query_t *q,
int rule_idx,
policy_t *policy)
{
int i;
assert(q && is_valid_av_rule_idx(rule_idx, 1, policy));
for (i = 0; i < q->num_obj_options; i++) {
/* To pass, the rule must contain one of the specified classes
* and any of the specified permissions for that class. */
if (does_av_rule_use_classes(rule_idx, 1, &q->obj_options[i].obj_class, 1, policy) &&
does_av_rule_use_perms(rule_idx, 1, q->obj_options[i].perms,
q->obj_options[i].num_perms, policy))
return TRUE;
}
return FALSE;
}
static bool_t dta_query_does_av_rule_contain_obj_types(dta_query_t *q,
int rule_idx,
policy_t *policy)
{
int i;
assert(q && is_valid_av_rule_idx(rule_idx, 1, policy));
for (i = 0; i < q->num_end_types; i++) {
if (does_av_rule_idx_use_type(rule_idx, 0, q->end_types[i],
IDX_TYPE, TGT_LIST, TRUE, policy))
return TRUE;
}
return FALSE;
}
void free_entrypoint_type(void *t)
{
entrypoint_type_t *p = (entrypoint_type_t *)t;
if(p == NULL)
return;
if(p->ep_rules != NULL)
free(p->ep_rules);
if(p->ex_rules != NULL)
free(p->ex_rules);
free(p);
return;
}
void free_trans_domain(void *t)
{
trans_domain_t *p = (trans_domain_t *)t;
if(p == NULL)
return;
ll_free(p->entry_types, free_entrypoint_type);
if(p->pt_rules != NULL)
free(p->pt_rules);
if(p->other_rules != NULL)
free(p->other_rules);
free(p);
return;
}
void free_domain_trans_analysis(domain_trans_analysis_t *p)
{
if(p == NULL)
return;
ll_free(p->trans_domains, free_trans_domain);
free(p);
return;
}
entrypoint_type_t *new_entry_point_type(void)
{
entrypoint_type_t *t;
t = (entrypoint_type_t *)malloc(sizeof(entrypoint_type_t));
if(t == NULL) {
fprintf(stderr, "out of memory");
return NULL;
}
memset(t, 0, sizeof(entrypoint_type_t));
return t;
}
trans_domain_t *new_trans_domain(void)
{
trans_domain_t *t;
t = (trans_domain_t *)malloc(sizeof(trans_domain_t));
if(t == NULL) {
fprintf(stderr, "out of memory");
return NULL;
}
memset(t, 0, sizeof(trans_domain_t));
t->entry_types = ll_new();
return t;
}
domain_trans_analysis_t *new_domain_trans_analysis(void)
{
domain_trans_analysis_t *t;
t = (domain_trans_analysis_t *)malloc(sizeof(domain_trans_analysis_t));
if(t == NULL) {
fprintf(stderr, "out of memory");
return NULL;
}
memset(t, 0, sizeof(domain_trans_analysis_t));
t->trans_domains = ll_new();
return t;
}
#define PROCESS_TRANS_RULE 1
#define OTHER_RULE 2
/* INTERNAL */
static int dta_add_rule_to_trans_type(int start_idx, int trans_idx,
int which_rule_type, int rule_idx,
domain_trans_analysis_t *dta_results)
{
llist_node_t *t;
trans_domain_t *t_data = NULL;
/* 1. find the type in the dta_results->trans_domains list */
/*TODO: Need to fix the list; right now unsorted so this will can become painful*/
for(t = dta_results->trans_domains->head; t != NULL; t = t->next) {
t_data = (trans_domain_t *) t->data;
assert(t_data->start_type == start_idx);
if(t_data->trans_type == trans_idx)
break;
}
if(t == NULL)
return -1; /* trans_idx doesn't currently exist in the dta_results! */
assert(t_data != NULL);
/* 2. add the rule to pt_rules list for that t_ptr type */
if (which_rule_type == PROCESS_TRANS_RULE)
return add_i_to_a(rule_idx ,&(t_data->num_pt_rules), &(t_data->pt_rules));
else if (which_rule_type == OTHER_RULE)
return add_i_to_a(rule_idx ,&(t_data->num_other_rules), &(t_data->other_rules));
else
return -1;
}
/* INTERNAL */
static int dta_add_trans_type(bool_t reverse, int start_idx, int trans_idx, int rule_idx,
domain_trans_analysis_t *dta_results)
{
trans_domain_t *t;
/* allocate and initialize new target type struct (we may undo this later) */
t = new_trans_domain();
if(t == NULL)
return -1;
t->start_type = start_idx;
t->trans_type = trans_idx;
t->reverse= reverse;
/* add the rule to the new target type */
if(add_i_to_a(rule_idx ,&(t->num_pt_rules), &(t->pt_rules)) != 0) {
free_trans_domain(t);
return -1;
}
/* and link the target into the dta_results struct */
/* TODO: need to do an insertion sort */
if(ll_append_data(dta_results->trans_domains, t) != 0 ) {
free_trans_domain(t);
return -1;
}
return 0;
}
static int dta_add_reverse_process_trans_types_and_rules(dta_query_t *dta_query,
int rule_idx,
int num_types,
int *types,
bool_t *b_type,
domain_trans_analysis_t *dta_results,
policy_t *policy)
{
int i, idx;
/* add types and rules returned in list to trans_domains list*/
for (i = 0; i < num_types; i++) {
/* NOTE: We have a special case if types[i] == 0. This is the pseudo
* type 'self'. In this case we really don't want to add self, but
* rather the start_idx. So in that case we'll change the idx
* the start_idx.
*/
if (types[i] == 0)
idx = dta_query->start_type;
else
idx = types[i];
if (!b_type[idx]) {
/* add new trans type and record its rules */
if (dta_add_trans_type(dta_query->reverse,
dta_query->start_type,
idx, rule_idx, dta_results) != 0) {
if (types != NULL) free(types);
return -1;
}
b_type[idx] = TRUE;
} else {
/* type already added, so just add this pt rule */
if (dta_add_rule_to_trans_type(dta_query->start_type,
idx,
PROCESS_TRANS_RULE,
rule_idx, dta_results) != 0) {
if (types != NULL) free(types);
return -1;
}
}
}
return 0;
}
/* Used for a forward dta_results analysis query to limit the query to find transitions
* to domains that have specific privileges or that have access to a particular
* object type(s) */
static int dta_add_forward_process_trans_types_and_rules(dta_query_t *dta_query,
int rule_idx,
int num_types,
int *types,
bool_t *b_type,
domain_trans_analysis_t *dta_results,
policy_t *policy)
{
int i, j, idx, rule_uses_type_src;
/* Enhanced Forward dta_results: Once we have extracted the type from the process
transition rule, we need to see if this type has the specified permissions and
access to specified object classes and/or types. This is used only for a forward
dta_results analysis, in order to limit the query to find transitions to domains
that have specific privileges or that have access to a particular object type(s). */
for (i = 0; i < num_types; i++) {
/* NOTE: We have a special case if types[i] == 0. This is the pseudo
* type 'self'. In this case we really don't want to add self, but
* rather the start_idx. So in that case we'll change the idx
* the start_idx.
*/
if (types[i] == 0)
idx = dta_query->start_type;
else
idx = types[i];
if (dta_query->use_object_filters) {
/* Examine each of the rules to see if it meets the criteria. */
for (j = 0; j < policy->num_av_access; j++) {
/* Skip neverallow rules */
if ((policy->av_access)[j].type != RULE_TE_ALLOW)
continue;
/* Make sure this rule has this target type as the source field. */
rule_uses_type_src = does_av_rule_idx_use_type(j, 0, idx,
IDX_TYPE, SRC_LIST, TRUE,
policy);
if (rule_uses_type_src == -1)
return -1;
if (!rule_uses_type_src)
continue;
/* Skip to next rule if it doesn't pass either of the criteria */
if (!dta_query_does_av_rule_contain_obj_types(dta_query, j, policy))
continue;
if (dta_query->num_obj_options > 0 &&
!dta_query_does_av_rule_contain_obj_class_options(dta_query, j, policy)) {
continue;
}
/* We have a rule with the target domain as
* source and has the specified access. */
if (!b_type[idx]) {
/* add new trans type and record its rules */
if(dta_add_trans_type(dta_query->reverse,
dta_query->start_type,
idx,
rule_idx,
dta_results) != 0) {
return -1;
}
b_type[idx] = TRUE;
}
/* Record additional rule */
if (dta_add_rule_to_trans_type(dta_query->start_type,
idx,
OTHER_RULE,
j,
dta_results) != 0) {
return -1;
}
}
} else {
if (!b_type[idx]) {
/* add new trans type and record its rules */
if(dta_add_trans_type(dta_query->reverse,
dta_query->start_type,
idx,
rule_idx,
dta_results) != 0) {
return -1;
}
b_type[idx] = TRUE;
}
}
}
return 0;
}
/* INTERNAL: add process trans allowed trans types to dta_results result */
static int dta_add_process_trans_data(dta_query_t *dta_query,
int rule_idx,
bool_t *b_type,
domain_trans_analysis_t *dta_results,
policy_t *policy)
{
int *types = NULL, num_types = 0;
int i, rt;
assert(dta_query != NULL && b_type != NULL && dta_results != NULL &&
policy != NULL && is_valid_av_rule_idx(rule_idx, 1, policy));
/* Check to see if this is a reverse DT analysis and if
* so, then extract the type from the SOURCE field.
* Otherwise, extract the type from the TARGET field */
if(dta_query->reverse) {
rt = extract_types_from_te_rule(rule_idx, RULE_TE_ALLOW,
SRC_LIST, &types, &num_types,
policy);
} else {
rt = extract_types_from_te_rule(rule_idx, RULE_TE_ALLOW,
TGT_LIST, &types, &num_types,
policy);
}
if (rt < 0)
return -1;
if (rt == 2) {
/* encountered '*', so add all types
* NOTE: Start from i = 1 since we know that type index 0 is 'self' and
* we don't want to include the pdeudo type self
*/
for (i = 1; i < policy->num_types; i++) {
if (add_i_to_a(i, &num_types, &types) == -1) {
goto out;
}
}
}
if (dta_query->reverse) {
if (dta_add_reverse_process_trans_types_and_rules(dta_query,
rule_idx,
num_types,
types,
b_type,
dta_results,
policy))
goto out;
} else {
if (dta_add_forward_process_trans_types_and_rules(dta_query,
rule_idx,
num_types,
types,
b_type,
dta_results,
policy))
goto out;
}
if (types != NULL) free(types);
return 0;
out:
if (types != NULL) free(types);
return -1;
}
/* INTERNAL */
static int dta_add_rule_to_entry_point_type(bool_t reverse, int rule_idx, entrypoint_type_t *ep)
{
if(ep != NULL) {
if(reverse) {
return add_i_to_a(rule_idx, &(ep->num_ep_rules), &(ep->ep_rules));
}
else {
return add_i_to_a(rule_idx, &(ep->num_ex_rules), &(ep->ex_rules));
}
}
else
return -1;
}
/* INTERNAL */
static int dta_add_rule_to_ep_file_type(bool_t reverse,
int file_idx,
int rule_idx,
trans_domain_t *t_ptr)
{
llist_node_t *t;
entrypoint_type_t *t_data = NULL;
/* 1. find the file type in the t_ptr */
/*TODO: Need to fix the list; right now unsorted so this will can become painful*/
for(t = t_ptr->entry_types->head; t != NULL; t = t->next) {
t_data = (entrypoint_type_t *) t->data;
if(t_data->file_type == file_idx)
break;
}
if(t == NULL)
return -1; /* file_idx doesn't currently exist in the t_ptr! */
assert(t_data != NULL);
/* 2. add the rule */
if(reverse) {
return add_i_to_a(rule_idx ,&(t_data->num_ex_rules), &(t_data->ex_rules));
}
else {
return add_i_to_a(rule_idx ,&(t_data->num_ep_rules), &(t_data->ep_rules));
}
}
/* INTERNAL */
static int dta_add_ep_type(bool_t reverse, int file_idx, int rule_idx, trans_domain_t *t_ptr)
{
entrypoint_type_t *t;
/* allocate and initialize new target type struct (we may undo this later) */
t = new_entry_point_type();
if(t == NULL)
return -1;
t->start_type = t_ptr->start_type;
t->trans_type = t_ptr->trans_type;
t->file_type = file_idx;
/* add the rule to the new trans type */
if(reverse) {
if(add_i_to_a(rule_idx, &(t->num_ex_rules), &(t->ex_rules)) != 0) {
free_entrypoint_type(t);
return -1;
}
}
else {
if(add_i_to_a(rule_idx, &(t->num_ep_rules), &(t->ep_rules)) != 0) {
free_entrypoint_type(t);
return -1;
}
}
/* link in new file type */
/* TODO: need to do an insertion sort */
if(ll_append_data(t_ptr->entry_types, t) != 0 ) {
free_entrypoint_type(t);
return -1;
}
return 0;
}
/* INTERNAL */
/* TODO: This is very similar to dta_add_process_trans_data(); should consolidate */
static int dta_add_file_entrypoint_type(bool_t reverse,
int rule_idx,
bool_t *b_types,
trans_domain_t *t_ptr,
policy_t *policy)
{
int rt, i, idx, *types, num_types;
assert(policy != NULL && is_valid_av_rule_idx(rule_idx,1,policy) &&
b_types != NULL && t_ptr != NULL);
/* In either a reverse or forward DT analysis, the entry point type is
* extracted from the TARGET field of the rule */
rt = extract_types_from_te_rule(rule_idx, RULE_TE_ALLOW,
TGT_LIST, &types, &num_types,
policy);
if(rt < 0)
return -1;
if(rt == 2) {
/* add all types
* NOTE: Start from i = 1 since we know that type index 0 is 'self' and
* we don't want to include the pdeudo type self
*/
for(i = 1; i < policy->num_types; i++) {
if(!b_types[i]) {
/* new */
if(dta_add_ep_type(reverse, i, rule_idx, t_ptr) != 0)
return -1;
b_types[i] = TRUE;
}
else {
/* existing; add rule to existing one */
if(dta_add_rule_to_ep_file_type(reverse, i, rule_idx, t_ptr) != 0)
return -1;
}
}
}
else {
/* adding new file type */
/* add types and rules returned in list to target domains list */
for(i = 0; i < num_types; i++) {
/* NOTE: We have a special case if types[i] == 0. This is the pseudo
* type 'self'. In this case we really don't want to add self, but
* rather the target's index (which is the source for these rules).
* So in that case we'll change the idx the t_ptr->trans_type.
*/
if(types[i] == 0)
idx = t_ptr->trans_type;
else
idx = types[i];
if(!b_types[idx]) {
/* new */
if(dta_add_ep_type(reverse, idx, rule_idx, t_ptr) != 0) {
if(types != NULL) free(types);
return -1;
}
b_types[idx] = TRUE;
}
else {
/* existing; add rule to existing one */
if(dta_add_rule_to_ep_file_type(reverse, idx, rule_idx, t_ptr) != 0) {
if(types != NULL) free(types);
return -1;
}
}
}
if(types != NULL) free(types);
}
return 0;
}
/* main domain trans analysis function.
* dta_results must be allocated and initialized
*
* returns:
* -1 general error
* -2 start_domain invalid type
*/
int determine_domain_trans(dta_query_t *dta_query,
domain_trans_analysis_t **dta_results,
policy_t *policy)
{
int start_idx, i, classes[1], perms[1], perms2[1], rt;
bool_t *b_type; /* scratch pad arrays to keep track of types that have already been added */
trans_domain_t *t_ptr;
entrypoint_type_t *ep;
llist_node_t *ll_node, *ll_node2;
int rule_uses_type_src, rule_uses_type_tgt;
bool_t reverse;
if(policy == NULL || dta_query == NULL)
return -1;
/* Retrieve the index of the specified starting domain from the query. */
start_idx = dta_query->start_type;
reverse = dta_query->reverse;
*dta_results = NULL;
/* initialize our bool rule structures...free before leaving function */
b_type = (bool_t *)malloc(sizeof(bool_t) * policy->num_types);
if(b_type == NULL) {
fprintf(stderr, "out of memory");
return -1;
}
memset(b_type, 0, policy->num_types * sizeof(bool_t));
/* initialize the results structure (caller must free if successful) */
*dta_results = new_domain_trans_analysis();
if (*dta_results == NULL) {
fprintf(stderr, "out of memory");
goto err_return;
}
(*dta_results)->start_type = start_idx;
(*dta_results)->reverse = reverse;
if ((*dta_results)->trans_domains == NULL)
goto err_return;
/* At this point, we begin our domain transition analysis.
* Based upon the type of DT analysis (forward or reverse), populate dta_results structure
* with candidate trans domains by collecting all allow rules that give process
* transition access and that:
* - forward DT analysis - contain start_type in the SOURCE field
* - reverse DT analysis - contain start_type in the TARGET field
* Then:
* - forward DT analysis - select all the target types from those rules.
* - reverse DT analysis - select all the source types from those rules.
*/
classes[0] = get_obj_class_idx("process", policy);
assert(classes[0] >= 0);
perms[0] = get_perm_idx("transition", policy);
assert(perms[0] >= 0);
/* Step 1. select all rules that:
- forward DT analysis - contain start_type in the SOURCE field
- reverse DT analysis - contain start_type in the TARGET field
(keep this around; we use it later when down-selecting candidate entry point file types in step 3.c) */
/* 1. Extract the trans domain types for process transition perm, and add to our result
keeping track if type already added in to b_type (i.e. our types scratch pad array) */
for(i = 0; i < policy->num_av_access; i++) {
/* Skip neverallow rules */
if ((policy->av_access)[i].type != RULE_TE_ALLOW)
continue;
if (reverse) {
rule_uses_type_tgt = does_av_rule_idx_use_type(i, 0, start_idx,
IDX_TYPE, TGT_LIST, TRUE,
policy);
if (rule_uses_type_tgt == -1)
goto err_return;
if (!rule_uses_type_tgt)
continue;
} else {
rule_uses_type_src = does_av_rule_idx_use_type(i, 0, start_idx,
IDX_TYPE, SRC_LIST, TRUE,
policy);
if (rule_uses_type_src == -1)
goto err_return;
if (!rule_uses_type_src)
continue;
}
if (does_av_rule_use_classes(i, 1, classes, 1, policy) &&
does_av_rule_use_perms(i, 1, perms, 1, policy)) {
/* 2.a we have a rule that allows process tran access, add its' data to pur results for now */
rt = dta_add_process_trans_data(dta_query, i, b_type, *dta_results, policy);
if(rt != 0)
goto err_return;
}
}
/* At this point, we have a list of all trans types (and associated list of rules) that
* allow process transition permission ...
* - reverse DT analysis - to the start_domain
* - forward DT analysis - from the start_domain
* Now we need to take each trans type, and look for file types that provide:
* - forward DT analysis - the start_domain file execute and the trans type file entrypoint access.
* - reverse DT analysis - the start_domain file entrypoint and the trans type file execute access.
*/
/* 3. get all the file types for the candidate trans types */
/* set up some temporary structure for our search. */
classes[0] = get_obj_class_idx("file", policy);
assert(classes[0] >= 0);
if(reverse) {
perms[0] = get_perm_idx("execute", policy);
perms2[0] = get_perm_idx("entrypoint", policy);
}
else {
perms[0] = get_perm_idx("entrypoint", policy);
perms2[0] = get_perm_idx("execute", policy);
}
assert(perms[0] >= 0);
assert(perms2[0] >= 0);
/* Loop through each trans type and find all allow rules that provide:
* - forward DT analysis - the start_domain file execute and the trans type file entrypoint access.
* - reverse DT analysis - the start_domain file entrypoint and the trans type file execute access.
*/
for(ll_node = (*dta_results)->trans_domains->head; ll_node != NULL; ) {
t_ptr = (trans_domain_t *)ll_node->data;
assert(t_ptr != NULL);
/* Filter endtypes if indicated. */
if (dta_query->use_endtype_filters &&
find_int_in_array(t_ptr->trans_type, dta_query->filter_types, dta_query->num_filter_types) < 0) {
/* Remove from list since it is to be filtered */
if(ll_unlink_node((*dta_results)->trans_domains, ll_node) !=0)
goto err_return;
ll_node = ll_node_free(ll_node, free_trans_domain);
continue;
}
memset(b_type, 0, policy->num_types * sizeof(bool_t));
/* 3.a Retrieve all rules with the transition type as SOURCE
* - forward DT analysis - and that have file execute access.
* - reverse DT analysis - and that have file entrypoint access.
*/
for(i = 0; i < policy->num_av_access; i++) {
/* Skip neverallow rules */
if ((policy->av_access)[i].type != RULE_TE_ALLOW)
continue;
rule_uses_type_src = does_av_rule_idx_use_type(i, 0, t_ptr->trans_type,
IDX_TYPE, SRC_LIST, TRUE,
policy);
if (rule_uses_type_src == -1)
goto err_return;
if (!rule_uses_type_src)
continue;
/*
* 3.b Filter out rules that allow the current trans_type ...
* - forward DT analysis - file entrypoint access.
* - reverse DT analysis - file execute access.
* Then extract candidate entrypoint file types from those rules. */
if (does_av_rule_use_classes(i, 1, classes, 1, policy) &&
does_av_rule_use_perms(i, 1, perms, 1, policy)) {
rt = dta_add_file_entrypoint_type(reverse, i, b_type, t_ptr, policy);
if(rt != 0)
goto err_return;
}
}
/* 3.c for each candidate entrypoint file type, now look for rules that provide:
* - forward DT analysis - the start_type with file execute access to the entrypoint file.
* - reverse DT analysis - the start_type with file entrypoint access to the entrypoint file.
*/
for(ll_node2 = t_ptr->entry_types->head; ll_node2 != NULL;) {
ep = (entrypoint_type_t *) ll_node2->data;
assert(ep != NULL);
for(i = 0; i < policy->num_av_access; i++) {
/* Skip neverallow rules */
if ((policy->av_access)[i].type != RULE_TE_ALLOW)
continue;
rule_uses_type_src = does_av_rule_idx_use_type(i, 0, start_idx,
IDX_TYPE, SRC_LIST, TRUE,
policy);
if (rule_uses_type_src == -1)
return -1;
if (!rule_uses_type_src)
continue;
/* To be of interest, rule must have SOURCE field as start_type, be an allow
* rule, provide file execute (forward DT) or file entrypoint (reverse DT) access
* to the current entrypoint file type, and relate to file class objects. */
rule_uses_type_tgt = does_av_rule_idx_use_type(i, 0, ep->file_type,
IDX_TYPE, TGT_LIST,
TRUE, policy);
if (rule_uses_type_tgt == -1)
return -1;
if (!rule_uses_type_tgt)
continue;
if(does_av_rule_use_classes(i, 1, classes, 1, policy) &&
does_av_rule_use_perms(i, 1, perms2, 1, policy)) {
rt = dta_add_rule_to_entry_point_type(reverse, i, ep);
if(rt != 0)
goto err_return;
}
}
/* 3.d At this point if a candidate file type does not have any ...
* - forward DT analysis - file execute rules
* - reverse DT analysis - file entrypoint rules
* then it fails all 3 criteria and we remove it from the trans_type.
* We don't have to check for ...
* - forward DT analysis - file entrypoint rules
* - reverse DT analysis - file execute rules
* because the file type would not even be in the list if it didn't
* already have at least one ...
* - forward DT analysis - file entrypoint rule.
* - reverse DT analysis - file execute rule.
*/
if(reverse) {
if(ep->num_ep_rules < 1) {
assert(ep->ep_rules == NULL);
if(ll_unlink_node(t_ptr->entry_types, ll_node2) != 0)
goto err_return;
ll_node2 = ll_node_free(ll_node2, free_entrypoint_type);
}
else {
/* interate */
ll_node2 = ll_node2->next;
}
}
else {
if(ep->num_ex_rules < 1) {
assert(ep->ex_rules == NULL);
if(ll_unlink_node(t_ptr->entry_types, ll_node2) != 0)
goto err_return;
ll_node2 = ll_node_free(ll_node2, free_entrypoint_type);
}
else {
/* interate */
ll_node2 = ll_node2->next;
}
}
}
/* 3.e at this point, if a candidate trans_types do not have any entrypoint file types,
* remove it since it fails the criteria */
if(t_ptr->entry_types->num < 1) {
if(ll_unlink_node((*dta_results)->trans_domains, ll_node) !=0)
goto err_return;
ll_node = ll_node_free(ll_node, free_trans_domain);
}
else {
/* interate */
ll_node = ll_node->next;
}
}
if(b_type != NULL) free(b_type);
return 0;
err_return:
free_domain_trans_analysis(*dta_results);
if(b_type != NULL) free(b_type);
return -1;
}
/*
* Starts Types Relationship Analysis functions:
*/
types_relation_query_t *types_relation_query_create(void)
{
types_relation_query_t *q = (types_relation_query_t*)malloc(sizeof(types_relation_query_t));
if (q == NULL) {
fprintf(stderr, "Memory error!\n");
return NULL;
}
memset(q, 0, sizeof(types_relation_query_t));
q->type_A = -1;
q->type_B = -1;
q->options = TYPES_REL_NO_OPTS;
return q;
}
void types_relation_query_destroy(types_relation_query_t *q)
{
assert(q != NULL);
if (q->type_name_A)
free(q->type_name_A);
if (q->type_name_B)
free(q->type_name_B);
if (q->dta_query)
dta_query_destroy(q->dta_query);
if (q->direct_flow_query)
iflow_query_destroy(q->direct_flow_query);
if (q->trans_flow_query)
iflow_query_destroy(q->trans_flow_query);
free(q);
}
static types_relation_obj_access_t *types_relation_obj_access_create(void)
{
types_relation_obj_access_t *t =
(types_relation_obj_access_t*)malloc(sizeof(types_relation_obj_access_t));
if (t == NULL) {
fprintf(stderr, "Memory error!\n");
return NULL;
}
memset(t, 0, sizeof(types_relation_obj_access_t));
return t;
}
static void types_relation_obj_access_destroy(types_relation_obj_access_t *t)
{
assert(t != NULL);
if (t->objs_A)
free(t->objs_A);
if (t->objs_B)
free(t->objs_B);
free(t);
}
types_relation_results_t *types_relation_create_results(void)
{
types_relation_results_t *tra;
tra = (types_relation_results_t *)malloc(sizeof(types_relation_results_t));
if (tra == NULL) {
fprintf(stderr, "out of memory");
return NULL;
}
memset(tra, 0, sizeof(types_relation_results_t));
tra->type_A = -1;
tra->type_B = -1;
return tra;
}
static void types_relation_destroy_type_access_pool(types_relation_type_access_pool_t *p)
{
int i;
assert(p != NULL);
for (i = 0; i < p->num_types; i++) {
if (p->type_rules[i]->rules)
free(p->type_rules[i]->rules);
}
free(p->type_rules);
if (p->types) free(p->types);
free(p);
}
void types_relation_destroy_results(types_relation_results_t *tra)
{
assert(tra != NULL);
if (tra->common_attribs) {
free(tra->common_attribs);
}
if (tra->common_roles) {
free(tra->common_roles);
}
if (tra->common_users) {
free(tra->common_users);
}
if (tra->dta_results_A_to_B)
free_domain_trans_analysis(tra->dta_results_A_to_B);
if (tra->dta_results_B_to_A)
free_domain_trans_analysis(tra->dta_results_B_to_A);
if (tra->direct_flow_results)
iflow_destroy(tra->direct_flow_results);
if (tra->trans_flow_results_A_to_B)
iflow_transitive_destroy(tra->trans_flow_results_A_to_B);
if (tra->trans_flow_results_B_to_A)
iflow_transitive_destroy(tra->trans_flow_results_B_to_A);
if (tra->tt_rules_results)
free(tra->tt_rules_results);
if (tra->allow_rules_results)
free(tra->allow_rules_results);
if (tra->common_obj_types_results)
types_relation_obj_access_destroy(tra->common_obj_types_results);
if (tra->unique_obj_types_results)
types_relation_obj_access_destroy(tra->unique_obj_types_results);
if (tra->typeA_access_pool) types_relation_destroy_type_access_pool(tra->typeA_access_pool);
if (tra->typeB_access_pool) types_relation_destroy_type_access_pool(tra->typeB_access_pool);
free(tra);
return;
}
static int types_relation_find_common_attributes(types_relation_query_t *tra_query,
types_relation_results_t **tra_results,
policy_t *policy)
{
int attrib_idx, rt;
int *attribs_A = NULL, *attribs_B = NULL;
int num_attribs_A = 0, num_attribs_B = 0;
assert(policy != NULL || tra_query != NULL || tra_results != NULL);
/* Get attribs for type A */
rt = get_type_attribs(tra_query->type_A, &num_attribs_A, &attribs_A, policy);
if (rt != 0) {
fprintf(stderr, "Unexpected error getting attributes for type A.\n\n");
return -1;
}
/* Get attribs for type B */
rt = get_type_attribs(tra_query->type_B, &num_attribs_B, &attribs_B, policy);
if (rt != 0) {
fprintf(stderr, "Unexpected error getting attributes for type B.\n\n");
goto err;
}
/* Get the intersection of both attribute sets (i.e. members which are in both sets) */
if (num_attribs_A && num_attribs_B) {
for (attrib_idx = 0; attrib_idx < policy->num_attribs; attrib_idx++) {
if ((find_int_in_array(attrib_idx, attribs_A, num_attribs_A) >= 0) &&
(find_int_in_array(attrib_idx, attribs_B, num_attribs_B) >= 0)) {
if (add_i_to_a(attrib_idx, &(*tra_results)->num_common_attribs,
&(*tra_results)->common_attribs) != 0) {
goto err;
}
}
}
}
if (attribs_A) free(attribs_A);
if (attribs_B) free(attribs_B);
return 0;
err:
if (attribs_A) free(attribs_A);
if (attribs_B) free(attribs_B);
return -1;
}
static int types_relation_find_common_roles(types_relation_query_t *tra_query,
types_relation_results_t **tra_results,
policy_t *policy)
{
int role_idx, rt;
int *roles_A = NULL, *roles_B = NULL;
int num_roles_A = 0, num_roles_B = 0;
assert(policy != NULL || tra_query != NULL || tra_results != NULL);
/* Get roles for type A */
rt = get_type_roles(tra_query->type_A, &num_roles_A, &roles_A, policy);
if (rt != 0) {
fprintf(stderr, "Unexpected error getting roles for type A.\n\n");
return -1;
}
/* Get roles for type B */
rt = get_type_roles(tra_query->type_B, &num_roles_B, &roles_B, policy);
if (rt != 0) {
fprintf(stderr, "Unexpected error getting roles for type B.\n\n");
goto err;
}
/* Get the intersection of both role sets (i.e. members which are in both sets) */
if (num_roles_A && num_roles_B) {
for (role_idx = 0; role_idx < policy->num_roles; role_idx++) {
if ((find_int_in_array(role_idx, roles_A, num_roles_A) >= 0) &&
(find_int_in_array(role_idx, roles_B, num_roles_B) >= 0)) {
if (add_i_to_a(role_idx, &(*tra_results)->num_common_roles,
&(*tra_results)->common_roles) != 0) {
goto err;
}
}
}
}
if (roles_A) free(roles_A);
if (roles_B) free(roles_B);
return 0;
err:
if (roles_A) free(roles_A);
if (roles_B) free(roles_B);
return -1;
}
static int types_relation_find_common_users(types_relation_query_t *tra_query,
types_relation_results_t **tra_results,
policy_t *policy)
{
int user_idx, rt;
int *users_A = NULL, *users_B = NULL;
int num_users_A = 0, num_users_B = 0;
assert(policy != NULL || tra_query != NULL || tra_results != NULL);
/* Get users for type A */
rt = get_type_users(tra_query->type_A, &num_users_A, &users_A, policy);
if (rt != 0) {
fprintf(stderr, "Unexpected error getting users for type A.\n\n");
return -1;
}
/* Get users for type B */
rt = get_type_users(tra_query->type_B, &num_users_B, &users_B, policy);
if (rt != 0) {
fprintf(stderr, "Unexpected error getting users for type B.\n\n");
goto err;
}
/* Get the intersection of both user sets (i.e. members which are in both sets) */
if (num_users_A && num_users_B) {
for (user_idx = 0; user_idx < policy->num_users; user_idx++) {
if ((find_int_in_array(user_idx, users_A, num_users_A) >= 0) &&
(find_int_in_array(user_idx, users_B, num_users_B) >= 0)) {
if (add_i_to_a(user_idx, &(*tra_results)->num_common_users,
&(*tra_results)->common_users) != 0) {
goto err;
}
}
}
}
if (users_A) free(users_A);
if (users_B) free(users_B);
return 0;
err:
if (users_A) free(users_A);
if (users_B) free(users_B);
return -1;
}
/* This function finds any FORWARD DOMAIN TRANSITIONS from typeA->typeB and from typeB->typeA.
* It will configure all necessary query paramters, except for any optional object
* classes/permissions and object types. */
static int types_relation_find_domain_transitions(types_relation_query_t *tra_query,
types_relation_results_t **tra_results,
policy_t *policy)
{
int rt;
assert(tra_query != NULL && tra_results != NULL
&& *tra_results != NULL && policy != NULL);
/* Set direction paramter for both queries. */
tra_query->dta_query->reverse = FALSE;
tra_query->dta_query->use_endtype_filters = TRUE;
/* Find transitions from typeA->typeB. First we configure the
* DTA query arguments to have typeA as the starting domain and type B as the only end type. */
tra_query->dta_query->start_type = tra_query->type_A;
if (add_i_to_a(tra_query->type_B, &tra_query->dta_query->num_filter_types,
&tra_query->dta_query->filter_types) != 0) {
fprintf(stderr, "Error adding Type B to end type filter for domain transition.\n");
return -1;
}
rt = determine_domain_trans(tra_query->dta_query,
&(*tra_results)->dta_results_A_to_B,
policy);
/* Free endtype filter array and reset number to zero so we can run the analysis in the opposite direction. */
free(tra_query->dta_query->filter_types);
tra_query->dta_query->filter_types = NULL;
tra_query->dta_query->num_filter_types = 0;
if (rt == -2) {
fprintf(stderr, "Type A is not a valid type\n");
return -1;
} else if (rt < 0) {
fprintf(stderr, "Error with domain transition analysis\n");
return -1;
}
/* Find transitions from typeB->typeA. First we configure the
* DTA query arguments to have typeB as the starting domain and type A as the only end type. */
tra_query->dta_query->start_type = tra_query->type_B;
if (add_i_to_a(tra_query->type_A, &tra_query->dta_query->num_filter_types,
&tra_query->dta_query->filter_types) != 0) {
fprintf(stderr, "Error adding Type A to end type filter for domain transition.\n");
return -1;
}
rt = determine_domain_trans(tra_query->dta_query,
&(*tra_results)->dta_results_B_to_A,
policy);
/* Free endtype filter array */
free(tra_query->dta_query->filter_types);
tra_query->dta_query->filter_types = NULL;
if (rt == -2) {
fprintf(stderr, "Type B is not a valid type\n");
return -1;
} else if (rt < 0) {
fprintf(stderr, "Error with domain transition analysis\n");
return -1;
}
return 0;
}
/* This function finds any DIRECT FLOWS from typeA->typeB and from typeB->typeA. It will
* configure all necessary query parameters, except for any optional filters on object
* classes/permissions. */
static int types_relation_find_direct_flows(types_relation_query_t *tra_query,
types_relation_results_t **tra_results,
policy_t *policy)
{
assert(tra_query != NULL && tra_results != NULL
&& *tra_results != NULL && policy != NULL);
/* Set direction paramter to BOTH, in order to find direct
* flows both into and out of typeA [from/to] typeB. */
tra_query->direct_flow_query->direction = IFLOW_EITHER;
/* Configure the query arguments to have typeA as
* the starting domain and the end type as typeB. */
tra_query->direct_flow_query->start_type = tra_query->type_A;
tra_query->direct_flow_query->num_end_types = 0;
if (tra_query->direct_flow_query->end_types)
free(tra_query->direct_flow_query->end_types);
if (iflow_query_add_end_type(tra_query->direct_flow_query, tra_query->type_B) != 0) {
fprintf(stderr, "Error adding end type to query!\n");
return -1;
}
/* Get direct flows from typeA->typeB and from typeB->typeA. */
if (iflow_direct_flows(policy, tra_query->direct_flow_query,
&(*tra_results)->num_dirflows,
&(*tra_results)->direct_flow_results) < 0) {
fprintf(stderr, "There were errors in the direct information flow analysis\n");
return -1;
}
return 0;
}
/* This function finds any TRANSITIVE FLOWS from typeA->typeB and from typeB->typeA.
* All necessary query parameters will be configured, except for any optional filters
* on object classes/permissions and intermediate types. */
static int types_relation_find_trans_flows(types_relation_query_t *tra_query,
types_relation_results_t **tra_results,
policy_t *policy)
{
assert(tra_query != NULL && tra_results != NULL
&& *tra_results != NULL && policy != NULL);
tra_query->trans_flow_query->direction = IFLOW_OUT;
/* Configure the query arguments to have typeA as
* the starting domain and the end type as typeB. */
tra_query->trans_flow_query->start_type = tra_query->type_A;
tra_query->trans_flow_query->num_end_types = 0;
if (tra_query->trans_flow_query->end_types)
free(tra_query->trans_flow_query->end_types);
if (iflow_query_add_end_type(tra_query->trans_flow_query, tra_query->type_B) != 0) {
fprintf(stderr, "Error adding end type to query!\n");
return -1;
}
if (((*tra_results)->trans_flow_results_A_to_B =
iflow_transitive_flows(policy, tra_query->trans_flow_query)) == NULL) {
fprintf(stderr, "There were errors in the information flow analysis\n");
return -1;
}
/* Configure the query arguments to have typeB as
* the starting domain and the end type as typeA. */
tra_query->trans_flow_query->start_type = tra_query->type_B;
tra_query->trans_flow_query->num_end_types = 0;
if (tra_query->trans_flow_query->end_types) {
free(tra_query->trans_flow_query->end_types);
tra_query->trans_flow_query->end_types = NULL;
}
if (iflow_query_add_end_type(tra_query->trans_flow_query, tra_query->type_A) != 0) {
fprintf(stderr, "Error adding end type to query!\n");
return -1;
}
if (((*tra_results)->trans_flow_results_B_to_A =
iflow_transitive_flows(policy, tra_query->trans_flow_query)) == NULL) {
fprintf(stderr, "There were errors in the information flow analysis\n");
return -1;
}
return 0;
}
static int types_relation_search_te_rules(teq_query_t *query,
teq_results_t *results,
char *ta1, char *ta2,
policy_t *policy)
{
int rt;
assert(query != NULL && results != NULL && policy != NULL);
if (ta1 != NULL) {
(*query).ta1.ta = (char *)malloc((strlen(ta1) + 1) * sizeof(char));
if ((*query).ta1.ta == NULL) {
fprintf(stderr, "out of memory");
return -1;
}
strcpy((*query).ta1.ta, ta1); /* The ta1 string */
}
if (ta2 != NULL) {
(*query).ta2.ta = (char *)malloc((strlen(ta2) + 1) * sizeof(char));
if ((*query).ta2.ta == NULL) {
fprintf(stderr, "out of memory");
return -1;
}
strcpy((*query).ta2.ta, ta2); /* The ta2 string */
}
/* search rules */
rt = search_te_rules(query, results, policy);
if (rt < 0) {
if ((*results).errmsg) {
fprintf(stderr, "%s", (*results).errmsg);
free((*results).errmsg);
} else {
fprintf(stderr, "Unrecoverable error when searching TE rules.");
}
return -1;
}
return 0;
}
/* This function finds all type transition rules that relate typeA<->typeB.
* It starts by searching type transition/change/member rules with typeA as
* the source and then flips the query to search for typeB as the source*/
static int types_relation_find_type_trans_rules(types_relation_query_t *tra_query,
types_relation_results_t **tra_results,
policy_t *policy)
{
teq_query_t query;
teq_results_t results;
int i, rt, tt_rule_idx, rule_pass, is_typeA_rule, is_typeB_rule;
int cnt = 0; /* Variable needed for the does_tt_rule_use_type() function we will call. */
assert(tra_query != NULL && tra_results != NULL
&& *tra_results != NULL && policy != NULL);
init_teq_query(&query);
init_teq_results(&results);
query.rule_select |= TEQ_TYPE_TRANS;
query.rule_select |= TEQ_TYPE_MEMBER;
query.rule_select |= TEQ_TYPE_CHANGE;
query.use_regex = FALSE;
query.only_enabled = 1;
/* Query for all type trans/change/member rules */
rt = types_relation_search_te_rules(&query, &results, NULL, NULL, policy);
if (rt != 0) {
fprintf(stderr, "Problem searching TE rules");
goto err;
}
free_teq_query_contents(&query);
for (i = 0; i < results.num_type_rules; i++) {
tt_rule_idx = results.type_rules[i];
/* Does this rule have typeA in its' source types list? */
is_typeA_rule = does_tt_rule_use_type(tra_query->type_A, IDX_TYPE, SRC_LIST,
TRUE, &(policy->te_trans[tt_rule_idx]),
&cnt, policy);
if (is_typeA_rule == -1)
goto err;
/* Does this rule have typeB in its' source types list? */
is_typeB_rule = does_tt_rule_use_type(tra_query->type_B, IDX_TYPE, SRC_LIST,
TRUE, &(policy->te_trans[tt_rule_idx]),
&cnt, policy);
if (is_typeB_rule == -1)
goto err;
/* Skip this rule if it contains neither typeA or typeB in source list */
if (!is_typeA_rule && !is_typeB_rule)
continue;
if (is_typeA_rule) {
/* Does this rule have typeB in its' target or default type list? */
rule_pass = does_tt_rule_use_type(tra_query->type_B, IDX_TYPE, (TGT_LIST | DEFAULT_LIST),
TRUE, &(policy->te_trans[tt_rule_idx]),
&cnt, policy);
if (rule_pass == -1)
goto err;
if (rule_pass) {
if (find_int_in_array(tt_rule_idx, (*tra_results)->tt_rules_results,
(*tra_results)->num_tt_rules) < 0) {
if (add_i_to_a(tt_rule_idx, &(*tra_results)->num_tt_rules,
&(*tra_results)->tt_rules_results) != 0) {
goto err;
}
}
}
}
if (is_typeB_rule) {
/* Does this rule have typeA in its' target or default type list? */
rule_pass = does_tt_rule_use_type(tra_query->type_A, IDX_TYPE, (TGT_LIST | DEFAULT_LIST),
TRUE, &(policy->te_trans[tt_rule_idx]),
&cnt, policy);
if (rule_pass == -1)
goto err;
if (rule_pass) {
if (find_int_in_array(tt_rule_idx, (*tra_results)->tt_rules_results,
(*tra_results)->num_tt_rules) < 0) {
if (add_i_to_a(tt_rule_idx, &(*tra_results)->num_tt_rules,
&(*tra_results)->tt_rules_results) != 0) {
goto err;
}
}
}
}
}
free_teq_results_contents(&results);
return 0;
err:
free_teq_query_contents(&query);
free_teq_results_contents(&results);
return -1;
}
/* This function finds all te rules that relate TypeA and TypeB. */
static int types_relation_find_te_rules(types_relation_query_t *tra_query,
types_relation_results_t **tra_results,
policy_t *policy)
{
int rule_idx, rule_pass, is_typeA_rule, is_typeB_rule;
assert(tra_query != NULL && tra_results != NULL
&& *tra_results != NULL && policy != NULL);
/* Loop throough all av access rules and check for a rule that has typeA or typeB as source.
* If so, the perform further analysis on the target type of the rule. */
for (rule_idx = 0; rule_idx < policy->num_av_access; rule_idx++) {
/* Skip neverallow rules */
if ((policy->av_access)[rule_idx].type != RULE_TE_ALLOW)
continue;
/* Does this rule have typeA in its' source types list? */
is_typeA_rule = does_av_rule_idx_use_type(rule_idx, 0, tra_query->type_A,
IDX_TYPE, SRC_LIST, TRUE,
policy);
if (is_typeA_rule == -1)
return -1;
/* Does this rule have typeB in its' source types list? */
is_typeB_rule = does_av_rule_idx_use_type(rule_idx, 0, tra_query->type_B,
IDX_TYPE, SRC_LIST, TRUE,
policy);
if (is_typeB_rule == -1)
return -1;
/* Skip this rule if it contains neither typeA or typeB in source list */
if (!(is_typeA_rule || is_typeB_rule))
continue;
if (is_typeA_rule) {
/* Does this rule have typeB in its' target list? */
rule_pass = does_av_rule_idx_use_type(rule_idx, 0, tra_query->type_B,
IDX_TYPE, TGT_LIST, TRUE,
policy);
if (rule_pass == -1)
return -1;
if (rule_pass) {
if (find_int_in_array(rule_idx, (*tra_results)->allow_rules_results,
(*tra_results)->num_allow_rules) < 0) {
if (add_i_to_a(rule_idx, &(*tra_results)->num_allow_rules,
&(*tra_results)->allow_rules_results) != 0) {
return -1;
}
}
}
}
if (is_typeB_rule) {
/* Does this rule have typeA in its' target list? */
rule_pass = does_av_rule_idx_use_type(rule_idx, 0, tra_query->type_A,
IDX_TYPE, TGT_LIST, TRUE,
policy);
if (rule_pass == -1)
return -1;
if (rule_pass) {
if (find_int_in_array(rule_idx, (*tra_results)->allow_rules_results,
(*tra_results)->num_allow_rules) < 0) {
if (add_i_to_a(rule_idx, &(*tra_results)->num_allow_rules,
&(*tra_results)->allow_rules_results) != 0) {
return -1;
}
}
}
}
}
return 0;
}
static types_relation_type_access_pool_t *types_relation_create_type_access_pool(policy_t *policy)
{
int k;
types_relation_type_access_pool_t *all_unique_rules_pool =
(types_relation_type_access_pool_t *)malloc(sizeof(types_relation_type_access_pool_t));
if (all_unique_rules_pool == NULL) {
fprintf(stderr, "out of memory\n");
return NULL;
}
memset(all_unique_rules_pool, 0, sizeof(types_relation_type_access_pool_t));
all_unique_rules_pool->type_rules =
(types_relation_rules_t **)malloc(policy->num_types * sizeof(types_relation_rules_t*));
for (k = 0; k < policy->num_types; k++) {
all_unique_rules_pool->type_rules[k] = (types_relation_rules_t *)malloc(sizeof(types_relation_rules_t));
if (all_unique_rules_pool->type_rules[k] == NULL) {
fprintf(stderr, "out of memory\n");
types_relation_destroy_type_access_pool(all_unique_rules_pool);
return NULL;
}
memset(all_unique_rules_pool->type_rules[k], 0, sizeof(types_relation_rules_t));
all_unique_rules_pool->num_types = all_unique_rules_pool->num_types + 1;
}
return all_unique_rules_pool;
}
static int types_relation_add_to_type_access_pool(types_relation_type_access_pool_t *p, int rule_idx, int type_idx, policy_t *policy)
{
assert(p != NULL && policy != NULL);
assert(is_valid_type_idx(type_idx, policy) && is_valid_av_rule_idx(rule_idx, 1, policy));
/* Only add to the list if the type doesn't already exist */
if (find_int_in_array(type_idx, p->types, p->num_types) < 0) {
if (add_i_to_a(type_idx, &p->num_types, &p->types) != 0) {
return -1;
}
}
/* Only add to the list if the rule doesn't already exist */
if (find_int_in_array(rule_idx,
p->type_rules[type_idx]->rules,
p->type_rules[type_idx]->num_rules) < 0) {
if (add_i_to_a(rule_idx, &p->type_rules[type_idx]->num_rules, &p->type_rules[type_idx]->rules) != 0) {
return -1;
}
}
return 0;
}
/* This function finds all common object types to which both typeA and typeB have access.
* Additionally, the allow rules are included in the results. */
static int types_relation_find_obj_types_access(types_relation_query_t *tra_query,
types_relation_results_t **tra_results,
policy_t *policy)
{
int *tgt_types = NULL, num_tgt_types = 0;
int rule_idx, type_idx, j, rt;
int typeA_accesses_type, typeB_accesses_type;
types_relation_type_access_pool_t *tgt_type_access_pool_A = NULL;
types_relation_type_access_pool_t *tgt_type_access_pool_B = NULL;
assert(tra_query != NULL && tra_results != NULL
&& *tra_results != NULL && policy != NULL);
if (!(tra_query->options &
(TYPES_REL_COMMON_ACCESS | TYPES_REL_UNIQUE_ACCESS))) {
return 0;
}
/* The following are seperate databases to hold rules for typeA and typeB respectively.
* The database holds an array of pointers to types_relation_rules_t structs. The
* indices of this array correspond to type indices in the policy database. So for example,
* if we need to get the rules for typeA that have a specific type in its' target type
* list, we will be able to do so by simply specifying the index of the type we are
* interested in as the array index for tgt_type_access_pool_A. The same is true if we
* wanted to get rules for typeB that have a specific type in it's target type list, except
* we would specify the types index to tgt_type_access_pool_B. This is better for the performance
* of this analysis, as opposed to looping through all of the access rules more than once.
* Instead, the end result are 2 local databases which contain all of the information we need.
* We can then compare target types list for typeA and typeB, determine common and unique access
* and have easy access to the relevant rules. */
tgt_type_access_pool_A = types_relation_create_type_access_pool(policy);
if (tgt_type_access_pool_A == NULL) {
fprintf(stderr, "out of memory\n");
return -1;
}
tgt_type_access_pool_B = types_relation_create_type_access_pool(policy);
if (tgt_type_access_pool_B == NULL) {
types_relation_destroy_type_access_pool(tgt_type_access_pool_A);
fprintf(stderr, "out of memory\n");
return -1;
}
/* Parse all allow rules that have typeA and typeB as the source type argument and
* grow the seperate databases for typeA and typeB as needed. */
for (rule_idx = 0; rule_idx < policy->num_av_access; rule_idx++) {
/* Skip neverallow rules */
if ((policy->av_access)[rule_idx].type != RULE_TE_ALLOW)
continue;
/* Does this rule have typeA in its' source types list? */
typeA_accesses_type = does_av_rule_idx_use_type(rule_idx, 0, tra_query->type_A,
IDX_TYPE, SRC_LIST, TRUE,
policy);
if (typeA_accesses_type == -1)
goto err;
/* Does this rule have typeB in its' source types list? */
typeB_accesses_type = does_av_rule_idx_use_type(rule_idx, 0, tra_query->type_B,
IDX_TYPE, SRC_LIST, TRUE,
policy);
if (typeB_accesses_type == -1)
goto err;
/* Make sure this is a rule that has either typeA or typeB as the source. */
if (!(typeA_accesses_type || typeB_accesses_type))
continue;
/* Extract target type(s) from the rule */
rt = extract_types_from_te_rule(rule_idx, RULE_TE_ALLOW,
TGT_LIST, &tgt_types, &num_tgt_types,
policy);
if (rt < 0)
goto err;
if (rt == 2) {
/* encountered '*', so add all types
* NOTE: Start from j = 1 since we know that type index 0 is 'self' and
* we don't want to include the pdeudo type self
*/
for (j = 1; j < policy->num_types; j++) {
if (add_i_to_a(j, &num_tgt_types, &tgt_types) == -1) {
goto err;
}
}
}
/* Check to see if the rule has typeA or typeB as the source argument. */
if (typeA_accesses_type){
for (j = 0; j < num_tgt_types; j++) {
/* We don't want the pseudo type 'self' */
if (tgt_types[j] == 0) {
type_idx = tra_query->type_A;
} else {
type_idx = tgt_types[j];
}
/* Add this target type and the associated rule index to our database. */
if (types_relation_add_to_type_access_pool(tgt_type_access_pool_A, rule_idx, type_idx, policy) != 0)
goto err;
}
}
if (typeB_accesses_type) {
for (j = 0; j < num_tgt_types; j++) {
/* We don't want the pseudo type 'self' */
if (tgt_types[j] == 0) {
type_idx = tra_query->type_B;
} else {
type_idx = tgt_types[j];
}
/* Add this target type and the associated rule index to our database. */
if (types_relation_add_to_type_access_pool(tgt_type_access_pool_B, rule_idx, type_idx, policy) != 0)
goto err;
}
}
if (tgt_types != NULL) {
free(tgt_types);
tgt_types = NULL;
num_tgt_types = 0;
}
}
if (tra_query->options & TYPES_REL_COMMON_ACCESS) {
(*tra_results)->common_obj_types_results = types_relation_obj_access_create();
if ((*tra_results)->common_obj_types_results == NULL) {
fprintf(stderr, "Out of memory\n");
goto err;
}
}
if (tra_query->options & TYPES_REL_UNIQUE_ACCESS) {
(*tra_results)->unique_obj_types_results = types_relation_obj_access_create();
if ((*tra_results)->unique_obj_types_results == NULL) {
fprintf(stderr, "Out of memory\n");
goto err;
}
}
/* We now have seperate databases for typeA and typeB which consists of:
* - list of target types to which it has access.
* - list of rule records indexed by each type index in the policy. We will
* use the index for each target type to get the relative rules.
* Next, we will:
* 1. loop through each type in the policy
* 2. Determine if typeA and/or typeB have access to this particular type
* 3. If they have access to the type, then we will add this type to the common
* types list in our results. We also, add the relative rules to our results.
* 4. If either typeA or typeB has unique access to this type, then we add this
* type to the appropriate unique types list in our results. We also, add the
* relative rules to our results.
* 5. If neither typeA nor typeB have access to this type, we just skip and move
* on.
*
* Start from index 1, since index 0 is the pseudo type 'self'
*/
for (type_idx = 1; type_idx < policy->num_types; type_idx++) {
/* Determine if this is a type that typeA has access to */
typeA_accesses_type = find_int_in_array(type_idx,
tgt_type_access_pool_A->types,
tgt_type_access_pool_A->num_types);
/* Determine if this is a type that typeB has access to */
typeB_accesses_type = find_int_in_array(type_idx,
tgt_type_access_pool_B->types,
tgt_type_access_pool_B->num_types);
/* Neither typeA nor typeB have access to this type, so move on.*/
if (typeA_accesses_type < 0 && typeB_accesses_type < 0)
continue;
/* There can only be 3 cases here:
* 1. Both typeA and typeB have access to this type, hence indicating common access.
* 2. TypeA alone has access to this type, hence indicating unique access.
* 3. TypeB alone has access to this type, hence indicating unique access. */
if ((tra_query->options & TYPES_REL_COMMON_ACCESS) &&
(typeA_accesses_type >= 0) &&
(typeB_accesses_type >= 0)) {
/* Add as common target type for typeA within our results */
if (add_i_to_a(type_idx,
&(*tra_results)->common_obj_types_results->num_objs_A,
&(*tra_results)->common_obj_types_results->objs_A) != 0) {
return -1;
}
/* Add as common target type for typeA within our results */
if (add_i_to_a(type_idx,
&(*tra_results)->common_obj_types_results->num_objs_B,
&(*tra_results)->common_obj_types_results->objs_B) != 0) {
return -1;
}
} else if ((tra_query->options & TYPES_REL_UNIQUE_ACCESS) && (typeA_accesses_type >= 0)) {
/* Add the unique type to typeA's unique results */
if (add_i_to_a(type_idx,
&(*tra_results)->unique_obj_types_results->num_objs_A,
&(*tra_results)->unique_obj_types_results->objs_A) != 0) {
return -1;
}
} else if ((tra_query->options & TYPES_REL_UNIQUE_ACCESS) && (typeB_accesses_type >= 0)) {
/* Add the unique type to typeB's unique results */
if (add_i_to_a(type_idx,
&(*tra_results)->unique_obj_types_results->num_objs_B,
&(*tra_results)->unique_obj_types_results->objs_B) != 0) {
return -1;
}
}
}
/* Set pointer to access pools within results */
(*tra_results)->typeA_access_pool = tgt_type_access_pool_A;
(*tra_results)->typeB_access_pool = tgt_type_access_pool_B;
return 0;
err:
if ((*tra_results)->common_obj_types_results)
types_relation_obj_access_destroy((*tra_results)->common_obj_types_results);
if ((*tra_results)->unique_obj_types_results)
types_relation_obj_access_destroy((*tra_results)->unique_obj_types_results);
if (tgt_types != NULL) free(tgt_types);
if (tgt_type_access_pool_A) types_relation_destroy_type_access_pool(tgt_type_access_pool_A);
if (tgt_type_access_pool_B) types_relation_destroy_type_access_pool(tgt_type_access_pool_B);
return -1;
}
/***************************************************************************************
* Types Relationship Analysis (a.k.a. TRA) main function:
*
* The purpose of the types relationship analysis is to determine if there exists
* any relationship (or interactions) between typeA and typeB and exactly what
* makes up that relationship. You can control the analysis to search for any of
* the following:
* - the attribute(s) to which both types are assigned (common attribs)
* - the role(s) which have access to both TypeA and TypeB (common roles)
* - the users which have access to both TypeA and TypeB (common users)
* - any direct information flows between TypeA and TypeB (DIF analysis)
* - any transitive information flows between TypeA and TypeB (TIF analysis)
* - any domain transitions from TypeA to TypeB or from TypeB to TypeA.
* (DTA analysis)
* - all type transition rules from TypeA to TypeB or from
* TypeB to TypeA. (TE rules query)
* - object types to which both types share access.
* - any process interactions between TypeA and TypeB (e.g., allow rules that
* allow TypeA and TypeB to send signals to each other). (TE rules query)
* - types to which each TypeA and TypeB have special access. (TE rules query)
*/
int types_relation_determine_relationship(types_relation_query_t *tra_query,
types_relation_results_t **tra_results,
policy_t *policy)
{
assert(policy != NULL || tra_query != NULL || tra_results != NULL);
if (tra_query->options & TYPES_REL_NO_OPTS) {
fprintf(stderr, "No options specified.");
return -1;
}
tra_query->type_A = get_type_idx(tra_query->type_name_A, policy);
if (tra_query->type_A < 0) {
fprintf(stderr, "Invalid type A");
return -1;
}
tra_query->type_B = get_type_idx(tra_query->type_name_B, policy);
if (tra_query->type_B < 0) {
fprintf(stderr, "Invalid type B");
return -1;
}
*tra_results = types_relation_create_results();
if (*tra_results == NULL) {
fprintf(stderr, "Error creating results data structure.");
return -1;
}
/* Find common attributes */
if ((tra_query->options & TYPES_REL_COMMON_ATTRIBS) &&
types_relation_find_common_attributes(tra_query, tra_results, policy) != 0) {
types_relation_destroy_results(*tra_results);
return -1;
}
/* Find common roles */
if ((tra_query->options & TYPES_REL_COMMON_ROLES) &&
types_relation_find_common_roles(tra_query, tra_results, policy) != 0) {
types_relation_destroy_results(*tra_results);
return -1;
}
/* Find common users */
if ((tra_query->options & TYPES_REL_COMMON_USERS) &&
types_relation_find_common_users(tra_query, tra_results, policy) != 0) {
types_relation_destroy_results(*tra_results);
return -1;
}
/* Find domain transitions */
if ((tra_query->options & TYPES_REL_DOMAINTRANS) &&
types_relation_find_domain_transitions(tra_query, tra_results, policy) != 0) {
types_relation_destroy_results(*tra_results);
return -1;
}
/* Find direct information flows */
if ((tra_query->options & TYPES_REL_DIRFLOWS) &&
types_relation_find_direct_flows(tra_query, tra_results, policy) != 0) {
types_relation_destroy_results(*tra_results);
return -1;
}
/* Find transitive information flows */
if ((tra_query->options & TYPES_REL_TRANSFLOWS) &&
types_relation_find_trans_flows(tra_query, tra_results, policy) != 0) {
types_relation_destroy_results(*tra_results);
return -1;
}
/* This function finds all te rules that relate TypeA and TypeB. */
if ((tra_query->options & TYPES_REL_ALLOW_RULES) &&
types_relation_find_te_rules(tra_query, tra_results, policy) != 0) {
types_relation_destroy_results(*tra_results);
return -1;
}
/* This function finds all type transition/member/change rules that relate TypeA and TypeB. */
if ((tra_query->options & TYPES_REL_TTRULES) &&
types_relation_find_type_trans_rules(tra_query, tra_results, policy) != 0) {
types_relation_destroy_results(*tra_results);
return -1;
}
/* Find either common or unique object types to which typeA and typeB have access. */
if (types_relation_find_obj_types_access(tra_query, tra_results, policy) != 0) {
types_relation_destroy_results(*tra_results);
return -1;
}
return 0;
}
|