1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
|
// sfArkLib LPC
// copyright 1998-2000, Andy Inman
// Contact via: http://netgenius.co.uk or http://melodymachine.com
// This file is part of sfArkLib.
//
// sfArkLib is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// sfArkLib is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with sfArkLib. If not, see <http://www.gnu.org/licenses/>.
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "wcc.h"
#include "zlib.h"
void LPCinit();
#define REFINT 1 // Integers for Reflection Coefficients (faster)
#define LPCWIN 4096
#define PMAX 128 // Max allowed nc
#define ZWINMIN 128 // 128 or 256 best. Smaller - slightly slower
#define ZWINMAX ZWINMIN
#if (LPCWIN / ZWINMIN) > 32 // Check use of 32bit *Flags
#error Invalid LPCWIN / ZWINMIN
#endif
// The following parameters determine the history sized used for LPC analysis (little impact on speed)
// The history is the amount of prev
#define HISTSIZE (4*128/ZWINMIN) // Multiple of number of ZWINs to use as history size (seems best value)
typedef LAWORD LPC_WORD; // LPC_WORD must have (slightly) greater range than AWORD
// There are compatibility issues in floating point calculations between Intel and Mac versions. Not sure if this
// is a compiler issue or a processor issue -- in short on Windows it seems that calculations performed on float
// datatype get done in double precision. So, we need to force the correct precision when used on Mac.
// Better longterm solution is to force single precision for all calculations (for the compressor also) but
// that would require a version update.
#if 0 // Use double for datatypes, convert to single before storage (doesn't work!)
typedef double LPC_FLOAT;
#else // Use single for datatypes, convert to double for calculations (works)
typedef float LPC_FLOAT;
#endif
typedef double XPN; // eXtra PrecisioN during calculations
typedef float LPN; // Lower PrecisioN to store results of calculations
#define ISCALE_BITS 14 // Fixed scale seems to work fine in practice
#define ISCALE (1 << ISCALE_BITS)
#if REFINT == 1
typedef long LPC_PRAM;
#else
typedef LPC_FLOAT LPC_PRAM;
#endif
typedef LPC_FLOAT LPC_CORR;
typedef LPC_FLOAT LPC_CORR2; // Holds LPC_CORR*LPC_CORR
// ======================================================================
LPC_CORR schur( // returns the minimum mean square error
LPC_CORR const * ac, // in: [0...p] autocorrelation values
int nc, // in: number of ref. coeff
LPC_PRAM * ref) // out: [0...p-1] reflection coefficients
{
int i, m;
LPC_CORR2 error, r;
LPC_CORR2 Gen0[PMAX], Gen1[PMAX];
if (ac[0] == 0)
{
for (i = 0; i < nc; i++) ref[i] = 0;
return 0;
}
// Initialize the rows of the generator matrix G to ac[1...p].
error = ac[0];
for (i = 0; i < nc; i++)
Gen0[i] = Gen1[i] = ac[i + 1];
// static int blk = 0;
for (i = 0;;)
{
// Calculate this iteration's reflection coefficient and error.
r = - (LPN) ((XPN)Gen1[0] / (XPN)error);
error = (LPN) ( (XPN)error + ((XPN)Gen1[0] * (XPN)r) );
#if REFINT == 1
ref[i] = (LPC_PRAM) ( (LPN)((XPN)r * ISCALE)) ; // Scale-up to avoid loss of precision
#else
ref[i] = r;
#endif
if (++i >= nc) break;
// Update the generator matrix.
for (m = 0; m < nc - i; m++)
{
// Gen1[m] = (XPN) Gen1[m + 1] + ((XPN) r * (XPN) Gen0[m]);
// Gen0[m] = (XPN) Gen0[m] + ((XPN) r * (XPN) Gen1[m + 1]);
Gen1[m] = (LPN) ( (XPN) Gen1[m + 1] + ((XPN) r * (XPN) Gen0[m]) );
Gen0[m] = (LPN) ( (XPN) Gen0[m] + ((XPN) r * (XPN) Gen1[m + 1]) );
}
}
// blk++;
return error;
}
// ======================================================================
// Compute the autocorrelation
void autocorrelation(int n, LPC_WORD const *ibuf, int nc, LPC_CORR *ac)
{
int i;
// Copy integer data to float -- speeds things up slightly...
LPC_FLOAT buf[ZWINMAX];
for (i = 0; i < n ; i++) buf[i] = (LPC_FLOAT) ibuf[i];
while (nc--)
{
LPC_CORR c = 0;
LPC_FLOAT const *lbuf = buf + nc; // Points to current sample + nc
#define CI(I) ( ((XPN)buf[I] * (XPN)lbuf[I]) )
//#define CI(I) (buf[I] * lbuf[I])
int istop = n - nc - 15; // Process 16 steps at a time for speed...
for (i = 0; i < istop; i += 16)
c = (LPN) ((XPN) c + CI(i+0) + CI(i+1) + CI(i+2) + CI(i+3) + CI(i+4) + CI(i+5) + CI(i+6) + CI(i+7)
+ CI(i+8) + CI(i+9) + CI(i+10)+ CI(i+11)+ CI(i+12)+ CI(i+13)+ CI(i+14)+ CI(i+15) );
istop = n - nc; // Process any remainder, one step at a time...
for (; i < istop; i++)
c = (LPN) ( (XPN) c + CI(i) );
ac[nc] = c;
#undef CI
}
}
// ======================================================================
// Add the autocorrelation for the end section of previous Window / start of current window
void AddAC (LPC_WORD const *hbuf, LPC_WORD const *ibuf, int nc, LPC_CORR *ac)
{
int i;
// Copy integer data to float -- speeds things up slightly...
LPC_FLOAT buf[PMAX*2];
int n = nc-1; // Number of samples is always one less than nc value
for (i = 0; i < n ; i++)
{
buf[i] = (LPC_FLOAT) hbuf[i];
buf[i + n] = (LPC_FLOAT) ibuf[i];
}
while (nc-- > 1)
{
LPC_CORR c = 0;
LPC_FLOAT const *lbuf = buf + nc; // Points to current sample + nc
int istop;
#define CI(I) ( ((XPN)buf[I] * (XPN)lbuf[I]) )
//#define CI(I) (buf[I] * lbuf[I])
istop = n - 15; // Process 16 steps at a time for speed...
i = n - nc;
for (; i < istop; i += 16)
c = (LPN) ( (XPN) c + CI(i+0) + CI(i+1) + CI(i+2) + CI(i+3) + CI(i+4) + CI(i+5) + CI(i+6) + CI(i+7)
+ CI(i+8) + CI(i+9) + CI(i+10)+ CI(i+11)+ CI(i+12)+ CI(i+13)+ CI(i+14)+ CI(i+15) );
istop = n; // Process any remainder, one step at a time...
for (; i < istop; i++)
c = (LPN) ( (XPN) c + (XPN) CI(i) );
ac[nc] = (LPN) ( (XPN) ac[nc] + (XPN) c );
#undef CI
}
}
// ======================================================================
static void LPCdecode(
LPC_PRAM const *ref, // in: [0...p-1] reflection coefficients
int nc, // in: number of coefficients
int n, // # of samples
LPC_WORD const *in, // [0...n-1] residual input
LPC_WORD *out) // out: [0...n-1] short-term signal
{
LPC_WORD s;
static LPC_WORD u[PMAX+1]; // NB: Intermediate values here can be out of range of AWORD
int i;
if (in == LAW_NULL) // Initialise?
{
for (i = 0; i < PMAX; i++) u[i] = 0;
return;
}
while (n--)
{
s = *in++;
#if REFINT == 1 //22.4 8gm
// ------------------------------------------------------
#define LPC_AN1(I) \
s -= SDIV(refp[I] * up[I], ISCALE_BITS); \
up[I+1] = up[I] + SDIV(refp[I] * s, ISCALE_BITS); \
// ------------------------------------------------------
LPC_PRAM const *refp = ref+nc-1;
LPC_WORD *up = u+nc-1;
while(refp >= ref)
{
LPC_AN1(0) ; LPC_AN1(-1); LPC_AN1(-2); LPC_AN1(-3);
LPC_AN1(-4); LPC_AN1(-5); LPC_AN1(-6); LPC_AN1(-7);
up -= 8; refp -= 8;
}
#undef LPC_AN1
#else
for (i = nc; i--;)
{
#if REFINT == 1
#if 1 // Use SDIV
long m;
m = ( ref[i] * u[i] );
s = ( s - SDIV(m, ISCALE_BITS) );
m = ( ref[i] * s );
u[i+1] = ( u[i] + SDIV(m, ISCALE_BITS) );
#else
s = s - ref[i] * u[i] / ISCALE;
u[i+1] = u[i] + (ref[i] * s / ISCALE);
#endif
#else // Use floating point, convert to int...
s = s - (int) (ref[i] * u[i]);
u[i+1] = u[i] + (int) (ref[i] * s);
#endif
}
#endif
*out++ = u[0] = s;
}
}
// ======================================================================
// UnLPC2() is called by UnLPC() -- process one LPCWIN sized chunk
long UnLPC2(LPC_WORD *OutBuf, LPC_WORD *InBuf, short bufsize, short nc, ULONG *Flags)
{
static LPC_WORD HistBuf[PMAX*2];
static LPC_CORR AcHist[HISTSIZE][PMAX+1];
static int HistNum;
LPC_PRAM ref[PMAX];
LPC_CORR ac[PMAX+1];
int i, k;
ULONG FlagMask = 1;
int zwin = ZWINMIN;
if (nc > zwin) zwin = ZWINMAX;
if (InBuf == LAW_NULL) // Initialise?
{
HistNum = 0;
for (i = 0; i < nc; i++) ref[i] = 0;
for (i = 0; i < PMAX*2; i++) HistBuf[i] = 0;
for (i = 0; i < PMAX+1; i++)
for (int j = 0; j < HISTSIZE; j++)
AcHist[j][i] = 0;
// LPCdecode(LAW_NULL, nc, 0, LAW_NULL, LAW_NULL);
LPCdecode(NULL, nc, 0, NULL, NULL);
return 0;
}
//if ((bufsize % zwin) != 0) return -3;
for (i = 0; i < bufsize; i += zwin)
{
#if HISTSIZE == 4
for (k = 0; k < nc+1; k++)
ac[k] = (XPN)AcHist[0][k] + (XPN)AcHist[1][k] + (XPN)AcHist[2][k] + (XPN)AcHist[3][k];
#else
for (k = 0; k < nc+1; k++)
{
ac[k] = 0;
for (int h = 0; h < HISTSIZE; h++)
ac[k] = (XPN)ac[k] + (XPN)AcHist[h][k];
}
#endif
// Decode...
if ((*Flags & FlagMask) == 0)
{
schur(ac, nc, ref);
LPCdecode(ref, nc, zwin, InBuf+i, OutBuf+i);
}
else
{
LPCinit(); // Re-initialise
for (int j = 0; j < zwin; j++) OutBuf[i+j] = InBuf[i+j]; // Copy input to output
}
FlagMask <<= 1;
// Update the AutoCorrelation history data...
AddAC(HistBuf, OutBuf+i, nc+1, AcHist[HistNum]); // Process overlap of prev. & current buffer
if (++HistNum == HISTSIZE) HistNum = 0; // Increment History counter, wrap-around if needed
autocorrelation(zwin, OutBuf+i, nc+1, AcHist[HistNum]); // Update AcHist with current buffer
for (k = 0; k < nc; k++) HistBuf[k] = OutBuf[i+k]; // Store beginning of current buffer for next AddAC()
}
return 0;
}
// ======================================================================
void LPCinit()
{
UnLPC2(LAW_NULL, LAW_NULL, 0, 0, (ULONG *)0);
}
// ======================================================================
long UnLPC(AWORD *OutBuf, AWORD *InBuf, short bufsize, short nc, ULONG *Flags)
{
long OutBits = 0;
LPC_WORD lInBuf[MAX_BUFSIZE], lOutBuf[MAX_BUFSIZE];
LPC_WORD *inp = lInBuf, *bufend = inp + bufsize, *outp = lOutBuf;
int i;
// Copy 16 bit data to 32 bits...
while (inp < bufend) *inp++ = *InBuf++;
inp = lInBuf;
short WinSize = LPCWIN;
if (WinSize > bufsize) WinSize = bufsize;
int WordsLeft = bufsize;
do {
if (WordsLeft < ZWINMIN)
{
for (i = 0; i < WordsLeft; i++)
outp[i] = inp[i];
}
else
{
long LPCout = UnLPC2(outp, inp, WinSize, nc, Flags);
if (LPCout < 0) return LPCout;
OutBits += LPCout;
}
inp += WinSize;
outp += WinSize;
WordsLeft -= WinSize;
} while (inp < bufend);
// Copy 32 bit data to 16 bits...
outp = lOutBuf; bufend = outp + bufsize;
while (outp < bufend)
*OutBuf++ = (AWORD) *outp++;
return 0;
}
// ======================================================================
|