1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
/* $Id: pm.C,v 1.4 2006/02/25 02:03:13 mfreed Exp $ */
/*
*
* Copyright (C) 2005 Michael J. Freedman (mfreedman at alum.mit.edu)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA
*
*/
/* Polynomial evaluation protocol for private matching, i.e.,
* privacy-preserving two-party set intersection. From:
*
* Efficient Private Matching and Set Intersection
* Michael J. Freedman, Kobbi Nissim, and Benny Pinkas
* Proc. Advances in Cryptology -- EUROCRYPT 2004, May, 2004.
*
*
* Inputs
* ------
*
* Client:
* Set X_c[0..kc]
* Key pair (K,K') of an additively-homomorphic public-key cryptosystem
*
* Server:
* Set X_s[0..ks]
*
*
* Protocol
* --------
*
* A. Client:
*
* 1. Encode X_c in a degree-kc polynomial P
* 2. Encrypt P's coefficients using public key K
* 3. Send kc+1 encrypted coeffs to server
*
* B. Server:
*
* 1. For all x_i \in X_s,
* a. y'_i = Evaluation of (encrypted) P on x_i
* b. y_i = random * y'_i + payload_i
* 2. Randomly permutes ks+1 evaluations
* 3. Return these ks+1 evaluations of P to client
*
* C. Client:
*
* 1. For all y_i in returned evaluations,
* a. decrypt y_i
* b. check if result is a well-formed payload
* 2. Intersection is set of well-formed payloads
*
*/
#include "pm.h"
#include "poly.h"
static const char match[4] = { 0xFF, 0xFF, 0xFF, 0xFF };
static const size_t matchlen = sizeof (char) * 4;
static const bigint one = 1;
bool
pm_client::set_polynomial (const vec<str> &inputs)
{
size_t len = inputs.size ();
if (!len)
return false;
// Convert strings to bigints
vec<bigint> in;
in.setsize (len);
for (size_t i=0; i < len; i++)
in[i] = sk->pre_encrypt (inputs[i]);
return set_polynomial (in);
}
bool
pm_client::set_polynomial (const vec<bigint> &inputs)
{
// A.1.
// Compute coefficients of polynomial with roots = inputs
polynomial P;
P.generate_coeffs (inputs, sk->ptext_modulus ());
const vec<bigint> pcoeffs = P.coefficients ();
size_t kc = pcoeffs.size ();
if (!kc)
return false;
// Require coefficient c[deg-1] = 1, to ensure that malicious client
// doesn't send over generate polynomial. See FNP04, 5.1
assert (pcoeffs[kc-1] == one);
// A.2.
// Encrypt polynomial coefficients
coeffs.clear ();
for (size_t i=0; i < kc-1; i++) {
coeffs.push_back (crypt_ctext (sk->ctext_type ()));
if (!sk->encrypt (&coeffs.back (), pcoeffs[i], false)) {
coeffs.clear ();
return false;
}
}
return true;
}
void
pm_client::decrypt_intersection (vec<str> &payloads,
const vec<cpayload> &plds) const
{
for (size_t i=0, lst=plds.size (); i < lst; i++) {
// C.1.a
const cpayload &pld = plds[i];
str res = sk->decrypt (pld.ctxt, pld.ptsz);
// C.1.b
// tests > len so that something left after stripping wellformed
//X warnx << "dec [" << hexdump (res.cstr (), res.len ()) << "]\n";
if (!res || res.len () <= matchlen
|| strncmp (res.cstr (), match, matchlen))
continue;
str payload (res.cstr () + matchlen, res.len () - matchlen);
payloads.push_back (payload);
}
}
void
pm_server::evaluate_intersection (vec<cpayload> *res,
const vec<crypt_ctext> *ccoeffs,
const homoenc_pub *pk)
{
// B.1
assert (pk);
crypt_ctext encone (pk->ctext_type ());
if (!pk->encrypt (&encone, one, false))
return;
vec<cpayload> unshuffled;
inputs.traverse (wrap (this, &pm_server::evaluate_polynomial,
&unshuffled, ccoeffs, pk, &encone));
// B.2
// XXX Do a GOOD random shuffle here...
size_t usize = unshuffled.size ();
if (usize) {
res->reserve (usize);
for (size_t i=0; i < usize; i++) {
if (rnd.getword () % 2)
res->push_back (unshuffled.pop_front ());
else
res->push_back (unshuffled.pop_back ());
}
}
}
void
pm_server::evaluate_polynomial (vec<cpayload> *res,
const vec<crypt_ctext> *pccoeffs,
const homoenc_pub *ppk,
const crypt_ctext *encone,
const str &x, ppayload *payload)
{
assert (res && pccoeffs && ppk && encone);
const vec<crypt_ctext> &ccoeffs = *pccoeffs;
const homoenc_pub &pk = *ppk;
size_t deg = ccoeffs.size ();
// B.1.a
// Compute E(P(y))
bigint px = pk.pre_encrypt (x);
if (!px)
return;
// Require coefficient c[deg-1] = 1, to ensure that malicious client
// doesn't send over generate polynomial. See FNP04, 5.1
crypt_ctext cy = *encone;
// See polynomial::evaluate
// Coeffs sent over already don't include last element
while (deg) {
// y = y * x + coeff[i];
crypt_ctext tmp (pk.ctext_type ());
pk.mult (&tmp, cy, px);
pk.add (&cy, tmp, ccoeffs[--deg]);
}
// B.1.b
// Compute E(rP(x))
pk.mult (&cy, cy, random_zn (pk.ptext_modulus ()));
// Generate payload
str buf = strbuf () << match << payload->ptxt;
crypt_ctext cpay (pk.ctext_type ());
//X warnx << "pay [" << hexdump (buf.cstr (), buf.len ()) << "]\n";
if (!pk.encrypt (&cpay, buf, true))
return;
// Compute E(rP(x) + (match || payload))
pk.add (&cy, cy, cpay);
cpayload pay;
pay.ctxt = cy;
// if P(x) != 0, resulting plaintext can be > buf.len, but
// we don't care, because the match check will fail
pay.ptsz = buf.len ();
res->push_back (pay);
}
|