1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
|
#include "crypt.h"
#include "bigint.h"
#include "sha1.h"
#include "schnorr.h"
static const u_int HASHSIZE = sha1::hashsize;
/* bind_r_to_m is just a fancy name for a procedure that
hashes a message m and a random element of the subgroup
of Z_p^* generated by g into a 160-bit SHA-1 hash */
void
schnorr_pub::bind_r_to_m (bigint *e, const str &m, const bigint &r) const
{
sha1ctx sc;
sc.update (m.cstr (), m.len ());
str r_as_str = r.getraw ();
sc.update (r_as_str.cstr (), r_as_str.len ());
char m_r_hashed[sha1::hashsize];
sc.final (m_r_hashed);
mpz_set_rawmag_le(e, m_r_hashed, sizeof (m_r_hashed));
}
/*
* Straight-Ahead Schnorr:
*
* s = (k * e^-1 + x) * e (mod q)
*/
bool
schnorr_priv::sign (bigint *r, bigint *s, const str &msg)
{
assert (r && s);
make_ekp ();
if (!ekp)
return false;
bigint e;
*r = ekp->public_half ();
bind_r_to_m (&e, msg, *r);
bigint t (invert (e, q));
if (t < 0)
t += q;
t *= ekp->private_half ();
t %= q;
t += x;
t *= e;
*s = t % q;
ekp = NULL;
assert (check_signature (*r, *s, e, y)); // debug !!
delaycb (0, wrap (this, &schnorr_priv::make_ekp));
return true;
}
void
schnorr_priv::make_ekp ()
{
if (ekp)
return;
ekp = make_ephem_key_pair ();
}
/* To thwart timing attacks (based on non-constant-time modular reduction
implementation), we compute s_clnt as follows:
s_clnt = ((k_clnt * (e^-1 mod q) + x_clnt) * e) mod q
In this way the time will be spent almost entirely performing the two
modular multiplication, and in both case one factor is random, so that
no information can be leaked about x_clnt */
bool
schnorr_clnt_priv::complete_signature (bigint *r, bigint *s,
const str &msg,
const bigint &r_clnt,
const bigint &k_clnt,
const bigint &r_srv,
const bigint &s_srv)
{
assert (r && s);
if (is_group_elem (r_srv)) {
*r = (r_clnt * r_srv);
*r %= p;
bigint e;
bind_r_to_m (&e, msg, *r);
bigint s_clnt (invert (e, q));
s_clnt *= k_clnt;
s_clnt %= q;
s_clnt += x_clnt;
s_clnt %= q;
s_clnt *= e;
s_clnt %= q;
*s = (s_clnt + s_srv);
*s %= q;
return check_signature (*r, *s, e, y);
}
else
return false;
}
/* To thwart timing attacks (see the comment to the function
schnorr_clnt_priv::complete_unwrapped_signature), we compute s_srv
as follows:
s_srv = ((k_srv * (e^-1 mod q) + x_srv) * e) mod q
In this way the time will be spent almost entirely performing the two
modular multiplication, and in both case one factor is random, so that
no information can be leaked about x_srv */
bool
schnorr_srv_priv::endorse_signature (bigint *r_srv, bigint *s_srv,
const str &msg,
const bigint &r_clnt)
{
assert ((r_srv != NULL) && (s_srv != NULL));
if (is_group_elem (r_clnt)) {
// server's ephemeral public key, private key pair
ref<ephem_key_pair> ekp_srv = make_ephem_key_pair ();
*r_srv = ekp_srv->public_half ();
// combine client's and server's ephemeral public keys
bigint r (r_clnt * (*r_srv));
r %= p;
bigint e;
bind_r_to_m (&e, msg, r);
*s_srv = invert (e, q);
*s_srv *= ekp_srv->private_half ();
*s_srv %= q;
*s_srv += x_srv;
*s_srv %= q;
*s_srv *= e;
*s_srv %= q;
return true;
}
else
return false;
}
#define DIV_ROUNDUP(p,q) ((p) / (q) + ((p) % (q) == 0 ? 0 : 1))
ptr<schnorr_gen>
schnorr_gen::rgen (u_int pbits, u_int iter)
{
ptr<schnorr_gen> sgt = New refcounted<schnorr_gen> (pbits);
sgt->seedsize = DIV_ROUNDUP (HASHSIZE, 8) + 1; // 8 bytes in a u_int64_t
sgt->seed = New u_int64_t[sgt->seedsize];
for (u_int i = 0; i < sgt->seedsize; i++)
sgt->seed[i] = rnd.gethyper ();
sgt->gen (iter);
return sgt;
}
schnorr_gen::schnorr_gen (u_int p) : seed (NULL), pbits (p)
{
pbytes = p >> 3;
num_p_hashes = DIV_ROUNDUP (pbytes, HASHSIZE);
raw_psize = num_p_hashes * HASHSIZE;
raw_p = New char[raw_psize];
num_p_candidates = pbits << 2; // shouldn't fail -- 4x expected # of trials
}
void
schnorr_gen::gen (u_int iter)
{
bigint q, p, g, y, x, x_c, x_s;
do {
gen_q (&q);
} while (!gen_p (&p, q, iter) || !q.probab_prime (iter));
gen_g (&g, p, q);
x_c = random_zn (q);
x_s = random_zn (q);
x = x_c + x_s;
x %= q;
y = powm (g, x, p);
csk = New refcounted<schnorr_clnt_priv> (p, q, g, y, x_c);
ssk = New refcounted<schnorr_srv_priv> (p, q, g, y, x_s);
wsk = New refcounted<schnorr_priv> (p, q, g, y, x);
}
void
schnorr_gen::gen_q (bigint *q)
{
bigint u1, u2;
char digest[HASHSIZE];
do {
sha1_hash (digest, seed, seedsize << 3); // seedsize * 8
mpz_set_rawmag_le (&u1, digest, HASHSIZE);
seed[3]++;
sha1_hash (digest, seed, seedsize << 3); // seedsize * 8
mpz_set_rawmag_le (&u2, digest, HASHSIZE);
mpz_xor (q, &u1, &u2);
mpz_setbit (q, (HASHSIZE << 3) - 1); // set high bit
mpz_setbit (q, 0); // set low bit
} while (!q->probab_prime (5));
}
bool
schnorr_gen::gen_p (bigint *p, const bigint &q, u_int iter)
{
bigint X, c;
for (u_int i = 0; i < num_p_candidates; i++) {
for (u_int off = 0; off < raw_psize; off += HASHSIZE) {
seed[0]++;
sha1_hash (raw_p + off, seed, seedsize << 3); // seedsize * 8
}
mpz_set_rawmag_le (&X, raw_p, pbytes);
mpz_setbit (&X, pbits - 1);
c = X;
c = mod (c, q * 2);
*p = (X - c + 1);
if (p->probab_prime (iter))
return true;
}
return false;
}
void
schnorr_gen::gen_g (bigint *g, const bigint &p, const bigint &q)
{
bigint e = (p - 1) / q;
bigint h;
bigint p_3 = p - 3;
do h = random_zn (p_3);
while ((*g = powm (++h, e, p)) == 1);
}
ptr<schnorr_clnt_priv>
schnorr_clnt_priv::update (bigint *deltap) const
{
bigint delta;
if (deltap && (*deltap > 0))
delta = *deltap;
else {
delta = random_zn (q);
if (deltap)
*deltap = delta;
}
bigint nx_c = x_clnt + q;
nx_c -= delta;
nx_c %= q;
return New refcounted <schnorr_clnt_priv> (p, q, g, y, nx_c);
}
ptr<schnorr_srv_priv>
schnorr_srv_priv::update (const bigint &dlt) const
{
bigint nx_c = x_srv + dlt;
nx_c %= q;
return New refcounted <schnorr_srv_priv> (p, q, g, y, nx_c);
}
|