1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
|
/*
* misc.c: Miscellaneous helpful functions.
*/
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include "puzzles.h"
void free_cfg(config_item *cfg)
{
config_item *i;
for (i = cfg; i->type != C_END; i++)
if (i->type == C_STRING)
sfree(i->sval);
sfree(cfg);
}
/*
* The Mines (among others) game descriptions contain the location of every
* mine, and can therefore be used to cheat.
*
* It would be pointless to attempt to _prevent_ this form of
* cheating by encrypting the description, since Mines is
* open-source so anyone can find out the encryption key. However,
* I think it is worth doing a bit of gentle obfuscation to prevent
* _accidental_ spoilers: if you happened to note that the game ID
* starts with an F, for example, you might be unable to put the
* knowledge of those mines out of your mind while playing. So,
* just as discussions of film endings are rot13ed to avoid
* spoiling it for people who don't want to be told, we apply a
* keyless, reversible, but visually completely obfuscatory masking
* function to the mine bitmap.
*/
void obfuscate_bitmap(unsigned char *bmp, int bits, int decode)
{
int bytes, firsthalf, secondhalf;
struct step {
unsigned char *seedstart;
int seedlen;
unsigned char *targetstart;
int targetlen;
} steps[2];
int i, j;
/*
* My obfuscation algorithm is similar in concept to the OAEP
* encoding used in some forms of RSA. Here's a specification
* of it:
*
* + We have a `masking function' which constructs a stream of
* pseudorandom bytes from a seed of some number of input
* bytes.
*
* + We pad out our input bit stream to a whole number of
* bytes by adding up to 7 zero bits on the end. (In fact
* the bitmap passed as input to this function will already
* have had this done in practice.)
*
* + We divide the _byte_ stream exactly in half, rounding the
* half-way position _down_. So an 81-bit input string, for
* example, rounds up to 88 bits or 11 bytes, and then
* dividing by two gives 5 bytes in the first half and 6 in
* the second half.
*
* + We generate a mask from the second half of the bytes, and
* XOR it over the first half.
*
* + We generate a mask from the (encoded) first half of the
* bytes, and XOR it over the second half. Any null bits at
* the end which were added as padding are cleared back to
* zero even if this operation would have made them nonzero.
*
* To de-obfuscate, the steps are precisely the same except
* that the final two are reversed.
*
* Finally, our masking function. Given an input seed string of
* bytes, the output mask consists of concatenating the SHA-1
* hashes of the seed string and successive decimal integers,
* starting from 0.
*/
bytes = (bits + 7) / 8;
firsthalf = bytes / 2;
secondhalf = bytes - firsthalf;
steps[decode ? 1 : 0].seedstart = bmp + firsthalf;
steps[decode ? 1 : 0].seedlen = secondhalf;
steps[decode ? 1 : 0].targetstart = bmp;
steps[decode ? 1 : 0].targetlen = firsthalf;
steps[decode ? 0 : 1].seedstart = bmp;
steps[decode ? 0 : 1].seedlen = firsthalf;
steps[decode ? 0 : 1].targetstart = bmp + firsthalf;
steps[decode ? 0 : 1].targetlen = secondhalf;
for (i = 0; i < 2; i++) {
SHA_State base, final;
unsigned char digest[20];
char numberbuf[80];
int digestpos = 20, counter = 0;
SHA_Init(&base);
SHA_Bytes(&base, steps[i].seedstart, steps[i].seedlen);
for (j = 0; j < steps[i].targetlen; j++) {
if (digestpos >= 20) {
sprintf(numberbuf, "%d", counter++);
final = base;
SHA_Bytes(&final, numberbuf, strlen(numberbuf));
SHA_Final(&final, digest);
digestpos = 0;
}
steps[i].targetstart[j] ^= digest[digestpos++];
}
/*
* Mask off the pad bits in the final byte after both steps.
*/
if (bits % 8)
bmp[bits / 8] &= 0xFF & (0xFF00 >> (bits % 8));
}
}
/* err, yeah, these two pretty much rely on unsigned char being 8 bits.
* Platforms where this is not the case probably have bigger problems
* than just making these two work, though... */
char *bin2hex(const unsigned char *in, int inlen)
{
char *ret = snewn(inlen*2 + 1, char), *p = ret;
int i;
for (i = 0; i < inlen*2; i++) {
int v = in[i/2];
if (i % 2 == 0) v >>= 4;
*p++ = "0123456789abcdef"[v & 0xF];
}
*p = '\0';
return ret;
}
unsigned char *hex2bin(const char *in, int outlen)
{
unsigned char *ret = snewn(outlen, unsigned char);
int i;
memset(ret, 0, outlen*sizeof(unsigned char));
for (i = 0; i < outlen*2; i++) {
int c = in[i];
int v;
assert(c != 0);
if (c >= '0' && c <= '9')
v = c - '0';
else if (c >= 'a' && c <= 'f')
v = c - 'a' + 10;
else if (c >= 'A' && c <= 'F')
v = c - 'A' + 10;
else
v = 0;
ret[i / 2] |= v << (4 * (1 - (i % 2)));
}
return ret;
}
void game_mkhighlight(frontend *fe, float *ret,
int background, int highlight, int lowlight)
{
float max;
int i;
frontend_default_colour(fe, &ret[background * 3]);
/*
* Drop the background colour so that the highlight is
* noticeably brighter than it while still being under 1.
*/
max = ret[background*3];
for (i = 1; i < 3; i++)
if (ret[background*3+i] > max)
max = ret[background*3+i];
if (max * 1.2F > 1.0F) {
for (i = 0; i < 3; i++)
ret[background*3+i] /= (max * 1.2F);
}
for (i = 0; i < 3; i++) {
ret[highlight * 3 + i] = ret[background * 3 + i] * 1.2F;
ret[lowlight * 3 + i] = ret[background * 3 + i] * 0.8F;
}
}
static void memswap(void *av, void *bv, int size)
{
char tmpbuf[512];
char *a = av, *b = bv;
while (size > 0) {
int thislen = min(size, sizeof(tmpbuf));
memcpy(tmpbuf, a, thislen);
memcpy(a, b, thislen);
memcpy(b, tmpbuf, thislen);
a += thislen;
b += thislen;
size -= thislen;
}
}
void shuffle(void *array, int nelts, int eltsize, random_state *rs)
{
char *carray = (char *)array;
int i;
for (i = nelts; i-- > 1 ;) {
int j = random_upto(rs, i+1);
if (j != i)
memswap(carray + eltsize * i, carray + eltsize * j, eltsize);
}
}
void draw_rect_outline(drawing *dr, int x, int y, int w, int h, int colour)
{
int x0 = x, x1 = x+w-1, y0 = y, y1 = y+h-1;
int coords[8];
coords[0] = x0;
coords[1] = y0;
coords[2] = x0;
coords[3] = y1;
coords[4] = x1;
coords[5] = y1;
coords[6] = x1;
coords[7] = y0;
draw_polygon(dr, coords, 4, -1, colour);
}
/* vim: set shiftwidth=4 tabstop=8: */
|