1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
|
/*
* net.c: Net game.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <ctype.h>
#include <math.h>
#include "puzzles.h"
#include "tree234.h"
/*
* The standard user interface for Net simply has left- and
* right-button mouse clicks in a square rotate it one way or the
* other. We also provide, by #ifdef, a separate interface based on
* rotational dragging motions. I initially developed this for the
* Mac on the basis that it might work better than the click
* interface with only one mouse button available, but in fact
* found it to be quite strange and unintuitive. Apparently it
* works better on stylus-driven platforms such as Palm and
* PocketPC, though, so we enable it by default there.
*/
#ifdef STYLUS_BASED
#define USE_DRAGGING
#endif
#define MATMUL(xr,yr,m,x,y) do { \
float rx, ry, xx = (x), yy = (y), *mat = (m); \
rx = mat[0] * xx + mat[2] * yy; \
ry = mat[1] * xx + mat[3] * yy; \
(xr) = rx; (yr) = ry; \
} while (0)
/* Direction and other bitfields */
#define R 0x01
#define U 0x02
#define L 0x04
#define D 0x08
#define LOCKED 0x10
#define ACTIVE 0x20
/* Rotations: Anticlockwise, Clockwise, Flip, general rotate */
#define A(x) ( (((x) & 0x07) << 1) | (((x) & 0x08) >> 3) )
#define C(x) ( (((x) & 0x0E) >> 1) | (((x) & 0x01) << 3) )
#define F(x) ( (((x) & 0x0C) >> 2) | (((x) & 0x03) << 2) )
#define ROT(x, n) ( ((n)&3) == 0 ? (x) : \
((n)&3) == 1 ? A(x) : \
((n)&3) == 2 ? F(x) : C(x) )
/* X and Y displacements */
#define X(x) ( (x) == R ? +1 : (x) == L ? -1 : 0 )
#define Y(x) ( (x) == D ? +1 : (x) == U ? -1 : 0 )
/* Bit count */
#define COUNT(x) ( (((x) & 0x08) >> 3) + (((x) & 0x04) >> 2) + \
(((x) & 0x02) >> 1) + ((x) & 0x01) )
#define PREFERRED_TILE_SIZE 32
#define TILE_SIZE (ds->tilesize)
#define TILE_BORDER 1
#ifdef SMALL_SCREEN
#define WINDOW_OFFSET 4
#else
#define WINDOW_OFFSET 16
#endif
#define ROTATE_TIME 0.13F
#define FLASH_FRAME 0.07F
/* Transform physical coords to game coords using game_drawstate ds */
#define GX(x) (((x) + ds->org_x) % ds->width)
#define GY(y) (((y) + ds->org_y) % ds->height)
/* ...and game coords to physical coords */
#define RX(x) (((x) + ds->width - ds->org_x) % ds->width)
#define RY(y) (((y) + ds->height - ds->org_y) % ds->height)
enum {
COL_BACKGROUND,
COL_LOCKED,
COL_BORDER,
COL_WIRE,
COL_ENDPOINT,
COL_POWERED,
COL_BARRIER,
NCOLOURS
};
struct game_params {
int width;
int height;
int wrapping;
int unique;
float barrier_probability;
};
struct game_state {
int width, height, wrapping, completed;
int last_rotate_x, last_rotate_y, last_rotate_dir;
int used_solve;
unsigned char *tiles;
unsigned char *barriers;
};
#define OFFSETWH(x2,y2,x1,y1,dir,width,height) \
( (x2) = ((x1) + width + X((dir))) % width, \
(y2) = ((y1) + height + Y((dir))) % height)
#define OFFSET(x2,y2,x1,y1,dir,state) \
OFFSETWH(x2,y2,x1,y1,dir,(state)->width,(state)->height)
#define index(state, a, x, y) ( a[(y) * (state)->width + (x)] )
#define tile(state, x, y) index(state, (state)->tiles, x, y)
#define barrier(state, x, y) index(state, (state)->barriers, x, y)
struct xyd {
int x, y, direction;
};
static int xyd_cmp(const void *av, const void *bv) {
const struct xyd *a = (const struct xyd *)av;
const struct xyd *b = (const struct xyd *)bv;
if (a->x < b->x)
return -1;
if (a->x > b->x)
return +1;
if (a->y < b->y)
return -1;
if (a->y > b->y)
return +1;
if (a->direction < b->direction)
return -1;
if (a->direction > b->direction)
return +1;
return 0;
}
static int xyd_cmp_nc(void *av, void *bv) { return xyd_cmp(av, bv); }
static struct xyd *new_xyd(int x, int y, int direction)
{
struct xyd *xyd = snew(struct xyd);
xyd->x = x;
xyd->y = y;
xyd->direction = direction;
return xyd;
}
/* ----------------------------------------------------------------------
* Manage game parameters.
*/
static game_params *default_params(void)
{
game_params *ret = snew(game_params);
ret->width = 5;
ret->height = 5;
ret->wrapping = FALSE;
ret->unique = TRUE;
ret->barrier_probability = 0.0;
return ret;
}
static const struct game_params net_presets[] = {
{5, 5, FALSE, TRUE, 0.0},
{7, 7, FALSE, TRUE, 0.0},
{9, 9, FALSE, TRUE, 0.0},
{11, 11, FALSE, TRUE, 0.0},
#ifndef SMALL_SCREEN
{13, 11, FALSE, TRUE, 0.0},
#endif
{5, 5, TRUE, TRUE, 0.0},
{7, 7, TRUE, TRUE, 0.0},
{9, 9, TRUE, TRUE, 0.0},
{11, 11, TRUE, TRUE, 0.0},
#ifndef SMALL_SCREEN
{13, 11, TRUE, TRUE, 0.0},
#endif
};
static int game_fetch_preset(int i, char **name, game_params **params)
{
game_params *ret;
char str[80];
if (i < 0 || i >= lenof(net_presets))
return FALSE;
ret = snew(game_params);
*ret = net_presets[i];
sprintf(str, "%dx%d%s", ret->width, ret->height,
ret->wrapping ? " wrapping" : "");
*name = dupstr(str);
*params = ret;
return TRUE;
}
static void free_params(game_params *params)
{
sfree(params);
}
static game_params *dup_params(game_params *params)
{
game_params *ret = snew(game_params);
*ret = *params; /* structure copy */
return ret;
}
static void decode_params(game_params *ret, char const *string)
{
char const *p = string;
ret->width = atoi(p);
while (*p && isdigit((unsigned char)*p)) p++;
if (*p == 'x') {
p++;
ret->height = atoi(p);
while (*p && isdigit((unsigned char)*p)) p++;
} else {
ret->height = ret->width;
}
while (*p) {
if (*p == 'w') {
p++;
ret->wrapping = TRUE;
} else if (*p == 'b') {
p++;
ret->barrier_probability = atof(p);
while (*p && (*p == '.' || isdigit((unsigned char)*p))) p++;
} else if (*p == 'a') {
p++;
ret->unique = FALSE;
} else
p++; /* skip any other gunk */
}
}
static char *encode_params(game_params *params, int full)
{
char ret[400];
int len;
len = sprintf(ret, "%dx%d", params->width, params->height);
if (params->wrapping)
ret[len++] = 'w';
if (full && params->barrier_probability)
len += sprintf(ret+len, "b%g", params->barrier_probability);
if (full && !params->unique)
ret[len++] = 'a';
assert(len < lenof(ret));
ret[len] = '\0';
return dupstr(ret);
}
static config_item *game_configure(game_params *params)
{
config_item *ret;
char buf[80];
ret = snewn(6, config_item);
ret[0].name = "Width";
ret[0].type = C_STRING;
sprintf(buf, "%d", params->width);
ret[0].sval = dupstr(buf);
ret[0].ival = 0;
ret[1].name = "Height";
ret[1].type = C_STRING;
sprintf(buf, "%d", params->height);
ret[1].sval = dupstr(buf);
ret[1].ival = 0;
ret[2].name = "Walls wrap around";
ret[2].type = C_BOOLEAN;
ret[2].sval = NULL;
ret[2].ival = params->wrapping;
ret[3].name = "Barrier probability";
ret[3].type = C_STRING;
sprintf(buf, "%g", params->barrier_probability);
ret[3].sval = dupstr(buf);
ret[3].ival = 0;
ret[4].name = "Ensure unique solution";
ret[4].type = C_BOOLEAN;
ret[4].sval = NULL;
ret[4].ival = params->unique;
ret[5].name = NULL;
ret[5].type = C_END;
ret[5].sval = NULL;
ret[5].ival = 0;
return ret;
}
static game_params *custom_params(config_item *cfg)
{
game_params *ret = snew(game_params);
ret->width = atoi(cfg[0].sval);
ret->height = atoi(cfg[1].sval);
ret->wrapping = cfg[2].ival;
ret->barrier_probability = (float)atof(cfg[3].sval);
ret->unique = cfg[4].ival;
return ret;
}
static char *validate_params(game_params *params, int full)
{
if (params->width <= 0 || params->height <= 0)
return "Width and height must both be greater than zero";
if (params->width <= 1 && params->height <= 1)
return "At least one of width and height must be greater than one";
if (params->barrier_probability < 0)
return "Barrier probability may not be negative";
if (params->barrier_probability > 1)
return "Barrier probability may not be greater than 1";
/*
* Specifying either grid dimension as 2 in a wrapping puzzle
* makes it actually impossible to ensure a unique puzzle
* solution.
*
* Proof:
*
* Without loss of generality, let us assume the puzzle _width_
* is 2, so we can conveniently discuss rows without having to
* say `rows/columns' all the time. (The height may be 2 as
* well, but that doesn't matter.)
*
* In each row, there are two edges between tiles: the inner
* edge (running down the centre of the grid) and the outer
* edge (the identified left and right edges of the grid).
*
* Lemma: In any valid 2xn puzzle there must be at least one
* row in which _exactly one_ of the inner edge and outer edge
* is connected.
*
* Proof: No row can have _both_ inner and outer edges
* connected, because this would yield a loop. So the only
* other way to falsify the lemma is for every row to have
* _neither_ the inner nor outer edge connected. But this
* means there is no connection at all between the left and
* right columns of the puzzle, so there are two disjoint
* subgraphs, which is also disallowed. []
*
* Given such a row, it is always possible to make the
* disconnected edge connected and the connected edge
* disconnected without changing the state of any other edge.
* (This is easily seen by case analysis on the various tiles:
* left-pointing and right-pointing endpoints can be exchanged,
* likewise T-pieces, and a corner piece can select its
* horizontal connectivity independently of its vertical.) This
* yields a distinct valid solution.
*
* Thus, for _every_ row in which exactly one of the inner and
* outer edge is connected, there are two valid states for that
* row, and hence the total number of solutions of the puzzle
* is at least 2^(number of such rows), and in particular is at
* least 2 since there must be at least one such row. []
*/
if (full && params->unique && params->wrapping &&
(params->width == 2 || params->height == 2))
return "No wrapping puzzle with a width or height of 2 can have"
" a unique solution";
return NULL;
}
/* ----------------------------------------------------------------------
* Solver used to assure solution uniqueness during generation.
*/
/*
* Test cases I used while debugging all this were
*
* ./net --generate 1 13x11w#12300
* which expands under the non-unique grid generation rules to
* 13x11w:5eaade1bd222664436d5e2965c12656b1129dd825219e3274d558d5eb2dab5da18898e571d5a2987be79746bd95726c597447d6da96188c513add829da7681da954db113d3cd244
* and has two ambiguous areas.
*
* An even better one is
* 13x11w#507896411361192
* which expands to
* 13x11w:b7125b1aec598eb31bd58d82572bc11494e5dee4e8db2bdd29b88d41a16bdd996d2996ddec8c83741a1e8674e78328ba71737b8894a9271b1cd1399453d1952e43951d9b712822e
* and has an ambiguous area _and_ a situation where loop avoidance
* is a necessary deductive technique.
*
* Then there's
* 48x25w#820543338195187
* becoming
* 48x25w:255989d14cdd185deaa753a93821a12edc1ab97943ac127e2685d7b8b3c48861b2192416139212b316eddd35de43714ebc7628d753db32e596284d9ec52c5a7dc1b4c811a655117d16dc28921b2b4161352cab1d89d18bc836b8b891d55ea4622a1251861b5bc9a8aa3e5bcd745c95229ca6c3b5e21d5832d397e917325793d7eb442dc351b2db2a52ba8e1651642275842d8871d5534aabc6d5b741aaa2d48ed2a7dbbb3151ddb49d5b9a7ed1ab98ee75d613d656dbba347bc514c84556b43a9bc65a3256ead792488b862a9d2a8a39b4255a4949ed7dbd79443292521265896b4399c95ede89d7c8c797a6a57791a849adea489359a158aa12e5dacce862b8333b7ebea7d344d1a3c53198864b73a9dedde7b663abb1b539e1e8853b1b7edb14a2a17ebaae4dbe63598a2e7e9a2dbdad415bc1d8cb88cbab5a8c82925732cd282e641ea3bd7d2c6e776de9117a26be86deb7c82c89524b122cb9397cd1acd2284e744ea62b9279bae85479ababe315c3ac29c431333395b24e6a1e3c43a2da42d4dce84aadd5b154aea555eaddcbd6e527d228c19388d9b424d94214555a7edbdeebe569d4a56dc51a86bd9963e377bb74752bd5eaa5761ba545e297b62a1bda46ab4aee423ad6c661311783cc18786d4289236563cb4a75ec67d481c14814994464cd1b87396dee63e5ab6e952cc584baa1d4c47cb557ec84dbb63d487c8728118673a166846dd3a4ebc23d6cb9c5827d96b4556e91899db32b517eda815ae271a8911bd745447121dc8d321557bc2a435ebec1bbac35b1a291669451174e6aa2218a4a9c5a6ca31ebc45d84e3a82c121e9ced7d55e9a
* which has a spot (far right) where slightly more complex loop
* avoidance is required.
*/
struct todo {
unsigned char *marked;
int *buffer;
int buflen;
int head, tail;
};
static struct todo *todo_new(int maxsize)
{
struct todo *todo = snew(struct todo);
todo->marked = snewn(maxsize, unsigned char);
memset(todo->marked, 0, maxsize);
todo->buflen = maxsize + 1;
todo->buffer = snewn(todo->buflen, int);
todo->head = todo->tail = 0;
return todo;
}
static void todo_free(struct todo *todo)
{
sfree(todo->marked);
sfree(todo->buffer);
sfree(todo);
}
static void todo_add(struct todo *todo, int index)
{
if (todo->marked[index])
return; /* already on the list */
todo->marked[index] = TRUE;
todo->buffer[todo->tail++] = index;
if (todo->tail == todo->buflen)
todo->tail = 0;
}
static int todo_get(struct todo *todo) {
int ret;
if (todo->head == todo->tail)
return -1; /* list is empty */
ret = todo->buffer[todo->head++];
if (todo->head == todo->buflen)
todo->head = 0;
todo->marked[ret] = FALSE;
return ret;
}
static int net_solver(int w, int h, unsigned char *tiles,
unsigned char *barriers, int wrapping)
{
unsigned char *tilestate;
unsigned char *edgestate;
int *deadends;
int *equivalence;
struct todo *todo;
int i, j, x, y;
int area;
int done_something;
/*
* Set up the solver's data structures.
*/
/*
* tilestate stores the possible orientations of each tile.
* There are up to four of these, so we'll index the array in
* fours. tilestate[(y * w + x) * 4] and its three successive
* members give the possible orientations, clearing to 255 from
* the end as things are ruled out.
*
* In this loop we also count up the area of the grid (which is
* not _necessarily_ equal to w*h, because there might be one
* or more blank squares present. This will never happen in a
* grid generated _by_ this program, but it's worth keeping the
* solver as general as possible.)
*/
tilestate = snewn(w * h * 4, unsigned char);
area = 0;
for (i = 0; i < w*h; i++) {
tilestate[i * 4] = tiles[i] & 0xF;
for (j = 1; j < 4; j++) {
if (tilestate[i * 4 + j - 1] == 255 ||
A(tilestate[i * 4 + j - 1]) == tilestate[i * 4])
tilestate[i * 4 + j] = 255;
else
tilestate[i * 4 + j] = A(tilestate[i * 4 + j - 1]);
}
if (tiles[i] != 0)
area++;
}
/*
* edgestate stores the known state of each edge. It is 0 for
* unknown, 1 for open (connected) and 2 for closed (not
* connected).
*
* In principle we need only worry about each edge once each,
* but in fact it's easier to track each edge twice so that we
* can reference it from either side conveniently. Also I'm
* going to allocate _five_ bytes per tile, rather than the
* obvious four, so that I can index edgestate[(y*w+x) * 5 + d]
* where d is 1,2,4,8 and they never overlap.
*/
edgestate = snewn((w * h - 1) * 5 + 9, unsigned char);
memset(edgestate, 0, (w * h - 1) * 5 + 9);
/*
* deadends tracks which edges have dead ends on them. It is
* indexed by tile and direction: deadends[(y*w+x) * 5 + d]
* tells you whether heading out of tile (x,y) in direction d
* can reach a limited amount of the grid. Values are area+1
* (no dead end known) or less than that (can reach _at most_
* this many other tiles by heading this way out of this tile).
*/
deadends = snewn((w * h - 1) * 5 + 9, int);
for (i = 0; i < (w * h - 1) * 5 + 9; i++)
deadends[i] = area+1;
/*
* equivalence tracks which sets of tiles are known to be
* connected to one another, so we can avoid creating loops by
* linking together tiles which are already linked through
* another route.
*
* This is a disjoint set forest structure: equivalence[i]
* contains the index of another member of the equivalence
* class containing i, or contains i itself for precisely one
* member in each such class. To find a representative member
* of the equivalence class containing i, you keep replacing i
* with equivalence[i] until it stops changing; then you go
* _back_ along the same path and point everything on it
* directly at the representative member so as to speed up
* future searches. Then you test equivalence between tiles by
* finding the representative of each tile and seeing if
* they're the same; and you create new equivalence (merge
* classes) by finding the representative of each tile and
* setting equivalence[one]=the_other.
*/
equivalence = snew_dsf(w * h);
/*
* On a non-wrapping grid, we instantly know that all the edges
* round the edge are closed.
*/
if (!wrapping) {
for (i = 0; i < w; i++) {
edgestate[i * 5 + 2] = edgestate[((h-1) * w + i) * 5 + 8] = 2;
}
for (i = 0; i < h; i++) {
edgestate[(i * w + w-1) * 5 + 1] = edgestate[(i * w) * 5 + 4] = 2;
}
}
/*
* If we have barriers available, we can mark those edges as
* closed too.
*/
if (barriers) {
for (y = 0; y < h; y++) for (x = 0; x < w; x++) {
int d;
for (d = 1; d <= 8; d += d) {
if (barriers[y*w+x] & d) {
int x2, y2;
/*
* In principle the barrier list should already
* contain each barrier from each side, but
* let's not take chances with our internal
* consistency.
*/
OFFSETWH(x2, y2, x, y, d, w, h);
edgestate[(y*w+x) * 5 + d] = 2;
edgestate[(y2*w+x2) * 5 + F(d)] = 2;
}
}
}
}
/*
* Since most deductions made by this solver are local (the
* exception is loop avoidance, where joining two tiles
* together on one side of the grid can theoretically permit a
* fresh deduction on the other), we can address the scaling
* problem inherent in iterating repeatedly over the entire
* grid by instead working with a to-do list.
*/
todo = todo_new(w * h);
/*
* Main deductive loop.
*/
done_something = TRUE; /* prevent instant termination! */
while (1) {
int index;
/*
* Take a tile index off the todo list and process it.
*/
index = todo_get(todo);
if (index == -1) {
/*
* If we have run out of immediate things to do, we
* have no choice but to scan the whole grid for
* longer-range things we've missed. Hence, I now add
* every square on the grid back on to the to-do list.
* I also set `done_something' to FALSE at this point;
* if we later come back here and find it still FALSE,
* we will know we've scanned the entire grid without
* finding anything new to do, and we can terminate.
*/
if (!done_something)
break;
for (i = 0; i < w*h; i++)
todo_add(todo, i);
done_something = FALSE;
index = todo_get(todo);
}
y = index / w;
x = index % w;
{
int d, ourclass = dsf_canonify(equivalence, y*w+x);
int deadendmax[9];
deadendmax[1] = deadendmax[2] = deadendmax[4] = deadendmax[8] = 0;
for (i = j = 0; i < 4 && tilestate[(y*w+x) * 4 + i] != 255; i++) {
int valid;
int nnondeadends, nondeadends[4], deadendtotal;
int nequiv, equiv[5];
int val = tilestate[(y*w+x) * 4 + i];
valid = TRUE;
nnondeadends = deadendtotal = 0;
equiv[0] = ourclass;
nequiv = 1;
for (d = 1; d <= 8; d += d) {
/*
* Immediately rule out this orientation if it
* conflicts with any known edge.
*/
if ((edgestate[(y*w+x) * 5 + d] == 1 && !(val & d)) ||
(edgestate[(y*w+x) * 5 + d] == 2 && (val & d)))
valid = FALSE;
if (val & d) {
/*
* Count up the dead-end statistics.
*/
if (deadends[(y*w+x) * 5 + d] <= area) {
deadendtotal += deadends[(y*w+x) * 5 + d];
} else {
nondeadends[nnondeadends++] = d;
}
/*
* Ensure we aren't linking to any tiles,
* through edges not already known to be
* open, which create a loop.
*/
if (edgestate[(y*w+x) * 5 + d] == 0) {
int c, k, x2, y2;
OFFSETWH(x2, y2, x, y, d, w, h);
c = dsf_canonify(equivalence, y2*w+x2);
for (k = 0; k < nequiv; k++)
if (c == equiv[k])
break;
if (k == nequiv)
equiv[nequiv++] = c;
else
valid = FALSE;
}
}
}
if (nnondeadends == 0) {
/*
* If this orientation links together dead-ends
* with a total area of less than the entire
* grid, it is invalid.
*
* (We add 1 to deadendtotal because of the
* tile itself, of course; one tile linking
* dead ends of size 2 and 3 forms a subnetwork
* with a total area of 6, not 5.)
*/
if (deadendtotal > 0 && deadendtotal+1 < area)
valid = FALSE;
} else if (nnondeadends == 1) {
/*
* If this orientation links together one or
* more dead-ends with precisely one
* non-dead-end, then we may have to mark that
* non-dead-end as a dead end going the other
* way. However, it depends on whether all
* other orientations share the same property.
*/
deadendtotal++;
if (deadendmax[nondeadends[0]] < deadendtotal)
deadendmax[nondeadends[0]] = deadendtotal;
} else {
/*
* If this orientation links together two or
* more non-dead-ends, then we can rule out the
* possibility of putting in new dead-end
* markings in those directions.
*/
int k;
for (k = 0; k < nnondeadends; k++)
deadendmax[nondeadends[k]] = area+1;
}
if (valid)
tilestate[(y*w+x) * 4 + j++] = val;
#ifdef SOLVER_DIAGNOSTICS
else
printf("ruling out orientation %x at %d,%d\n", val, x, y);
#endif
}
assert(j > 0); /* we can't lose _all_ possibilities! */
if (j < i) {
done_something = TRUE;
/*
* We have ruled out at least one tile orientation.
* Make sure the rest are blanked.
*/
while (j < 4)
tilestate[(y*w+x) * 4 + j++] = 255;
}
/*
* Now go through the tile orientations again and see
* if we've deduced anything new about any edges.
*/
{
int a, o;
a = 0xF; o = 0;
for (i = 0; i < 4 && tilestate[(y*w+x) * 4 + i] != 255; i++) {
a &= tilestate[(y*w+x) * 4 + i];
o |= tilestate[(y*w+x) * 4 + i];
}
for (d = 1; d <= 8; d += d)
if (edgestate[(y*w+x) * 5 + d] == 0) {
int x2, y2, d2;
OFFSETWH(x2, y2, x, y, d, w, h);
d2 = F(d);
if (a & d) {
/* This edge is open in all orientations. */
#ifdef SOLVER_DIAGNOSTICS
printf("marking edge %d,%d:%d open\n", x, y, d);
#endif
edgestate[(y*w+x) * 5 + d] = 1;
edgestate[(y2*w+x2) * 5 + d2] = 1;
dsf_merge(equivalence, y*w+x, y2*w+x2);
done_something = TRUE;
todo_add(todo, y2*w+x2);
} else if (!(o & d)) {
/* This edge is closed in all orientations. */
#ifdef SOLVER_DIAGNOSTICS
printf("marking edge %d,%d:%d closed\n", x, y, d);
#endif
edgestate[(y*w+x) * 5 + d] = 2;
edgestate[(y2*w+x2) * 5 + d2] = 2;
done_something = TRUE;
todo_add(todo, y2*w+x2);
}
}
}
/*
* Now check the dead-end markers and see if any of
* them has lowered from the real ones.
*/
for (d = 1; d <= 8; d += d) {
int x2, y2, d2;
OFFSETWH(x2, y2, x, y, d, w, h);
d2 = F(d);
if (deadendmax[d] > 0 &&
deadends[(y2*w+x2) * 5 + d2] > deadendmax[d]) {
#ifdef SOLVER_DIAGNOSTICS
printf("setting dead end value %d,%d:%d to %d\n",
x2, y2, d2, deadendmax[d]);
#endif
deadends[(y2*w+x2) * 5 + d2] = deadendmax[d];
done_something = TRUE;
todo_add(todo, y2*w+x2);
}
}
}
}
/*
* Mark all completely determined tiles as locked.
*/
j = TRUE;
for (i = 0; i < w*h; i++) {
if (tilestate[i * 4 + 1] == 255) {
assert(tilestate[i * 4 + 0] != 255);
tiles[i] = tilestate[i * 4] | LOCKED;
} else {
tiles[i] &= ~LOCKED;
j = FALSE;
}
}
/*
* Free up working space.
*/
todo_free(todo);
sfree(tilestate);
sfree(edgestate);
sfree(deadends);
sfree(equivalence);
return j;
}
/* ----------------------------------------------------------------------
* Randomly select a new game description.
*/
/*
* Function to randomly perturb an ambiguous section in a grid, to
* attempt to ensure unique solvability.
*/
static void perturb(int w, int h, unsigned char *tiles, int wrapping,
random_state *rs, int startx, int starty, int startd)
{
struct xyd *perimeter, *perim2, *loop[2], looppos[2];
int nperim, perimsize, nloop[2], loopsize[2];
int x, y, d, i;
/*
* We know that the tile at (startx,starty) is part of an
* ambiguous section, and we also know that its neighbour in
* direction startd is fully specified. We begin by tracing all
* the way round the ambiguous area.
*/
nperim = perimsize = 0;
perimeter = NULL;
x = startx;
y = starty;
d = startd;
#ifdef PERTURB_DIAGNOSTICS
printf("perturb %d,%d:%d\n", x, y, d);
#endif
do {
int x2, y2, d2;
if (nperim >= perimsize) {
perimsize = perimsize * 3 / 2 + 32;
perimeter = sresize(perimeter, perimsize, struct xyd);
}
perimeter[nperim].x = x;
perimeter[nperim].y = y;
perimeter[nperim].direction = d;
nperim++;
#ifdef PERTURB_DIAGNOSTICS
printf("perimeter: %d,%d:%d\n", x, y, d);
#endif
/*
* First, see if we can simply turn left from where we are
* and find another locked square.
*/
d2 = A(d);
OFFSETWH(x2, y2, x, y, d2, w, h);
if ((!wrapping && (abs(x2-x) > 1 || abs(y2-y) > 1)) ||
(tiles[y2*w+x2] & LOCKED)) {
d = d2;
} else {
/*
* Failing that, step left into the new square and look
* in front of us.
*/
x = x2;
y = y2;
OFFSETWH(x2, y2, x, y, d, w, h);
if ((wrapping || (abs(x2-x) <= 1 && abs(y2-y) <= 1)) &&
!(tiles[y2*w+x2] & LOCKED)) {
/*
* And failing _that_, we're going to have to step
* forward into _that_ square and look right at the
* same locked square as we started with.
*/
x = x2;
y = y2;
d = C(d);
}
}
} while (x != startx || y != starty || d != startd);
/*
* Our technique for perturbing this ambiguous area is to
* search round its edge for a join we can make: that is, an
* edge on the perimeter which is (a) not currently connected,
* and (b) connecting it would not yield a full cross on either
* side. Then we make that join, search round the network to
* find the loop thus constructed, and sever the loop at a
* randomly selected other point.
*/
perim2 = snewn(nperim, struct xyd);
memcpy(perim2, perimeter, nperim * sizeof(struct xyd));
/* Shuffle the perimeter, so as to search it without directional bias. */
shuffle(perim2, nperim, sizeof(*perim2), rs);
for (i = 0; i < nperim; i++) {
int x2, y2;
x = perim2[i].x;
y = perim2[i].y;
d = perim2[i].direction;
OFFSETWH(x2, y2, x, y, d, w, h);
if (!wrapping && (abs(x2-x) > 1 || abs(y2-y) > 1))
continue; /* can't link across non-wrapping border */
if (tiles[y*w+x] & d)
continue; /* already linked in this direction! */
if (((tiles[y*w+x] | d) & 15) == 15)
continue; /* can't turn this tile into a cross */
if (((tiles[y2*w+x2] | F(d)) & 15) == 15)
continue; /* can't turn other tile into a cross */
/*
* We've found the point at which we're going to make a new
* link.
*/
#ifdef PERTURB_DIAGNOSTICS
printf("linking %d,%d:%d\n", x, y, d);
#endif
tiles[y*w+x] |= d;
tiles[y2*w+x2] |= F(d);
break;
}
sfree(perim2);
if (i == nperim)
return; /* nothing we can do! */
/*
* Now we've constructed a new link, we need to find the entire
* loop of which it is a part.
*
* In principle, this involves doing a complete search round
* the network. However, I anticipate that in the vast majority
* of cases the loop will be quite small, so what I'm going to
* do is make _two_ searches round the network in parallel, one
* keeping its metaphorical hand on the left-hand wall while
* the other keeps its hand on the right. As soon as one of
* them gets back to its starting point, I abandon the other.
*/
for (i = 0; i < 2; i++) {
loopsize[i] = nloop[i] = 0;
loop[i] = NULL;
looppos[i].x = x;
looppos[i].y = y;
looppos[i].direction = d;
}
while (1) {
for (i = 0; i < 2; i++) {
int x2, y2, j;
x = looppos[i].x;
y = looppos[i].y;
d = looppos[i].direction;
OFFSETWH(x2, y2, x, y, d, w, h);
/*
* Add this path segment to the loop, unless it exactly
* reverses the previous one on the loop in which case
* we take it away again.
*/
#ifdef PERTURB_DIAGNOSTICS
printf("looppos[%d] = %d,%d:%d\n", i, x, y, d);
#endif
if (nloop[i] > 0 &&
loop[i][nloop[i]-1].x == x2 &&
loop[i][nloop[i]-1].y == y2 &&
loop[i][nloop[i]-1].direction == F(d)) {
#ifdef PERTURB_DIAGNOSTICS
printf("removing path segment %d,%d:%d from loop[%d]\n",
x2, y2, F(d), i);
#endif
nloop[i]--;
} else {
if (nloop[i] >= loopsize[i]) {
loopsize[i] = loopsize[i] * 3 / 2 + 32;
loop[i] = sresize(loop[i], loopsize[i], struct xyd);
}
#ifdef PERTURB_DIAGNOSTICS
printf("adding path segment %d,%d:%d to loop[%d]\n",
x, y, d, i);
#endif
loop[i][nloop[i]++] = looppos[i];
}
#ifdef PERTURB_DIAGNOSTICS
printf("tile at new location is %x\n", tiles[y2*w+x2] & 0xF);
#endif
d = F(d);
for (j = 0; j < 4; j++) {
if (i == 0)
d = A(d);
else
d = C(d);
#ifdef PERTURB_DIAGNOSTICS
printf("trying dir %d\n", d);
#endif
if (tiles[y2*w+x2] & d) {
looppos[i].x = x2;
looppos[i].y = y2;
looppos[i].direction = d;
break;
}
}
assert(j < 4);
assert(nloop[i] > 0);
if (looppos[i].x == loop[i][0].x &&
looppos[i].y == loop[i][0].y &&
looppos[i].direction == loop[i][0].direction) {
#ifdef PERTURB_DIAGNOSTICS
printf("loop %d finished tracking\n", i);
#endif
/*
* Having found our loop, we now sever it at a
* randomly chosen point - absolutely any will do -
* which is not the one we joined it at to begin
* with. Conveniently, the one we joined it at is
* loop[i][0], so we just avoid that one.
*/
j = random_upto(rs, nloop[i]-1) + 1;
x = loop[i][j].x;
y = loop[i][j].y;
d = loop[i][j].direction;
OFFSETWH(x2, y2, x, y, d, w, h);
tiles[y*w+x] &= ~d;
tiles[y2*w+x2] &= ~F(d);
break;
}
}
if (i < 2)
break;
}
sfree(loop[0]);
sfree(loop[1]);
/*
* Finally, we must mark the entire disputed section as locked,
* to prevent the perturb function being called on it multiple
* times.
*
* To do this, we _sort_ the perimeter of the area. The
* existing xyd_cmp function will arrange things into columns
* for us, in such a way that each column has the edges in
* vertical order. Then we can work down each column and fill
* in all the squares between an up edge and a down edge.
*/
qsort(perimeter, nperim, sizeof(struct xyd), xyd_cmp);
x = y = -1;
for (i = 0; i <= nperim; i++) {
if (i == nperim || perimeter[i].x > x) {
/*
* Fill in everything from the last Up edge to the
* bottom of the grid, if necessary.
*/
if (x != -1) {
while (y < h) {
#ifdef PERTURB_DIAGNOSTICS
printf("resolved: locking tile %d,%d\n", x, y);
#endif
tiles[y * w + x] |= LOCKED;
y++;
}
x = y = -1;
}
if (i == nperim)
break;
x = perimeter[i].x;
y = 0;
}
if (perimeter[i].direction == U) {
x = perimeter[i].x;
y = perimeter[i].y;
} else if (perimeter[i].direction == D) {
/*
* Fill in everything from the last Up edge to here.
*/
assert(x == perimeter[i].x && y <= perimeter[i].y);
while (y <= perimeter[i].y) {
#ifdef PERTURB_DIAGNOSTICS
printf("resolved: locking tile %d,%d\n", x, y);
#endif
tiles[y * w + x] |= LOCKED;
y++;
}
x = y = -1;
}
}
sfree(perimeter);
}
static char *new_game_desc(game_params *params, random_state *rs,
char **aux, int interactive)
{
tree234 *possibilities, *barriertree;
int w, h, x, y, cx, cy, nbarriers;
unsigned char *tiles, *barriers;
char *desc, *p;
w = params->width;
h = params->height;
cx = w / 2;
cy = h / 2;
tiles = snewn(w * h, unsigned char);
barriers = snewn(w * h, unsigned char);
begin_generation:
memset(tiles, 0, w * h);
memset(barriers, 0, w * h);
/*
* Construct the unshuffled grid.
*
* To do this, we simply start at the centre point, repeatedly
* choose a random possibility out of the available ways to
* extend a used square into an unused one, and do it. After
* extending the third line out of a square, we remove the
* fourth from the possibilities list to avoid any full-cross
* squares (which would make the game too easy because they
* only have one orientation).
*
* The slightly worrying thing is the avoidance of full-cross
* squares. Can this cause our unsophisticated construction
* algorithm to paint itself into a corner, by getting into a
* situation where there are some unreached squares and the
* only way to reach any of them is to extend a T-piece into a
* full cross?
*
* Answer: no it can't, and here's a proof.
*
* Any contiguous group of such unreachable squares must be
* surrounded on _all_ sides by T-pieces pointing away from the
* group. (If not, then there is a square which can be extended
* into one of the `unreachable' ones, and so it wasn't
* unreachable after all.) In particular, this implies that
* each contiguous group of unreachable squares must be
* rectangular in shape (any deviation from that yields a
* non-T-piece next to an `unreachable' square).
*
* So we have a rectangle of unreachable squares, with T-pieces
* forming a solid border around the rectangle. The corners of
* that border must be connected (since every tile connects all
* the lines arriving in it), and therefore the border must
* form a closed loop around the rectangle.
*
* But this can't have happened in the first place, since we
* _know_ we've avoided creating closed loops! Hence, no such
* situation can ever arise, and the naive grid construction
* algorithm will guaranteeably result in a complete grid
* containing no unreached squares, no full crosses _and_ no
* closed loops. []
*/
possibilities = newtree234(xyd_cmp_nc);
if (cx+1 < w)
add234(possibilities, new_xyd(cx, cy, R));
if (cy-1 >= 0)
add234(possibilities, new_xyd(cx, cy, U));
if (cx-1 >= 0)
add234(possibilities, new_xyd(cx, cy, L));
if (cy+1 < h)
add234(possibilities, new_xyd(cx, cy, D));
while (count234(possibilities) > 0) {
int i;
struct xyd *xyd;
int x1, y1, d1, x2, y2, d2, d;
/*
* Extract a randomly chosen possibility from the list.
*/
i = random_upto(rs, count234(possibilities));
xyd = delpos234(possibilities, i);
x1 = xyd->x;
y1 = xyd->y;
d1 = xyd->direction;
sfree(xyd);
OFFSET(x2, y2, x1, y1, d1, params);
d2 = F(d1);
#ifdef GENERATION_DIAGNOSTICS
printf("picked (%d,%d,%c) <-> (%d,%d,%c)\n",
x1, y1, "0RU3L567D9abcdef"[d1], x2, y2, "0RU3L567D9abcdef"[d2]);
#endif
/*
* Make the connection. (We should be moving to an as yet
* unused tile.)
*/
index(params, tiles, x1, y1) |= d1;
assert(index(params, tiles, x2, y2) == 0);
index(params, tiles, x2, y2) |= d2;
/*
* If we have created a T-piece, remove its last
* possibility.
*/
if (COUNT(index(params, tiles, x1, y1)) == 3) {
struct xyd xyd1, *xydp;
xyd1.x = x1;
xyd1.y = y1;
xyd1.direction = 0x0F ^ index(params, tiles, x1, y1);
xydp = find234(possibilities, &xyd1, NULL);
if (xydp) {
#ifdef GENERATION_DIAGNOSTICS
printf("T-piece; removing (%d,%d,%c)\n",
xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
#endif
del234(possibilities, xydp);
sfree(xydp);
}
}
/*
* Remove all other possibilities that were pointing at the
* tile we've just moved into.
*/
for (d = 1; d < 0x10; d <<= 1) {
int x3, y3, d3;
struct xyd xyd1, *xydp;
OFFSET(x3, y3, x2, y2, d, params);
d3 = F(d);
xyd1.x = x3;
xyd1.y = y3;
xyd1.direction = d3;
xydp = find234(possibilities, &xyd1, NULL);
if (xydp) {
#ifdef GENERATION_DIAGNOSTICS
printf("Loop avoidance; removing (%d,%d,%c)\n",
xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
#endif
del234(possibilities, xydp);
sfree(xydp);
}
}
/*
* Add new possibilities to the list for moving _out_ of
* the tile we have just moved into.
*/
for (d = 1; d < 0x10; d <<= 1) {
int x3, y3;
if (d == d2)
continue; /* we've got this one already */
if (!params->wrapping) {
if (d == U && y2 == 0)
continue;
if (d == D && y2 == h-1)
continue;
if (d == L && x2 == 0)
continue;
if (d == R && x2 == w-1)
continue;
}
OFFSET(x3, y3, x2, y2, d, params);
if (index(params, tiles, x3, y3))
continue; /* this would create a loop */
#ifdef GENERATION_DIAGNOSTICS
printf("New frontier; adding (%d,%d,%c)\n",
x2, y2, "0RU3L567D9abcdef"[d]);
#endif
add234(possibilities, new_xyd(x2, y2, d));
}
}
/* Having done that, we should have no possibilities remaining. */
assert(count234(possibilities) == 0);
freetree234(possibilities);
if (params->unique) {
int prevn = -1;
/*
* Run the solver to check unique solubility.
*/
while (!net_solver(w, h, tiles, NULL, params->wrapping)) {
int n = 0;
/*
* We expect (in most cases) that most of the grid will
* be uniquely specified already, and the remaining
* ambiguous sections will be small and separate. So
* our strategy is to find each individual such
* section, and perform a perturbation on the network
* in that area.
*/
for (y = 0; y < h; y++) for (x = 0; x < w; x++) {
if (x+1 < w && ((tiles[y*w+x] ^ tiles[y*w+x+1]) & LOCKED)) {
n++;
if (tiles[y*w+x] & LOCKED)
perturb(w, h, tiles, params->wrapping, rs, x+1, y, L);
else
perturb(w, h, tiles, params->wrapping, rs, x, y, R);
}
if (y+1 < h && ((tiles[y*w+x] ^ tiles[(y+1)*w+x]) & LOCKED)) {
n++;
if (tiles[y*w+x] & LOCKED)
perturb(w, h, tiles, params->wrapping, rs, x, y+1, U);
else
perturb(w, h, tiles, params->wrapping, rs, x, y, D);
}
}
/*
* Now n counts the number of ambiguous sections we
* have fiddled with. If we haven't managed to decrease
* it from the last time we ran the solver, give up and
* regenerate the entire grid.
*/
if (prevn != -1 && prevn <= n)
goto begin_generation; /* (sorry) */
prevn = n;
}
/*
* The solver will have left a lot of LOCKED bits lying
* around in the tiles array. Remove them.
*/
for (x = 0; x < w*h; x++)
tiles[x] &= ~LOCKED;
}
/*
* Now compute a list of the possible barrier locations.
*/
barriertree = newtree234(xyd_cmp_nc);
for (y = 0; y < h; y++) {
for (x = 0; x < w; x++) {
if (!(index(params, tiles, x, y) & R) &&
(params->wrapping || x < w-1))
add234(barriertree, new_xyd(x, y, R));
if (!(index(params, tiles, x, y) & D) &&
(params->wrapping || y < h-1))
add234(barriertree, new_xyd(x, y, D));
}
}
/*
* Save the unshuffled grid in aux.
*/
{
char *solution;
int i;
solution = snewn(w * h + 1, char);
for (i = 0; i < w * h; i++)
solution[i] = "0123456789abcdef"[tiles[i] & 0xF];
solution[w*h] = '\0';
*aux = solution;
}
/*
* Now shuffle the grid.
*
* In order to avoid accidentally generating an already-solved
* grid, we will reshuffle as necessary to ensure that at least
* one edge has a mismatched connection.
*
* This can always be done, since validate_params() enforces a
* grid area of at least 2 and our generator never creates
* either type of rotationally invariant tile (cross and
* blank). Hence there must be at least one edge separating
* distinct tiles, and it must be possible to find orientations
* of those tiles such that one tile is trying to connect
* through that edge and the other is not.
*
* (We could be more subtle, and allow the shuffle to generate
* a grid in which all tiles match up locally and the only
* criterion preventing the grid from being already solved is
* connectedness. However, that would take more effort, and
* it's easier to simply make sure every grid is _obviously_
* not solved.)
*/
while (1) {
int mismatches;
for (y = 0; y < h; y++) {
for (x = 0; x < w; x++) {
int orig = index(params, tiles, x, y);
int rot = random_upto(rs, 4);
index(params, tiles, x, y) = ROT(orig, rot);
}
}
mismatches = 0;
/*
* I can't even be bothered to check for mismatches across
* a wrapping edge, so I'm just going to enforce that there
* must be a mismatch across a non-wrapping edge, which is
* still always possible.
*/
for (y = 0; y < h; y++) for (x = 0; x < w; x++) {
if (x+1 < w && ((ROT(index(params, tiles, x, y), 2) ^
index(params, tiles, x+1, y)) & L))
mismatches++;
if (y+1 < h && ((ROT(index(params, tiles, x, y), 2) ^
index(params, tiles, x, y+1)) & U))
mismatches++;
}
if (mismatches > 0)
break;
}
/*
* And now choose barrier locations. (We carefully do this
* _after_ shuffling, so that changing the barrier rate in the
* params while keeping the random seed the same will give the
* same shuffled grid and _only_ change the barrier locations.
* Also the way we choose barrier locations, by repeatedly
* choosing one possibility from the list until we have enough,
* is designed to ensure that raising the barrier rate while
* keeping the seed the same will provide a superset of the
* previous barrier set - i.e. if you ask for 10 barriers, and
* then decide that's still too hard and ask for 20, you'll get
* the original 10 plus 10 more, rather than getting 20 new
* ones and the chance of remembering your first 10.)
*/
nbarriers = (int)(params->barrier_probability * count234(barriertree));
assert(nbarriers >= 0 && nbarriers <= count234(barriertree));
while (nbarriers > 0) {
int i;
struct xyd *xyd;
int x1, y1, d1, x2, y2, d2;
/*
* Extract a randomly chosen barrier from the list.
*/
i = random_upto(rs, count234(barriertree));
xyd = delpos234(barriertree, i);
assert(xyd != NULL);
x1 = xyd->x;
y1 = xyd->y;
d1 = xyd->direction;
sfree(xyd);
OFFSET(x2, y2, x1, y1, d1, params);
d2 = F(d1);
index(params, barriers, x1, y1) |= d1;
index(params, barriers, x2, y2) |= d2;
nbarriers--;
}
/*
* Clean up the rest of the barrier list.
*/
{
struct xyd *xyd;
while ( (xyd = delpos234(barriertree, 0)) != NULL)
sfree(xyd);
freetree234(barriertree);
}
/*
* Finally, encode the grid into a string game description.
*
* My syntax is extremely simple: each square is encoded as a
* hex digit in which bit 0 means a connection on the right,
* bit 1 means up, bit 2 left and bit 3 down. (i.e. the same
* encoding as used internally). Each digit is followed by
* optional barrier indicators: `v' means a vertical barrier to
* the right of it, and `h' means a horizontal barrier below
* it.
*/
desc = snewn(w * h * 3 + 1, char);
p = desc;
for (y = 0; y < h; y++) {
for (x = 0; x < w; x++) {
*p++ = "0123456789abcdef"[index(params, tiles, x, y)];
if ((params->wrapping || x < w-1) &&
(index(params, barriers, x, y) & R))
*p++ = 'v';
if ((params->wrapping || y < h-1) &&
(index(params, barriers, x, y) & D))
*p++ = 'h';
}
}
assert(p - desc <= w*h*3);
*p = '\0';
sfree(tiles);
sfree(barriers);
return desc;
}
static char *validate_desc(game_params *params, char *desc)
{
int w = params->width, h = params->height;
int i;
for (i = 0; i < w*h; i++) {
if (*desc >= '0' && *desc <= '9')
/* OK */;
else if (*desc >= 'a' && *desc <= 'f')
/* OK */;
else if (*desc >= 'A' && *desc <= 'F')
/* OK */;
else if (!*desc)
return "Game description shorter than expected";
else
return "Game description contained unexpected character";
desc++;
while (*desc == 'h' || *desc == 'v')
desc++;
}
if (*desc)
return "Game description longer than expected";
return NULL;
}
/* ----------------------------------------------------------------------
* Construct an initial game state, given a description and parameters.
*/
static game_state *new_game(midend *me, game_params *params, char *desc)
{
game_state *state;
int w, h, x, y;
assert(params->width > 0 && params->height > 0);
assert(params->width > 1 || params->height > 1);
/*
* Create a blank game state.
*/
state = snew(game_state);
w = state->width = params->width;
h = state->height = params->height;
state->wrapping = params->wrapping;
state->last_rotate_dir = state->last_rotate_x = state->last_rotate_y = 0;
state->completed = state->used_solve = FALSE;
state->tiles = snewn(state->width * state->height, unsigned char);
memset(state->tiles, 0, state->width * state->height);
state->barriers = snewn(state->width * state->height, unsigned char);
memset(state->barriers, 0, state->width * state->height);
/*
* Parse the game description into the grid.
*/
for (y = 0; y < h; y++) {
for (x = 0; x < w; x++) {
if (*desc >= '0' && *desc <= '9')
tile(state, x, y) = *desc - '0';
else if (*desc >= 'a' && *desc <= 'f')
tile(state, x, y) = *desc - 'a' + 10;
else if (*desc >= 'A' && *desc <= 'F')
tile(state, x, y) = *desc - 'A' + 10;
if (*desc)
desc++;
while (*desc == 'h' || *desc == 'v') {
int x2, y2, d1, d2;
if (*desc == 'v')
d1 = R;
else
d1 = D;
OFFSET(x2, y2, x, y, d1, state);
d2 = F(d1);
barrier(state, x, y) |= d1;
barrier(state, x2, y2) |= d2;
desc++;
}
}
}
/*
* Set up border barriers if this is a non-wrapping game.
*/
if (!state->wrapping) {
for (x = 0; x < state->width; x++) {
barrier(state, x, 0) |= U;
barrier(state, x, state->height-1) |= D;
}
for (y = 0; y < state->height; y++) {
barrier(state, 0, y) |= L;
barrier(state, state->width-1, y) |= R;
}
} else {
/*
* We check whether this is de-facto a non-wrapping game
* despite the parameters, in case we were passed the
* description of a non-wrapping game. This is so that we
* can change some aspects of the UI behaviour.
*/
state->wrapping = FALSE;
for (x = 0; x < state->width; x++)
if (!(barrier(state, x, 0) & U) ||
!(barrier(state, x, state->height-1) & D))
state->wrapping = TRUE;
for (y = 0; y < state->width; y++)
if (!(barrier(state, 0, y) & L) ||
!(barrier(state, state->width-1, y) & R))
state->wrapping = TRUE;
}
return state;
}
static game_state *dup_game(game_state *state)
{
game_state *ret;
ret = snew(game_state);
ret->width = state->width;
ret->height = state->height;
ret->wrapping = state->wrapping;
ret->completed = state->completed;
ret->used_solve = state->used_solve;
ret->last_rotate_dir = state->last_rotate_dir;
ret->last_rotate_x = state->last_rotate_x;
ret->last_rotate_y = state->last_rotate_y;
ret->tiles = snewn(state->width * state->height, unsigned char);
memcpy(ret->tiles, state->tiles, state->width * state->height);
ret->barriers = snewn(state->width * state->height, unsigned char);
memcpy(ret->barriers, state->barriers, state->width * state->height);
return ret;
}
static void free_game(game_state *state)
{
sfree(state->tiles);
sfree(state->barriers);
sfree(state);
}
static char *solve_game(game_state *state, game_state *currstate,
char *aux, char **error)
{
unsigned char *tiles;
char *ret;
int retlen, retsize;
int i;
tiles = snewn(state->width * state->height, unsigned char);
if (!aux) {
/*
* Run the internal solver on the provided grid. This might
* not yield a complete solution.
*/
memcpy(tiles, state->tiles, state->width * state->height);
net_solver(state->width, state->height, tiles,
state->barriers, state->wrapping);
} else {
for (i = 0; i < state->width * state->height; i++) {
int c = aux[i];
if (c >= '0' && c <= '9')
tiles[i] = c - '0';
else if (c >= 'a' && c <= 'f')
tiles[i] = c - 'a' + 10;
else if (c >= 'A' && c <= 'F')
tiles[i] = c - 'A' + 10;
tiles[i] |= LOCKED;
}
}
/*
* Now construct a string which can be passed to execute_move()
* to transform the current grid into the solved one.
*/
retsize = 256;
ret = snewn(retsize, char);
retlen = 0;
ret[retlen++] = 'S';
for (i = 0; i < state->width * state->height; i++) {
int from = currstate->tiles[i], to = tiles[i];
int ft = from & (R|L|U|D), tt = to & (R|L|U|D);
int x = i % state->width, y = i / state->width;
int chr = '\0';
char buf[80], *p = buf;
if (from == to)
continue; /* nothing needs doing at all */
/*
* To transform this tile into the desired tile: first
* unlock the tile if it's locked, then rotate it if
* necessary, then lock it if necessary.
*/
if (from & LOCKED)
p += sprintf(p, ";L%d,%d", x, y);
if (tt == A(ft))
chr = 'A';
else if (tt == C(ft))
chr = 'C';
else if (tt == F(ft))
chr = 'F';
else {
assert(tt == ft);
chr = '\0';
}
if (chr)
p += sprintf(p, ";%c%d,%d", chr, x, y);
if (to & LOCKED)
p += sprintf(p, ";L%d,%d", x, y);
if (p > buf) {
if (retlen + (p - buf) >= retsize) {
retsize = retlen + (p - buf) + 512;
ret = sresize(ret, retsize, char);
}
memcpy(ret+retlen, buf, p - buf);
retlen += p - buf;
}
}
assert(retlen < retsize);
ret[retlen] = '\0';
ret = sresize(ret, retlen+1, char);
sfree(tiles);
return ret;
}
static char *game_text_format(game_state *state)
{
return NULL;
}
/* ----------------------------------------------------------------------
* Utility routine.
*/
/*
* Compute which squares are reachable from the centre square, as a
* quick visual aid to determining how close the game is to
* completion. This is also a simple way to tell if the game _is_
* completed - just call this function and see whether every square
* is marked active.
*/
static unsigned char *compute_active(game_state *state, int cx, int cy)
{
unsigned char *active;
tree234 *todo;
struct xyd *xyd;
active = snewn(state->width * state->height, unsigned char);
memset(active, 0, state->width * state->height);
/*
* We only store (x,y) pairs in todo, but it's easier to reuse
* xyd_cmp and just store direction 0 every time.
*/
todo = newtree234(xyd_cmp_nc);
index(state, active, cx, cy) = ACTIVE;
add234(todo, new_xyd(cx, cy, 0));
while ( (xyd = delpos234(todo, 0)) != NULL) {
int x1, y1, d1, x2, y2, d2;
x1 = xyd->x;
y1 = xyd->y;
sfree(xyd);
for (d1 = 1; d1 < 0x10; d1 <<= 1) {
OFFSET(x2, y2, x1, y1, d1, state);
d2 = F(d1);
/*
* If the next tile in this direction is connected to
* us, and there isn't a barrier in the way, and it
* isn't already marked active, then mark it active and
* add it to the to-examine list.
*/
if ((tile(state, x1, y1) & d1) &&
(tile(state, x2, y2) & d2) &&
!(barrier(state, x1, y1) & d1) &&
!index(state, active, x2, y2)) {
index(state, active, x2, y2) = ACTIVE;
add234(todo, new_xyd(x2, y2, 0));
}
}
}
/* Now we expect the todo list to have shrunk to zero size. */
assert(count234(todo) == 0);
freetree234(todo);
return active;
}
struct game_ui {
int org_x, org_y; /* origin */
int cx, cy; /* source tile (game coordinates) */
int cur_x, cur_y;
int cur_visible;
random_state *rs; /* used for jumbling */
#ifdef USE_DRAGGING
int dragtilex, dragtiley, dragstartx, dragstarty, dragged;
#endif
};
static game_ui *new_ui(game_state *state)
{
void *seed;
int seedsize;
game_ui *ui = snew(game_ui);
ui->org_x = ui->org_y = 0;
ui->cur_x = ui->cx = state->width / 2;
ui->cur_y = ui->cy = state->height / 2;
ui->cur_visible = FALSE;
get_random_seed(&seed, &seedsize);
ui->rs = random_new(seed, seedsize);
sfree(seed);
return ui;
}
static void free_ui(game_ui *ui)
{
random_free(ui->rs);
sfree(ui);
}
static char *encode_ui(game_ui *ui)
{
char buf[120];
/*
* We preserve the origin and centre-point coordinates over a
* serialise.
*/
sprintf(buf, "O%d,%d;C%d,%d", ui->org_x, ui->org_y, ui->cx, ui->cy);
return dupstr(buf);
}
static void decode_ui(game_ui *ui, char *encoding)
{
sscanf(encoding, "O%d,%d;C%d,%d",
&ui->org_x, &ui->org_y, &ui->cx, &ui->cy);
}
static void game_changed_state(game_ui *ui, game_state *oldstate,
game_state *newstate)
{
}
struct game_drawstate {
int started;
int width, height;
int org_x, org_y;
int tilesize;
unsigned char *visible;
};
/* ----------------------------------------------------------------------
* Process a move.
*/
static char *interpret_move(game_state *state, game_ui *ui,
game_drawstate *ds, int x, int y, int button)
{
char *nullret;
int tx = -1, ty = -1, dir = 0;
int shift = button & MOD_SHFT, ctrl = button & MOD_CTRL;
enum {
NONE, ROTATE_LEFT, ROTATE_180, ROTATE_RIGHT, TOGGLE_LOCK, JUMBLE,
MOVE_ORIGIN, MOVE_SOURCE, MOVE_ORIGIN_AND_SOURCE, MOVE_CURSOR
} action;
button &= ~MOD_MASK;
nullret = NULL;
action = NONE;
if (button == LEFT_BUTTON ||
button == MIDDLE_BUTTON ||
#ifdef USE_DRAGGING
button == LEFT_DRAG ||
button == LEFT_RELEASE ||
button == RIGHT_DRAG ||
button == RIGHT_RELEASE ||
#endif
button == RIGHT_BUTTON) {
if (ui->cur_visible) {
ui->cur_visible = FALSE;
nullret = "";
}
/*
* The button must have been clicked on a valid tile.
*/
x -= WINDOW_OFFSET + TILE_BORDER;
y -= WINDOW_OFFSET + TILE_BORDER;
if (x < 0 || y < 0)
return nullret;
tx = x / TILE_SIZE;
ty = y / TILE_SIZE;
if (tx >= state->width || ty >= state->height)
return nullret;
/* Transform from physical to game coords */
tx = (tx + ui->org_x) % state->width;
ty = (ty + ui->org_y) % state->height;
if (x % TILE_SIZE >= TILE_SIZE - TILE_BORDER ||
y % TILE_SIZE >= TILE_SIZE - TILE_BORDER)
return nullret;
#ifdef USE_DRAGGING
if (button == MIDDLE_BUTTON
#ifdef STYLUS_BASED
|| button == RIGHT_BUTTON /* with a stylus, `right-click' locks */
#endif
) {
/*
* Middle button never drags: it only toggles the lock.
*/
action = TOGGLE_LOCK;
} else if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
/*
* Otherwise, we note down the start point for a drag.
*/
ui->dragtilex = tx;
ui->dragtiley = ty;
ui->dragstartx = x % TILE_SIZE;
ui->dragstarty = y % TILE_SIZE;
ui->dragged = FALSE;
return nullret; /* no actual action */
} else if (button == LEFT_DRAG || button == RIGHT_DRAG) {
/*
* Find the new drag point and see if it necessitates a
* rotation.
*/
int x0,y0, xA,yA, xC,yC, xF,yF;
int mx, my;
int d0, dA, dC, dF, dmin;
tx = ui->dragtilex;
ty = ui->dragtiley;
mx = x - (ui->dragtilex * TILE_SIZE);
my = y - (ui->dragtiley * TILE_SIZE);
x0 = ui->dragstartx;
y0 = ui->dragstarty;
xA = ui->dragstarty;
yA = TILE_SIZE-1 - ui->dragstartx;
xF = TILE_SIZE-1 - ui->dragstartx;
yF = TILE_SIZE-1 - ui->dragstarty;
xC = TILE_SIZE-1 - ui->dragstarty;
yC = ui->dragstartx;
d0 = (mx-x0)*(mx-x0) + (my-y0)*(my-y0);
dA = (mx-xA)*(mx-xA) + (my-yA)*(my-yA);
dF = (mx-xF)*(mx-xF) + (my-yF)*(my-yF);
dC = (mx-xC)*(mx-xC) + (my-yC)*(my-yC);
dmin = min(min(d0,dA),min(dF,dC));
if (d0 == dmin) {
return nullret;
} else if (dF == dmin) {
action = ROTATE_180;
ui->dragstartx = xF;
ui->dragstarty = yF;
ui->dragged = TRUE;
} else if (dA == dmin) {
action = ROTATE_LEFT;
ui->dragstartx = xA;
ui->dragstarty = yA;
ui->dragged = TRUE;
} else /* dC == dmin */ {
action = ROTATE_RIGHT;
ui->dragstartx = xC;
ui->dragstarty = yC;
ui->dragged = TRUE;
}
} else if (button == LEFT_RELEASE || button == RIGHT_RELEASE) {
if (!ui->dragged) {
/*
* There was a click but no perceptible drag:
* revert to single-click behaviour.
*/
tx = ui->dragtilex;
ty = ui->dragtiley;
if (button == LEFT_RELEASE)
action = ROTATE_LEFT;
else
action = ROTATE_RIGHT;
} else
return nullret; /* no action */
}
#else /* USE_DRAGGING */
action = (button == LEFT_BUTTON ? ROTATE_LEFT :
button == RIGHT_BUTTON ? ROTATE_RIGHT : TOGGLE_LOCK);
#endif /* USE_DRAGGING */
} else if (button == CURSOR_UP || button == CURSOR_DOWN ||
button == CURSOR_RIGHT || button == CURSOR_LEFT) {
switch (button) {
case CURSOR_UP: dir = U; break;
case CURSOR_DOWN: dir = D; break;
case CURSOR_LEFT: dir = L; break;
case CURSOR_RIGHT: dir = R; break;
default: return nullret;
}
if (shift && ctrl) action = MOVE_ORIGIN_AND_SOURCE;
else if (shift) action = MOVE_ORIGIN;
else if (ctrl) action = MOVE_SOURCE;
else action = MOVE_CURSOR;
} else if (button == 'a' || button == 's' || button == 'd' ||
button == 'A' || button == 'S' || button == 'D' ||
button == 'f' || button == 'F' ||
button == CURSOR_SELECT) {
tx = ui->cur_x;
ty = ui->cur_y;
if (button == 'a' || button == 'A' || button == CURSOR_SELECT)
action = ROTATE_LEFT;
else if (button == 's' || button == 'S')
action = TOGGLE_LOCK;
else if (button == 'd' || button == 'D')
action = ROTATE_RIGHT;
else if (button == 'f' || button == 'F')
action = ROTATE_180;
ui->cur_visible = TRUE;
} else if (button == 'j' || button == 'J') {
/* XXX should we have some mouse control for this? */
action = JUMBLE;
} else
return nullret;
/*
* The middle button locks or unlocks a tile. (A locked tile
* cannot be turned, and is visually marked as being locked.
* This is a convenience for the player, so that once they are
* sure which way round a tile goes, they can lock it and thus
* avoid forgetting later on that they'd already done that one;
* and the locking also prevents them turning the tile by
* accident. If they change their mind, another middle click
* unlocks it.)
*/
if (action == TOGGLE_LOCK) {
char buf[80];
sprintf(buf, "L%d,%d", tx, ty);
return dupstr(buf);
} else if (action == ROTATE_LEFT || action == ROTATE_RIGHT ||
action == ROTATE_180) {
char buf[80];
/*
* The left and right buttons have no effect if clicked on a
* locked tile.
*/
if (tile(state, tx, ty) & LOCKED)
return nullret;
/*
* Otherwise, turn the tile one way or the other. Left button
* turns anticlockwise; right button turns clockwise.
*/
sprintf(buf, "%c%d,%d", (int)(action == ROTATE_LEFT ? 'A' :
action == ROTATE_RIGHT ? 'C' : 'F'), tx, ty);
return dupstr(buf);
} else if (action == JUMBLE) {
/*
* Jumble all unlocked tiles to random orientations.
*/
int jx, jy, maxlen;
char *ret, *p;
/*
* Maximum string length assumes no int can be converted to
* decimal and take more than 11 digits!
*/
maxlen = state->width * state->height * 25 + 3;
ret = snewn(maxlen, char);
p = ret;
*p++ = 'J';
for (jy = 0; jy < state->height; jy++) {
for (jx = 0; jx < state->width; jx++) {
if (!(tile(state, jx, jy) & LOCKED)) {
int rot = random_upto(ui->rs, 4);
if (rot) {
p += sprintf(p, ";%c%d,%d", "AFC"[rot-1], jx, jy);
}
}
}
}
*p++ = '\0';
assert(p - ret < maxlen);
ret = sresize(ret, p - ret, char);
return ret;
} else if (action == MOVE_ORIGIN || action == MOVE_SOURCE ||
action == MOVE_ORIGIN_AND_SOURCE || action == MOVE_CURSOR) {
assert(dir != 0);
if (action == MOVE_ORIGIN || action == MOVE_ORIGIN_AND_SOURCE) {
if (state->wrapping) {
OFFSET(ui->org_x, ui->org_y, ui->org_x, ui->org_y, dir, state);
} else return nullret; /* disallowed for non-wrapping grids */
}
if (action == MOVE_SOURCE || action == MOVE_ORIGIN_AND_SOURCE) {
OFFSET(ui->cx, ui->cy, ui->cx, ui->cy, dir, state);
}
if (action == MOVE_CURSOR) {
OFFSET(ui->cur_x, ui->cur_y, ui->cur_x, ui->cur_y, dir, state);
ui->cur_visible = TRUE;
}
return "";
} else {
return NULL;
}
}
static game_state *execute_move(game_state *from, char *move)
{
game_state *ret;
int tx, ty, n, noanim, orig;
ret = dup_game(from);
if (move[0] == 'J' || move[0] == 'S') {
if (move[0] == 'S')
ret->used_solve = TRUE;
move++;
if (*move == ';')
move++;
noanim = TRUE;
} else
noanim = FALSE;
ret->last_rotate_dir = 0; /* suppress animation */
ret->last_rotate_x = ret->last_rotate_y = 0;
while (*move) {
if ((move[0] == 'A' || move[0] == 'C' ||
move[0] == 'F' || move[0] == 'L') &&
sscanf(move+1, "%d,%d%n", &tx, &ty, &n) >= 2 &&
tx >= 0 && tx < from->width && ty >= 0 && ty < from->height) {
orig = tile(ret, tx, ty);
if (move[0] == 'A') {
tile(ret, tx, ty) = A(orig);
if (!noanim)
ret->last_rotate_dir = +1;
} else if (move[0] == 'F') {
tile(ret, tx, ty) = F(orig);
if (!noanim)
ret->last_rotate_dir = +2; /* + for sake of argument */
} else if (move[0] == 'C') {
tile(ret, tx, ty) = C(orig);
if (!noanim)
ret->last_rotate_dir = -1;
} else {
assert(move[0] == 'L');
tile(ret, tx, ty) ^= LOCKED;
}
move += 1 + n;
if (*move == ';') move++;
} else {
free_game(ret);
return NULL;
}
}
if (!noanim) {
ret->last_rotate_x = tx;
ret->last_rotate_y = ty;
}
/*
* Check whether the game has been completed.
*
* For this purpose it doesn't matter where the source square
* is, because we can start from anywhere and correctly
* determine whether the game is completed.
*/
{
unsigned char *active = compute_active(ret, 0, 0);
int x1, y1;
int complete = TRUE;
for (x1 = 0; x1 < ret->width; x1++)
for (y1 = 0; y1 < ret->height; y1++)
if ((tile(ret, x1, y1) & 0xF) && !index(ret, active, x1, y1)) {
complete = FALSE;
goto break_label; /* break out of two loops at once */
}
break_label:
sfree(active);
if (complete)
ret->completed = TRUE;
}
return ret;
}
/* ----------------------------------------------------------------------
* Routines for drawing the game position on the screen.
*/
static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
{
game_drawstate *ds = snew(game_drawstate);
ds->started = FALSE;
ds->width = state->width;
ds->height = state->height;
ds->org_x = ds->org_y = -1;
ds->visible = snewn(state->width * state->height, unsigned char);
ds->tilesize = 0; /* undecided yet */
memset(ds->visible, 0xFF, state->width * state->height);
return ds;
}
static void game_free_drawstate(drawing *dr, game_drawstate *ds)
{
sfree(ds->visible);
sfree(ds);
}
static void game_compute_size(game_params *params, int tilesize,
int *x, int *y)
{
*x = WINDOW_OFFSET * 2 + tilesize * params->width + TILE_BORDER;
*y = WINDOW_OFFSET * 2 + tilesize * params->height + TILE_BORDER;
}
static void game_set_size(drawing *dr, game_drawstate *ds,
game_params *params, int tilesize)
{
ds->tilesize = tilesize;
}
static float *game_colours(frontend *fe, int *ncolours)
{
float *ret;
ret = snewn(NCOLOURS * 3, float);
*ncolours = NCOLOURS;
/*
* Basic background colour is whatever the front end thinks is
* a sensible default.
*/
frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
/*
* Wires are black.
*/
ret[COL_WIRE * 3 + 0] = 0.0F;
ret[COL_WIRE * 3 + 1] = 0.0F;
ret[COL_WIRE * 3 + 2] = 0.0F;
/*
* Powered wires and powered endpoints are cyan.
*/
ret[COL_POWERED * 3 + 0] = 0.0F;
ret[COL_POWERED * 3 + 1] = 1.0F;
ret[COL_POWERED * 3 + 2] = 1.0F;
/*
* Barriers are red.
*/
ret[COL_BARRIER * 3 + 0] = 1.0F;
ret[COL_BARRIER * 3 + 1] = 0.0F;
ret[COL_BARRIER * 3 + 2] = 0.0F;
/*
* Unpowered endpoints are blue.
*/
ret[COL_ENDPOINT * 3 + 0] = 0.0F;
ret[COL_ENDPOINT * 3 + 1] = 0.0F;
ret[COL_ENDPOINT * 3 + 2] = 1.0F;
/*
* Tile borders are a darker grey than the background.
*/
ret[COL_BORDER * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
ret[COL_BORDER * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
ret[COL_BORDER * 3 + 2] = 0.5F * ret[COL_BACKGROUND * 3 + 2];
/*
* Locked tiles are a grey in between those two.
*/
ret[COL_LOCKED * 3 + 0] = 0.75F * ret[COL_BACKGROUND * 3 + 0];
ret[COL_LOCKED * 3 + 1] = 0.75F * ret[COL_BACKGROUND * 3 + 1];
ret[COL_LOCKED * 3 + 2] = 0.75F * ret[COL_BACKGROUND * 3 + 2];
return ret;
}
static void draw_thick_line(drawing *dr, int x1, int y1, int x2, int y2,
int colour)
{
draw_line(dr, x1-1, y1, x2-1, y2, COL_WIRE);
draw_line(dr, x1+1, y1, x2+1, y2, COL_WIRE);
draw_line(dr, x1, y1-1, x2, y2-1, COL_WIRE);
draw_line(dr, x1, y1+1, x2, y2+1, COL_WIRE);
draw_line(dr, x1, y1, x2, y2, colour);
}
static void draw_rect_coords(drawing *dr, int x1, int y1, int x2, int y2,
int colour)
{
int mx = (x1 < x2 ? x1 : x2);
int my = (y1 < y2 ? y1 : y2);
int dx = (x2 + x1 - 2*mx + 1);
int dy = (y2 + y1 - 2*my + 1);
draw_rect(dr, mx, my, dx, dy, colour);
}
/*
* draw_barrier_corner() and draw_barrier() are passed physical coords
*/
static void draw_barrier_corner(drawing *dr, game_drawstate *ds,
int x, int y, int dx, int dy, int phase)
{
int bx = WINDOW_OFFSET + TILE_SIZE * x;
int by = WINDOW_OFFSET + TILE_SIZE * y;
int x1, y1;
x1 = (dx > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
y1 = (dy > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
if (phase == 0) {
draw_rect_coords(dr, bx+x1+dx, by+y1,
bx+x1-TILE_BORDER*dx, by+y1-(TILE_BORDER-1)*dy,
COL_WIRE);
draw_rect_coords(dr, bx+x1, by+y1+dy,
bx+x1-(TILE_BORDER-1)*dx, by+y1-TILE_BORDER*dy,
COL_WIRE);
} else {
draw_rect_coords(dr, bx+x1, by+y1,
bx+x1-(TILE_BORDER-1)*dx, by+y1-(TILE_BORDER-1)*dy,
COL_BARRIER);
}
}
static void draw_barrier(drawing *dr, game_drawstate *ds,
int x, int y, int dir, int phase)
{
int bx = WINDOW_OFFSET + TILE_SIZE * x;
int by = WINDOW_OFFSET + TILE_SIZE * y;
int x1, y1, w, h;
x1 = (X(dir) > 0 ? TILE_SIZE : X(dir) == 0 ? TILE_BORDER : 0);
y1 = (Y(dir) > 0 ? TILE_SIZE : Y(dir) == 0 ? TILE_BORDER : 0);
w = (X(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
h = (Y(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
if (phase == 0) {
draw_rect(dr, bx+x1-X(dir), by+y1-Y(dir), w, h, COL_WIRE);
} else {
draw_rect(dr, bx+x1, by+y1, w, h, COL_BARRIER);
}
}
/*
* draw_tile() is passed physical coordinates
*/
static void draw_tile(drawing *dr, game_state *state, game_drawstate *ds,
int x, int y, int tile, int src, float angle, int cursor)
{
int bx = WINDOW_OFFSET + TILE_SIZE * x;
int by = WINDOW_OFFSET + TILE_SIZE * y;
float matrix[4];
float cx, cy, ex, ey, tx, ty;
int dir, col, phase;
/*
* When we draw a single tile, we must draw everything up to
* and including the borders around the tile. This means that
* if the neighbouring tiles have connections to those borders,
* we must draw those connections on the borders themselves.
*/
clip(dr, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER);
/*
* So. First blank the tile out completely: draw a big
* rectangle in border colour, and a smaller rectangle in
* background colour to fill it in.
*/
draw_rect(dr, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER,
COL_BORDER);
draw_rect(dr, bx+TILE_BORDER, by+TILE_BORDER,
TILE_SIZE-TILE_BORDER, TILE_SIZE-TILE_BORDER,
tile & LOCKED ? COL_LOCKED : COL_BACKGROUND);
/*
* Draw an inset outline rectangle as a cursor, in whichever of
* COL_LOCKED and COL_BACKGROUND we aren't currently drawing
* in.
*/
if (cursor) {
draw_line(dr, bx+TILE_SIZE/8, by+TILE_SIZE/8,
bx+TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8,
tile & LOCKED ? COL_BACKGROUND : COL_LOCKED);
draw_line(dr, bx+TILE_SIZE/8, by+TILE_SIZE/8,
bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE/8,
tile & LOCKED ? COL_BACKGROUND : COL_LOCKED);
draw_line(dr, bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE/8,
bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8,
tile & LOCKED ? COL_BACKGROUND : COL_LOCKED);
draw_line(dr, bx+TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8,
bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8,
tile & LOCKED ? COL_BACKGROUND : COL_LOCKED);
}
/*
* Set up the rotation matrix.
*/
matrix[0] = (float)cos(angle * PI / 180.0);
matrix[1] = (float)-sin(angle * PI / 180.0);
matrix[2] = (float)sin(angle * PI / 180.0);
matrix[3] = (float)cos(angle * PI / 180.0);
/*
* Draw the wires.
*/
cx = cy = TILE_BORDER + (TILE_SIZE-TILE_BORDER) / 2.0F - 0.5F;
col = (tile & ACTIVE ? COL_POWERED : COL_WIRE);
for (dir = 1; dir < 0x10; dir <<= 1) {
if (tile & dir) {
ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir);
ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir);
MATMUL(tx, ty, matrix, ex, ey);
draw_thick_line(dr, bx+(int)cx, by+(int)cy,
bx+(int)(cx+tx), by+(int)(cy+ty),
COL_WIRE);
}
}
for (dir = 1; dir < 0x10; dir <<= 1) {
if (tile & dir) {
ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir);
ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir);
MATMUL(tx, ty, matrix, ex, ey);
draw_line(dr, bx+(int)cx, by+(int)cy,
bx+(int)(cx+tx), by+(int)(cy+ty), col);
}
}
/*
* Draw the box in the middle. We do this in blue if the tile
* is an unpowered endpoint, in cyan if the tile is a powered
* endpoint, in black if the tile is the centrepiece, and
* otherwise not at all.
*/
col = -1;
if (src)
col = COL_WIRE;
else if (COUNT(tile) == 1) {
col = (tile & ACTIVE ? COL_POWERED : COL_ENDPOINT);
}
if (col >= 0) {
int i, points[8];
points[0] = +1; points[1] = +1;
points[2] = +1; points[3] = -1;
points[4] = -1; points[5] = -1;
points[6] = -1; points[7] = +1;
for (i = 0; i < 8; i += 2) {
ex = (TILE_SIZE * 0.24F) * points[i];
ey = (TILE_SIZE * 0.24F) * points[i+1];
MATMUL(tx, ty, matrix, ex, ey);
points[i] = bx+(int)(cx+tx);
points[i+1] = by+(int)(cy+ty);
}
draw_polygon(dr, points, 4, col, COL_WIRE);
}
/*
* Draw the points on the border if other tiles are connected
* to us.
*/
for (dir = 1; dir < 0x10; dir <<= 1) {
int dx, dy, px, py, lx, ly, vx, vy, ox, oy;
dx = X(dir);
dy = Y(dir);
ox = x + dx;
oy = y + dy;
if (ox < 0 || ox >= state->width || oy < 0 || oy >= state->height)
continue;
if (!(tile(state, GX(ox), GY(oy)) & F(dir)))
continue;
px = bx + (int)(dx>0 ? TILE_SIZE + TILE_BORDER - 1 : dx<0 ? 0 : cx);
py = by + (int)(dy>0 ? TILE_SIZE + TILE_BORDER - 1 : dy<0 ? 0 : cy);
lx = dx * (TILE_BORDER-1);
ly = dy * (TILE_BORDER-1);
vx = (dy ? 1 : 0);
vy = (dx ? 1 : 0);
if (angle == 0.0 && (tile & dir)) {
/*
* If we are fully connected to the other tile, we must
* draw right across the tile border. (We can use our
* own ACTIVE state to determine what colour to do this
* in: if we are fully connected to the other tile then
* the two ACTIVE states will be the same.)
*/
draw_rect_coords(dr, px-vx, py-vy, px+lx+vx, py+ly+vy, COL_WIRE);
draw_rect_coords(dr, px, py, px+lx, py+ly,
(tile & ACTIVE) ? COL_POWERED : COL_WIRE);
} else {
/*
* The other tile extends into our border, but isn't
* actually connected to us. Just draw a single black
* dot.
*/
draw_rect_coords(dr, px, py, px, py, COL_WIRE);
}
}
/*
* Draw barrier corners, and then barriers.
*/
for (phase = 0; phase < 2; phase++) {
for (dir = 1; dir < 0x10; dir <<= 1) {
int x1, y1, corner = FALSE;
/*
* If at least one barrier terminates at the corner
* between dir and A(dir), draw a barrier corner.
*/
if (barrier(state, GX(x), GY(y)) & (dir | A(dir))) {
corner = TRUE;
} else {
/*
* Only count barriers terminating at this corner
* if they're physically next to the corner. (That
* is, if they've wrapped round from the far side
* of the screen, they don't count.)
*/
x1 = x + X(dir);
y1 = y + Y(dir);
if (x1 >= 0 && x1 < state->width &&
y1 >= 0 && y1 < state->height &&
(barrier(state, GX(x1), GY(y1)) & A(dir))) {
corner = TRUE;
} else {
x1 = x + X(A(dir));
y1 = y + Y(A(dir));
if (x1 >= 0 && x1 < state->width &&
y1 >= 0 && y1 < state->height &&
(barrier(state, GX(x1), GY(y1)) & dir))
corner = TRUE;
}
}
if (corner) {
/*
* At least one barrier terminates here. Draw a
* corner.
*/
draw_barrier_corner(dr, ds, x, y,
X(dir)+X(A(dir)), Y(dir)+Y(A(dir)),
phase);
}
}
for (dir = 1; dir < 0x10; dir <<= 1)
if (barrier(state, GX(x), GY(y)) & dir)
draw_barrier(dr, ds, x, y, dir, phase);
}
unclip(dr);
draw_update(dr, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER);
}
static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
game_state *state, int dir, game_ui *ui, float t, float ft)
{
int x, y, tx, ty, frame, last_rotate_dir, moved_origin = FALSE;
unsigned char *active;
float angle = 0.0;
/*
* Clear the screen, and draw the exterior barrier lines, if
* this is our first call or if the origin has changed.
*/
if (!ds->started || ui->org_x != ds->org_x || ui->org_y != ds->org_y) {
int phase;
ds->started = TRUE;
draw_rect(dr, 0, 0,
WINDOW_OFFSET * 2 + TILE_SIZE * state->width + TILE_BORDER,
WINDOW_OFFSET * 2 + TILE_SIZE * state->height + TILE_BORDER,
COL_BACKGROUND);
ds->org_x = ui->org_x;
ds->org_y = ui->org_y;
moved_origin = TRUE;
draw_update(dr, 0, 0,
WINDOW_OFFSET*2 + TILE_SIZE*state->width + TILE_BORDER,
WINDOW_OFFSET*2 + TILE_SIZE*state->height + TILE_BORDER);
for (phase = 0; phase < 2; phase++) {
for (x = 0; x < ds->width; x++) {
if (x+1 < ds->width) {
if (barrier(state, GX(x), GY(0)) & R)
draw_barrier_corner(dr, ds, x, -1, +1, +1, phase);
if (barrier(state, GX(x), GY(ds->height-1)) & R)
draw_barrier_corner(dr, ds, x, ds->height, +1, -1, phase);
}
if (barrier(state, GX(x), GY(0)) & U) {
draw_barrier_corner(dr, ds, x, -1, -1, +1, phase);
draw_barrier_corner(dr, ds, x, -1, +1, +1, phase);
draw_barrier(dr, ds, x, -1, D, phase);
}
if (barrier(state, GX(x), GY(ds->height-1)) & D) {
draw_barrier_corner(dr, ds, x, ds->height, -1, -1, phase);
draw_barrier_corner(dr, ds, x, ds->height, +1, -1, phase);
draw_barrier(dr, ds, x, ds->height, U, phase);
}
}
for (y = 0; y < ds->height; y++) {
if (y+1 < ds->height) {
if (barrier(state, GX(0), GY(y)) & D)
draw_barrier_corner(dr, ds, -1, y, +1, +1, phase);
if (barrier(state, GX(ds->width-1), GY(y)) & D)
draw_barrier_corner(dr, ds, ds->width, y, -1, +1, phase);
}
if (barrier(state, GX(0), GY(y)) & L) {
draw_barrier_corner(dr, ds, -1, y, +1, -1, phase);
draw_barrier_corner(dr, ds, -1, y, +1, +1, phase);
draw_barrier(dr, ds, -1, y, R, phase);
}
if (barrier(state, GX(ds->width-1), GY(y)) & R) {
draw_barrier_corner(dr, ds, ds->width, y, -1, -1, phase);
draw_barrier_corner(dr, ds, ds->width, y, -1, +1, phase);
draw_barrier(dr, ds, ds->width, y, L, phase);
}
}
}
}
tx = ty = -1;
last_rotate_dir = dir==-1 ? oldstate->last_rotate_dir :
state->last_rotate_dir;
if (oldstate && (t < ROTATE_TIME) && last_rotate_dir) {
/*
* We're animating a single tile rotation. Find the turning
* tile.
*/
tx = (dir==-1 ? oldstate->last_rotate_x : state->last_rotate_x);
ty = (dir==-1 ? oldstate->last_rotate_y : state->last_rotate_y);
angle = last_rotate_dir * dir * 90.0F * (t / ROTATE_TIME);
state = oldstate;
}
frame = -1;
if (ft > 0) {
/*
* We're animating a completion flash. Find which frame
* we're at.
*/
frame = (int)(ft / FLASH_FRAME);
}
/*
* Draw any tile which differs from the way it was last drawn.
*/
active = compute_active(state, ui->cx, ui->cy);
for (x = 0; x < ds->width; x++)
for (y = 0; y < ds->height; y++) {
unsigned char c = tile(state, GX(x), GY(y)) |
index(state, active, GX(x), GY(y));
int is_src = GX(x) == ui->cx && GY(y) == ui->cy;
int is_anim = GX(x) == tx && GY(y) == ty;
int is_cursor = ui->cur_visible &&
GX(x) == ui->cur_x && GY(y) == ui->cur_y;
/*
* In a completion flash, we adjust the LOCKED bit
* depending on our distance from the centre point and
* the frame number.
*/
if (frame >= 0) {
int rcx = RX(ui->cx), rcy = RY(ui->cy);
int xdist, ydist, dist;
xdist = (x < rcx ? rcx - x : x - rcx);
ydist = (y < rcy ? rcy - y : y - rcy);
dist = (xdist > ydist ? xdist : ydist);
if (frame >= dist && frame < dist+4) {
int lock = (frame - dist) & 1;
lock = lock ? LOCKED : 0;
c = (c &~ LOCKED) | lock;
}
}
if (moved_origin ||
index(state, ds->visible, x, y) != c ||
index(state, ds->visible, x, y) == 0xFF ||
is_src || is_anim || is_cursor) {
draw_tile(dr, state, ds, x, y, c,
is_src, (is_anim ? angle : 0.0F), is_cursor);
if (is_src || is_anim || is_cursor)
index(state, ds->visible, x, y) = 0xFF;
else
index(state, ds->visible, x, y) = c;
}
}
/*
* Update the status bar.
*/
{
char statusbuf[256];
int i, n, n2, a;
n = state->width * state->height;
for (i = a = n2 = 0; i < n; i++) {
if (active[i])
a++;
if (state->tiles[i] & 0xF)
n2++;
}
sprintf(statusbuf, "%sActive: %d/%d",
(state->used_solve ? "Auto-solved. " :
state->completed ? "COMPLETED! " : ""), a, n2);
status_bar(dr, statusbuf);
}
sfree(active);
}
static float game_anim_length(game_state *oldstate,
game_state *newstate, int dir, game_ui *ui)
{
int last_rotate_dir;
/*
* Don't animate if last_rotate_dir is zero.
*/
last_rotate_dir = dir==-1 ? oldstate->last_rotate_dir :
newstate->last_rotate_dir;
if (last_rotate_dir)
return ROTATE_TIME;
return 0.0F;
}
static float game_flash_length(game_state *oldstate,
game_state *newstate, int dir, game_ui *ui)
{
/*
* If the game has just been completed, we display a completion
* flash.
*/
if (!oldstate->completed && newstate->completed &&
!oldstate->used_solve && !newstate->used_solve) {
int size = 0;
if (size < newstate->width)
size = newstate->width;
if (size < newstate->height)
size = newstate->height;
return FLASH_FRAME * (size+4);
}
return 0.0F;
}
static int game_timing_state(game_state *state, game_ui *ui)
{
return TRUE;
}
static void game_print_size(game_params *params, float *x, float *y)
{
int pw, ph;
/*
* I'll use 8mm squares by default.
*/
game_compute_size(params, 800, &pw, &ph);
*x = pw / 100.0;
*y = ph / 100.0;
}
static void draw_diagram(drawing *dr, game_drawstate *ds, int x, int y,
int topleft, int v, int drawlines, int ink)
{
int tx, ty, cx, cy, r, br, k, thick;
tx = WINDOW_OFFSET + TILE_SIZE * x;
ty = WINDOW_OFFSET + TILE_SIZE * y;
/*
* Find our centre point.
*/
if (topleft) {
cx = tx + (v & L ? TILE_SIZE / 4 : TILE_SIZE / 6);
cy = ty + (v & U ? TILE_SIZE / 4 : TILE_SIZE / 6);
r = TILE_SIZE / 8;
br = TILE_SIZE / 32;
} else {
cx = tx + TILE_SIZE / 2;
cy = ty + TILE_SIZE / 2;
r = TILE_SIZE / 2;
br = TILE_SIZE / 8;
}
thick = r / 20;
/*
* Draw the square block if we have an endpoint.
*/
if (v == 1 || v == 2 || v == 4 || v == 8)
draw_rect(dr, cx - br, cy - br, br*2, br*2, ink);
/*
* Draw each radial line.
*/
if (drawlines) {
for (k = 1; k < 16; k *= 2)
if (v & k) {
int x1 = min(cx, cx + (r-thick) * X(k));
int x2 = max(cx, cx + (r-thick) * X(k));
int y1 = min(cy, cy + (r-thick) * Y(k));
int y2 = max(cy, cy + (r-thick) * Y(k));
draw_rect(dr, x1 - thick, y1 - thick,
(x2 - x1) + 2*thick, (y2 - y1) + 2*thick, ink);
}
}
}
static void game_print(drawing *dr, game_state *state, int tilesize)
{
int w = state->width, h = state->height;
int ink = print_mono_colour(dr, 0);
int x, y;
/* Ick: fake up `ds->tilesize' for macro expansion purposes */
game_drawstate ads, *ds = &ads;
game_set_size(dr, ds, NULL, tilesize);
/*
* Border.
*/
print_line_width(dr, TILE_SIZE / (state->wrapping ? 128 : 12));
draw_rect_outline(dr, WINDOW_OFFSET, WINDOW_OFFSET,
TILE_SIZE * w, TILE_SIZE * h, ink);
/*
* Grid.
*/
print_line_width(dr, TILE_SIZE / 128);
for (x = 1; x < w; x++)
draw_line(dr, WINDOW_OFFSET + TILE_SIZE * x, WINDOW_OFFSET,
WINDOW_OFFSET + TILE_SIZE * x, WINDOW_OFFSET + TILE_SIZE * h,
ink);
for (y = 1; y < h; y++)
draw_line(dr, WINDOW_OFFSET, WINDOW_OFFSET + TILE_SIZE * y,
WINDOW_OFFSET + TILE_SIZE * w, WINDOW_OFFSET + TILE_SIZE * y,
ink);
/*
* Barriers.
*/
for (y = 0; y <= h; y++)
for (x = 0; x <= w; x++) {
int b = barrier(state, x % w, y % h);
if (x < w && (b & U))
draw_rect(dr, WINDOW_OFFSET + TILE_SIZE * x - TILE_SIZE/24,
WINDOW_OFFSET + TILE_SIZE * y - TILE_SIZE/24,
TILE_SIZE + TILE_SIZE/24 * 2, TILE_SIZE/24 * 2, ink);
if (y < h && (b & L))
draw_rect(dr, WINDOW_OFFSET + TILE_SIZE * x - TILE_SIZE/24,
WINDOW_OFFSET + TILE_SIZE * y - TILE_SIZE/24,
TILE_SIZE/24 * 2, TILE_SIZE + TILE_SIZE/24 * 2, ink);
}
/*
* Grid contents.
*/
for (y = 0; y < h; y++)
for (x = 0; x < w; x++) {
int vx, v = tile(state, x, y);
int locked = v & LOCKED;
v &= 0xF;
/*
* Rotate into a standard orientation for the top left
* corner diagram.
*/
vx = v;
while (vx != 0 && vx != 15 && vx != 1 && vx != 9 && vx != 13 &&
vx != 5)
vx = A(vx);
/*
* Draw the top left corner diagram.
*/
draw_diagram(dr, ds, x, y, TRUE, vx, TRUE, ink);
/*
* Draw the real solution diagram, if we're doing so.
*/
draw_diagram(dr, ds, x, y, FALSE, v, locked, ink);
}
}
#ifdef COMBINED
#define thegame net
#endif
const struct game thegame = {
"Net", "games.net", "net",
default_params,
game_fetch_preset,
decode_params,
encode_params,
free_params,
dup_params,
TRUE, game_configure, custom_params,
validate_params,
new_game_desc,
validate_desc,
new_game,
dup_game,
free_game,
TRUE, solve_game,
FALSE, game_text_format,
new_ui,
free_ui,
encode_ui,
decode_ui,
game_changed_state,
interpret_move,
execute_move,
PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
game_colours,
game_new_drawstate,
game_free_drawstate,
game_redraw,
game_anim_length,
game_flash_length,
TRUE, FALSE, game_print_size, game_print,
TRUE, /* wants_statusbar */
FALSE, game_timing_state,
0, /* flags */
};
|