1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
|
/*
* untangle.c: Game about planar graphs. You are given a graph
* represented by points and straight lines, with some lines
* crossing; your task is to drag the points into a configuration
* where none of the lines cross.
*
* Cloned from a Flash game called `Planarity', by John Tantalo.
* <http://home.cwru.edu/~jnt5/Planarity> at the time of writing
* this. The Flash game had a fixed set of levels; my added value,
* as usual, is automatic generation of random games to order.
*/
/*
* TODO:
*
* - Any way we can speed up redraws on GTK? Uck.
*
* - It would be nice if we could somehow auto-detect a real `long
* long' type on the host platform and use it in place of my
* hand-hacked int64s. It'd be faster and more reliable.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <ctype.h>
#include <math.h>
#include "puzzles.h"
#include "tree234.h"
#define CIRCLE_RADIUS 6
#define DRAG_THRESHOLD (CIRCLE_RADIUS * 2)
#define PREFERRED_TILESIZE 64
#define FLASH_TIME 0.30F
#define ANIM_TIME 0.13F
#define SOLVEANIM_TIME 0.50F
enum {
COL_BACKGROUND,
COL_LINE,
#ifdef SHOW_CROSSINGS
COL_CROSSEDLINE,
#endif
COL_OUTLINE,
COL_POINT,
COL_DRAGPOINT,
COL_NEIGHBOUR,
COL_FLASH1,
COL_FLASH2,
NCOLOURS
};
typedef struct point {
/*
* Points are stored using rational coordinates, with the same
* denominator for both coordinates.
*/
long x, y, d;
} point;
typedef struct edge {
/*
* This structure is implicitly associated with a particular
* point set, so all it has to do is to store two point
* indices. It is required to store them in the order (lower,
* higher), i.e. a < b always.
*/
int a, b;
} edge;
struct game_params {
int n; /* number of points */
};
struct graph {
int refcount; /* for deallocation */
tree234 *edges; /* stores `edge' structures */
};
struct game_state {
game_params params;
int w, h; /* extent of coordinate system only */
point *pts;
#ifdef SHOW_CROSSINGS
int *crosses; /* mark edges which are crossed */
#endif
struct graph *graph;
int completed, cheated, just_solved;
};
static int edgecmpC(const void *av, const void *bv)
{
const edge *a = (const edge *)av;
const edge *b = (const edge *)bv;
if (a->a < b->a)
return -1;
else if (a->a > b->a)
return +1;
else if (a->b < b->b)
return -1;
else if (a->b > b->b)
return +1;
return 0;
}
static int edgecmp(void *av, void *bv) { return edgecmpC(av, bv); }
static game_params *default_params(void)
{
game_params *ret = snew(game_params);
ret->n = 10;
return ret;
}
static int game_fetch_preset(int i, char **name, game_params **params)
{
game_params *ret;
int n;
char buf[80];
switch (i) {
case 0: n = 6; break;
case 1: n = 10; break;
case 2: n = 15; break;
case 3: n = 20; break;
case 4: n = 25; break;
default: return FALSE;
}
sprintf(buf, "%d points", n);
*name = dupstr(buf);
*params = ret = snew(game_params);
ret->n = n;
return TRUE;
}
static void free_params(game_params *params)
{
sfree(params);
}
static game_params *dup_params(game_params *params)
{
game_params *ret = snew(game_params);
*ret = *params; /* structure copy */
return ret;
}
static void decode_params(game_params *params, char const *string)
{
params->n = atoi(string);
}
static char *encode_params(game_params *params, int full)
{
char buf[80];
sprintf(buf, "%d", params->n);
return dupstr(buf);
}
static config_item *game_configure(game_params *params)
{
config_item *ret;
char buf[80];
ret = snewn(3, config_item);
ret[0].name = "Number of points";
ret[0].type = C_STRING;
sprintf(buf, "%d", params->n);
ret[0].sval = dupstr(buf);
ret[0].ival = 0;
ret[1].name = NULL;
ret[1].type = C_END;
ret[1].sval = NULL;
ret[1].ival = 0;
return ret;
}
static game_params *custom_params(config_item *cfg)
{
game_params *ret = snew(game_params);
ret->n = atoi(cfg[0].sval);
return ret;
}
static char *validate_params(game_params *params, int full)
{
if (params->n < 4)
return "Number of points must be at least four";
return NULL;
}
/* ----------------------------------------------------------------------
* Small number of 64-bit integer arithmetic operations, to prevent
* integer overflow at the very core of cross().
*/
typedef struct {
long hi;
unsigned long lo;
} int64;
#define greater64(i,j) ( (i).hi>(j).hi || ((i).hi==(j).hi && (i).lo>(j).lo))
#define sign64(i) ((i).hi < 0 ? -1 : (i).hi==0 && (i).lo==0 ? 0 : +1)
static int64 mulu32to64(unsigned long x, unsigned long y)
{
unsigned long a, b, c, d, t;
int64 ret;
a = (x & 0xFFFF) * (y & 0xFFFF);
b = (x & 0xFFFF) * (y >> 16);
c = (x >> 16) * (y & 0xFFFF);
d = (x >> 16) * (y >> 16);
ret.lo = a;
ret.hi = d + (b >> 16) + (c >> 16);
t = (b & 0xFFFF) << 16;
ret.lo += t;
if (ret.lo < t)
ret.hi++;
t = (c & 0xFFFF) << 16;
ret.lo += t;
if (ret.lo < t)
ret.hi++;
#ifdef DIAGNOSTIC_VIA_LONGLONG
assert(((unsigned long long)ret.hi << 32) + ret.lo ==
(unsigned long long)x * y);
#endif
return ret;
}
static int64 mul32to64(long x, long y)
{
int sign = +1;
int64 ret;
#ifdef DIAGNOSTIC_VIA_LONGLONG
long long realret = (long long)x * y;
#endif
if (x < 0)
x = -x, sign = -sign;
if (y < 0)
y = -y, sign = -sign;
ret = mulu32to64(x, y);
if (sign < 0) {
ret.hi = -ret.hi;
ret.lo = -ret.lo;
if (ret.lo)
ret.hi--;
}
#ifdef DIAGNOSTIC_VIA_LONGLONG
assert(((unsigned long long)ret.hi << 32) + ret.lo == realret);
#endif
return ret;
}
static int64 dotprod64(long a, long b, long p, long q)
{
int64 ab, pq;
ab = mul32to64(a, b);
pq = mul32to64(p, q);
ab.hi += pq.hi;
ab.lo += pq.lo;
if (ab.lo < pq.lo)
ab.hi++;
return ab;
}
/*
* Determine whether the line segments between a1 and a2, and
* between b1 and b2, intersect. We count it as an intersection if
* any of the endpoints lies _on_ the other line.
*/
static int cross(point a1, point a2, point b1, point b2)
{
long b1x, b1y, b2x, b2y, px, py;
int64 d1, d2, d3;
/*
* The condition for crossing is that b1 and b2 are on opposite
* sides of the line a1-a2, and vice versa. We determine this
* by taking the dot product of b1-a1 with a vector
* perpendicular to a2-a1, and similarly with b2-a1, and seeing
* if they have different signs.
*/
/*
* Construct the vector b1-a1. We don't have to worry too much
* about the denominator, because we're only going to check the
* sign of this vector; we just need to get the numerator
* right.
*/
b1x = b1.x * a1.d - a1.x * b1.d;
b1y = b1.y * a1.d - a1.y * b1.d;
/* Now construct b2-a1, and a vector perpendicular to a2-a1,
* in the same way. */
b2x = b2.x * a1.d - a1.x * b2.d;
b2y = b2.y * a1.d - a1.y * b2.d;
px = a1.y * a2.d - a2.y * a1.d;
py = a2.x * a1.d - a1.x * a2.d;
/* Take the dot products. Here we resort to 64-bit arithmetic. */
d1 = dotprod64(b1x, px, b1y, py);
d2 = dotprod64(b2x, px, b2y, py);
/* If they have the same non-zero sign, the lines do not cross. */
if ((sign64(d1) > 0 && sign64(d2) > 0) ||
(sign64(d1) < 0 && sign64(d2) < 0))
return FALSE;
/*
* If the dot products are both exactly zero, then the two line
* segments are collinear. At this point the intersection
* condition becomes whether or not they overlap within their
* line.
*/
if (sign64(d1) == 0 && sign64(d2) == 0) {
/* Construct the vector a2-a1. */
px = a2.x * a1.d - a1.x * a2.d;
py = a2.y * a1.d - a1.y * a2.d;
/* Determine the dot products of b1-a1 and b2-a1 with this. */
d1 = dotprod64(b1x, px, b1y, py);
d2 = dotprod64(b2x, px, b2y, py);
/* If they're both strictly negative, the lines do not cross. */
if (sign64(d1) < 0 && sign64(d2) < 0)
return FALSE;
/* Otherwise, take the dot product of a2-a1 with itself. If
* the other two dot products both exceed this, the lines do
* not cross. */
d3 = dotprod64(px, px, py, py);
if (greater64(d1, d3) && greater64(d2, d3))
return FALSE;
}
/*
* We've eliminated the only important special case, and we
* have determined that b1 and b2 are on opposite sides of the
* line a1-a2. Now do the same thing the other way round and
* we're done.
*/
b1x = a1.x * b1.d - b1.x * a1.d;
b1y = a1.y * b1.d - b1.y * a1.d;
b2x = a2.x * b1.d - b1.x * a2.d;
b2y = a2.y * b1.d - b1.y * a2.d;
px = b1.y * b2.d - b2.y * b1.d;
py = b2.x * b1.d - b1.x * b2.d;
d1 = dotprod64(b1x, px, b1y, py);
d2 = dotprod64(b2x, px, b2y, py);
if ((sign64(d1) > 0 && sign64(d2) > 0) ||
(sign64(d1) < 0 && sign64(d2) < 0))
return FALSE;
/*
* The lines must cross.
*/
return TRUE;
}
static unsigned long squarert(unsigned long n) {
unsigned long d, a, b, di;
d = n;
a = 0;
b = 1L << 30; /* largest available power of 4 */
do {
a >>= 1;
di = 2*a + b;
if (di <= d) {
d -= di;
a += b;
}
b >>= 2;
} while (b);
return a;
}
/*
* Our solutions are arranged on a square grid big enough that n
* points occupy about 1/POINTDENSITY of the grid.
*/
#define POINTDENSITY 3
#define MAXDEGREE 4
#define COORDLIMIT(n) squarert((n) * POINTDENSITY)
static void addedge(tree234 *edges, int a, int b)
{
edge *e = snew(edge);
assert(a != b);
e->a = min(a, b);
e->b = max(a, b);
add234(edges, e);
}
static int isedge(tree234 *edges, int a, int b)
{
edge e;
assert(a != b);
e.a = min(a, b);
e.b = max(a, b);
return find234(edges, &e, NULL) != NULL;
}
typedef struct vertex {
int param;
int vindex;
} vertex;
static int vertcmpC(const void *av, const void *bv)
{
const vertex *a = (vertex *)av;
const vertex *b = (vertex *)bv;
if (a->param < b->param)
return -1;
else if (a->param > b->param)
return +1;
else if (a->vindex < b->vindex)
return -1;
else if (a->vindex > b->vindex)
return +1;
return 0;
}
static int vertcmp(void *av, void *bv) { return vertcmpC(av, bv); }
/*
* Construct point coordinates for n points arranged in a circle,
* within the bounding box (0,0) to (w,w).
*/
static void make_circle(point *pts, int n, int w)
{
long d, r, c, i;
/*
* First, decide on a denominator. Although in principle it
* would be nice to set this really high so as to finely
* distinguish all the points on the circle, I'm going to set
* it at a fixed size to prevent integer overflow problems.
*/
d = PREFERRED_TILESIZE;
/*
* Leave a little space outside the circle.
*/
c = d * w / 2;
r = d * w * 3 / 7;
/*
* Place the points.
*/
for (i = 0; i < n; i++) {
double angle = i * 2 * PI / n;
double x = r * sin(angle), y = - r * cos(angle);
pts[i].x = (long)(c + x + 0.5);
pts[i].y = (long)(c + y + 0.5);
pts[i].d = d;
}
}
static char *new_game_desc(game_params *params, random_state *rs,
char **aux, int interactive)
{
int n = params->n, i;
long w, h, j, k, m;
point *pts, *pts2;
long *tmp;
tree234 *edges, *vertices;
edge *e, *e2;
vertex *v, *vs, *vlist;
char *ret;
w = h = COORDLIMIT(n);
/*
* Choose n points from this grid.
*/
pts = snewn(n, point);
tmp = snewn(w*h, long);
for (i = 0; i < w*h; i++)
tmp[i] = i;
shuffle(tmp, w*h, sizeof(*tmp), rs);
for (i = 0; i < n; i++) {
pts[i].x = tmp[i] % w;
pts[i].y = tmp[i] / w;
pts[i].d = 1;
}
sfree(tmp);
/*
* Now start adding edges between the points.
*
* At all times, we attempt to add an edge to the lowest-degree
* vertex we currently have, and we try the other vertices as
* candidate second endpoints in order of distance from this
* one. We stop as soon as we find an edge which
*
* (a) does not increase any vertex's degree beyond MAXDEGREE
* (b) does not cross any existing edges
* (c) does not intersect any actual point.
*/
vs = snewn(n, vertex);
vertices = newtree234(vertcmp);
for (i = 0; i < n; i++) {
v = vs + i;
v->param = 0; /* in this tree, param is the degree */
v->vindex = i;
add234(vertices, v);
}
edges = newtree234(edgecmp);
vlist = snewn(n, vertex);
while (1) {
int added = FALSE;
for (i = 0; i < n; i++) {
v = index234(vertices, i);
j = v->vindex;
if (v->param >= MAXDEGREE)
break; /* nothing left to add! */
/*
* Sort the other vertices into order of their distance
* from this one. Don't bother looking below i, because
* we've already tried those edges the other way round.
* Also here we rule out target vertices with too high
* a degree, and (of course) ones to which we already
* have an edge.
*/
m = 0;
for (k = i+1; k < n; k++) {
vertex *kv = index234(vertices, k);
int ki = kv->vindex;
int dx, dy;
if (kv->param >= MAXDEGREE || isedge(edges, ki, j))
continue;
vlist[m].vindex = ki;
dx = pts[ki].x - pts[j].x;
dy = pts[ki].y - pts[j].y;
vlist[m].param = dx*dx + dy*dy;
m++;
}
qsort(vlist, m, sizeof(*vlist), vertcmpC);
for (k = 0; k < m; k++) {
int p;
int ki = vlist[k].vindex;
/*
* Check to see whether this edge intersects any
* existing edge or point.
*/
for (p = 0; p < n; p++)
if (p != ki && p != j && cross(pts[ki], pts[j],
pts[p], pts[p]))
break;
if (p < n)
continue;
for (p = 0; (e = index234(edges, p)) != NULL; p++)
if (e->a != ki && e->a != j &&
e->b != ki && e->b != j &&
cross(pts[ki], pts[j], pts[e->a], pts[e->b]))
break;
if (e)
continue;
/*
* We're done! Add this edge, modify the degrees of
* the two vertices involved, and break.
*/
addedge(edges, j, ki);
added = TRUE;
del234(vertices, vs+j);
vs[j].param++;
add234(vertices, vs+j);
del234(vertices, vs+ki);
vs[ki].param++;
add234(vertices, vs+ki);
break;
}
if (k < m)
break;
}
if (!added)
break; /* we're done. */
}
/*
* That's our graph. Now shuffle the points, making sure that
* they come out with at least one crossed line when arranged
* in a circle (so that the puzzle isn't immediately solved!).
*/
tmp = snewn(n, long);
for (i = 0; i < n; i++)
tmp[i] = i;
pts2 = snewn(n, point);
make_circle(pts2, n, w);
while (1) {
shuffle(tmp, n, sizeof(*tmp), rs);
for (i = 0; (e = index234(edges, i)) != NULL; i++) {
for (j = i+1; (e2 = index234(edges, j)) != NULL; j++) {
if (e2->a == e->a || e2->a == e->b ||
e2->b == e->a || e2->b == e->b)
continue;
if (cross(pts2[tmp[e2->a]], pts2[tmp[e2->b]],
pts2[tmp[e->a]], pts2[tmp[e->b]]))
break;
}
if (e2)
break;
}
if (e)
break; /* we've found a crossing */
}
/*
* We're done. Now encode the graph in a string format. Let's
* use a comma-separated list of dash-separated vertex number
* pairs, numbered from zero. We'll sort the list to prevent
* side channels.
*/
ret = NULL;
{
char *sep;
char buf[80];
int retlen;
edge *ea;
retlen = 0;
m = count234(edges);
ea = snewn(m, edge);
for (i = 0; (e = index234(edges, i)) != NULL; i++) {
assert(i < m);
ea[i].a = min(tmp[e->a], tmp[e->b]);
ea[i].b = max(tmp[e->a], tmp[e->b]);
retlen += 1 + sprintf(buf, "%d-%d", ea[i].a, ea[i].b);
}
assert(i == m);
qsort(ea, m, sizeof(*ea), edgecmpC);
ret = snewn(retlen, char);
sep = "";
k = 0;
for (i = 0; i < m; i++) {
k += sprintf(ret + k, "%s%d-%d", sep, ea[i].a, ea[i].b);
sep = ",";
}
assert(k < retlen);
sfree(ea);
}
/*
* Encode the solution we started with as an aux_info string.
*/
{
char buf[80];
char *auxstr;
int auxlen;
auxlen = 2; /* leading 'S' and trailing '\0' */
for (i = 0; i < n; i++) {
j = tmp[i];
pts2[j] = pts[i];
if (pts2[j].d & 1) {
pts2[j].x *= 2;
pts2[j].y *= 2;
pts2[j].d *= 2;
}
pts2[j].x += pts2[j].d / 2;
pts2[j].y += pts2[j].d / 2;
auxlen += sprintf(buf, ";P%d:%ld,%ld/%ld", i,
pts2[j].x, pts2[j].y, pts2[j].d);
}
k = 0;
auxstr = snewn(auxlen, char);
auxstr[k++] = 'S';
for (i = 0; i < n; i++)
k += sprintf(auxstr+k, ";P%d:%ld,%ld/%ld", i,
pts2[i].x, pts2[i].y, pts2[i].d);
assert(k < auxlen);
*aux = auxstr;
}
sfree(pts2);
sfree(tmp);
sfree(vlist);
freetree234(vertices);
sfree(vs);
while ((e = delpos234(edges, 0)) != NULL)
sfree(e);
freetree234(edges);
sfree(pts);
return ret;
}
static char *validate_desc(game_params *params, char *desc)
{
int a, b;
while (*desc) {
a = atoi(desc);
if (a < 0 || a >= params->n)
return "Number out of range in game description";
while (*desc && isdigit((unsigned char)*desc)) desc++;
if (*desc != '-')
return "Expected '-' after number in game description";
desc++; /* eat dash */
b = atoi(desc);
if (b < 0 || b >= params->n)
return "Number out of range in game description";
while (*desc && isdigit((unsigned char)*desc)) desc++;
if (*desc) {
if (*desc != ',')
return "Expected ',' after number in game description";
desc++; /* eat comma */
}
}
return NULL;
}
static void mark_crossings(game_state *state)
{
int ok = TRUE;
int i, j;
edge *e, *e2;
#ifdef SHOW_CROSSINGS
for (i = 0; (e = index234(state->graph->edges, i)) != NULL; i++)
state->crosses[i] = FALSE;
#endif
/*
* Check correctness: for every pair of edges, see whether they
* cross.
*/
for (i = 0; (e = index234(state->graph->edges, i)) != NULL; i++) {
for (j = i+1; (e2 = index234(state->graph->edges, j)) != NULL; j++) {
if (e2->a == e->a || e2->a == e->b ||
e2->b == e->a || e2->b == e->b)
continue;
if (cross(state->pts[e2->a], state->pts[e2->b],
state->pts[e->a], state->pts[e->b])) {
ok = FALSE;
#ifdef SHOW_CROSSINGS
state->crosses[i] = state->crosses[j] = TRUE;
#else
goto done; /* multi-level break - sorry */
#endif
}
}
}
/*
* e == NULL if we've gone through all the edge pairs
* without finding a crossing.
*/
#ifndef SHOW_CROSSINGS
done:
#endif
if (ok)
state->completed = TRUE;
}
static game_state *new_game(midend *me, game_params *params, char *desc)
{
int n = params->n;
game_state *state = snew(game_state);
int a, b;
state->params = *params;
state->w = state->h = COORDLIMIT(n);
state->pts = snewn(n, point);
make_circle(state->pts, n, state->w);
state->graph = snew(struct graph);
state->graph->refcount = 1;
state->graph->edges = newtree234(edgecmp);
state->completed = state->cheated = state->just_solved = FALSE;
while (*desc) {
a = atoi(desc);
assert(a >= 0 && a < params->n);
while (*desc && isdigit((unsigned char)*desc)) desc++;
assert(*desc == '-');
desc++; /* eat dash */
b = atoi(desc);
assert(b >= 0 && b < params->n);
while (*desc && isdigit((unsigned char)*desc)) desc++;
if (*desc) {
assert(*desc == ',');
desc++; /* eat comma */
}
addedge(state->graph->edges, a, b);
}
#ifdef SHOW_CROSSINGS
state->crosses = snewn(count234(state->graph->edges), int);
mark_crossings(state); /* sets up `crosses' and `completed' */
#endif
return state;
}
static game_state *dup_game(game_state *state)
{
int n = state->params.n;
game_state *ret = snew(game_state);
ret->params = state->params;
ret->w = state->w;
ret->h = state->h;
ret->pts = snewn(n, point);
memcpy(ret->pts, state->pts, n * sizeof(point));
ret->graph = state->graph;
ret->graph->refcount++;
ret->completed = state->completed;
ret->cheated = state->cheated;
ret->just_solved = state->just_solved;
#ifdef SHOW_CROSSINGS
ret->crosses = snewn(count234(ret->graph->edges), int);
memcpy(ret->crosses, state->crosses,
count234(ret->graph->edges) * sizeof(int));
#endif
return ret;
}
static void free_game(game_state *state)
{
if (--state->graph->refcount <= 0) {
edge *e;
while ((e = delpos234(state->graph->edges, 0)) != NULL)
sfree(e);
freetree234(state->graph->edges);
sfree(state->graph);
}
sfree(state->pts);
sfree(state);
}
static char *solve_game(game_state *state, game_state *currstate,
char *aux, char **error)
{
int n = state->params.n;
int matrix[4];
point *pts;
int i, j, besti;
float bestd;
char buf[80], *ret;
int retlen, retsize;
if (!aux) {
*error = "Solution not known for this puzzle";
return NULL;
}
/*
* Decode the aux_info to get the original point positions.
*/
pts = snewn(n, point);
aux++; /* eat 'S' */
for (i = 0; i < n; i++) {
int p, k;
long x, y, d;
int ret = sscanf(aux, ";P%d:%ld,%ld/%ld%n", &p, &x, &y, &d, &k);
if (ret != 4 || p != i) {
*error = "Internal error: aux_info badly formatted";
sfree(pts);
return NULL;
}
pts[i].x = x;
pts[i].y = y;
pts[i].d = d;
aux += k;
}
/*
* Now go through eight possible symmetries of the point set.
* For each one, work out the sum of the Euclidean distances
* between the points' current positions and their new ones.
*
* We're squaring distances here, which means we're at risk of
* integer overflow. Fortunately, there's no real need to be
* massively careful about rounding errors, since this is a
* non-essential bit of the code; so I'll just work in floats
* internally.
*/
besti = -1;
bestd = 0.0F;
for (i = 0; i < 8; i++) {
float d;
matrix[0] = matrix[1] = matrix[2] = matrix[3] = 0;
matrix[i & 1] = (i & 2) ? +1 : -1;
matrix[3-(i&1)] = (i & 4) ? +1 : -1;
d = 0.0F;
for (j = 0; j < n; j++) {
float px = (float)pts[j].x / pts[j].d;
float py = (float)pts[j].y / pts[j].d;
float sx = (float)currstate->pts[j].x / currstate->pts[j].d;
float sy = (float)currstate->pts[j].y / currstate->pts[j].d;
float cx = (float)currstate->w / 2;
float cy = (float)currstate->h / 2;
float ox, oy, dx, dy;
px -= cx;
py -= cy;
ox = matrix[0] * px + matrix[1] * py;
oy = matrix[2] * px + matrix[3] * py;
ox += cx;
oy += cy;
dx = ox - sx;
dy = oy - sy;
d += dx*dx + dy*dy;
}
if (besti < 0 || bestd > d) {
besti = i;
bestd = d;
}
}
assert(besti >= 0);
/*
* Now we know which symmetry is closest to the points' current
* positions. Use it.
*/
matrix[0] = matrix[1] = matrix[2] = matrix[3] = 0;
matrix[besti & 1] = (besti & 2) ? +1 : -1;
matrix[3-(besti&1)] = (besti & 4) ? +1 : -1;
retsize = 256;
ret = snewn(retsize, char);
retlen = 0;
ret[retlen++] = 'S';
ret[retlen] = '\0';
for (i = 0; i < n; i++) {
float px = (float)pts[i].x / pts[i].d;
float py = (float)pts[i].y / pts[i].d;
float cx = (float)currstate->w / 2;
float cy = (float)currstate->h / 2;
float ox, oy;
int extra;
px -= cx;
py -= cy;
ox = matrix[0] * px + matrix[1] * py;
oy = matrix[2] * px + matrix[3] * py;
ox += cx;
oy += cy;
/*
* Use a fixed denominator of 2, because we know the
* original points were on an integer grid offset by 1/2.
*/
pts[i].d = 2;
ox *= pts[i].d;
oy *= pts[i].d;
pts[i].x = ox + 0.5;
pts[i].y = oy + 0.5;
extra = sprintf(buf, ";P%d:%ld,%ld/%ld", i,
pts[i].x, pts[i].y, pts[i].d);
if (retlen + extra >= retsize) {
retsize = retlen + extra + 256;
ret = sresize(ret, retsize, char);
}
strcpy(ret + retlen, buf);
retlen += extra;
}
sfree(pts);
return ret;
}
static char *game_text_format(game_state *state)
{
return NULL;
}
struct game_ui {
int dragpoint; /* point being dragged; -1 if none */
point newpoint; /* where it's been dragged to so far */
int just_dragged; /* reset in game_changed_state */
int just_moved; /* _set_ in game_changed_state */
float anim_length;
};
static game_ui *new_ui(game_state *state)
{
game_ui *ui = snew(game_ui);
ui->dragpoint = -1;
ui->just_moved = ui->just_dragged = FALSE;
return ui;
}
static void free_ui(game_ui *ui)
{
sfree(ui);
}
static char *encode_ui(game_ui *ui)
{
return NULL;
}
static void decode_ui(game_ui *ui, char *encoding)
{
}
static void game_changed_state(game_ui *ui, game_state *oldstate,
game_state *newstate)
{
ui->dragpoint = -1;
ui->just_moved = ui->just_dragged;
ui->just_dragged = FALSE;
}
struct game_drawstate {
long tilesize;
int bg, dragpoint;
long *x, *y;
};
static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
int x, int y, int button)
{
int n = state->params.n;
if (button == LEFT_BUTTON) {
int i, best;
long bestd;
/*
* Begin drag. We drag the vertex _nearest_ to the pointer,
* just in case one is nearly on top of another and we want
* to drag the latter. However, we drag nothing at all if
* the nearest vertex is outside DRAG_THRESHOLD.
*/
best = -1;
bestd = 0;
for (i = 0; i < n; i++) {
long px = state->pts[i].x * ds->tilesize / state->pts[i].d;
long py = state->pts[i].y * ds->tilesize / state->pts[i].d;
long dx = px - x;
long dy = py - y;
long d = dx*dx + dy*dy;
if (best == -1 || bestd > d) {
best = i;
bestd = d;
}
}
if (bestd <= DRAG_THRESHOLD * DRAG_THRESHOLD) {
ui->dragpoint = best;
ui->newpoint.x = x;
ui->newpoint.y = y;
ui->newpoint.d = ds->tilesize;
return "";
}
} else if (button == LEFT_DRAG && ui->dragpoint >= 0) {
ui->newpoint.x = x;
ui->newpoint.y = y;
ui->newpoint.d = ds->tilesize;
return "";
} else if (button == LEFT_RELEASE && ui->dragpoint >= 0) {
int p = ui->dragpoint;
char buf[80];
ui->dragpoint = -1; /* terminate drag, no matter what */
/*
* First, see if we're within range. The user can cancel a
* drag by dragging the point right off the window.
*/
if (ui->newpoint.x < 0 ||
ui->newpoint.x >= (long)state->w*ui->newpoint.d ||
ui->newpoint.y < 0 ||
ui->newpoint.y >= (long)state->h*ui->newpoint.d)
return "";
/*
* We aren't cancelling the drag. Construct a move string
* indicating where this point is going to.
*/
sprintf(buf, "P%d:%ld,%ld/%ld", p,
ui->newpoint.x, ui->newpoint.y, ui->newpoint.d);
ui->just_dragged = TRUE;
return dupstr(buf);
}
return NULL;
}
static game_state *execute_move(game_state *state, char *move)
{
int n = state->params.n;
int p, k;
long x, y, d;
game_state *ret = dup_game(state);
ret->just_solved = FALSE;
while (*move) {
if (*move == 'S') {
move++;
if (*move == ';') move++;
ret->cheated = ret->just_solved = TRUE;
}
if (*move == 'P' &&
sscanf(move+1, "%d:%ld,%ld/%ld%n", &p, &x, &y, &d, &k) == 4 &&
p >= 0 && p < n && d > 0) {
ret->pts[p].x = x;
ret->pts[p].y = y;
ret->pts[p].d = d;
move += k+1;
if (*move == ';') move++;
} else {
free_game(ret);
return NULL;
}
}
mark_crossings(ret);
return ret;
}
/* ----------------------------------------------------------------------
* Drawing routines.
*/
static void game_compute_size(game_params *params, int tilesize,
int *x, int *y)
{
*x = *y = COORDLIMIT(params->n) * tilesize;
}
static void game_set_size(drawing *dr, game_drawstate *ds,
game_params *params, int tilesize)
{
ds->tilesize = tilesize;
}
static float *game_colours(frontend *fe, int *ncolours)
{
float *ret = snewn(3 * NCOLOURS, float);
frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
ret[COL_LINE * 3 + 0] = 0.0F;
ret[COL_LINE * 3 + 1] = 0.0F;
ret[COL_LINE * 3 + 2] = 0.0F;
#ifdef SHOW_CROSSINGS
ret[COL_CROSSEDLINE * 3 + 0] = 1.0F;
ret[COL_CROSSEDLINE * 3 + 1] = 0.0F;
ret[COL_CROSSEDLINE * 3 + 2] = 0.0F;
#endif
ret[COL_OUTLINE * 3 + 0] = 0.0F;
ret[COL_OUTLINE * 3 + 1] = 0.0F;
ret[COL_OUTLINE * 3 + 2] = 0.0F;
ret[COL_POINT * 3 + 0] = 0.0F;
ret[COL_POINT * 3 + 1] = 0.0F;
ret[COL_POINT * 3 + 2] = 1.0F;
ret[COL_DRAGPOINT * 3 + 0] = 1.0F;
ret[COL_DRAGPOINT * 3 + 1] = 1.0F;
ret[COL_DRAGPOINT * 3 + 2] = 1.0F;
ret[COL_NEIGHBOUR * 3 + 0] = 1.0F;
ret[COL_NEIGHBOUR * 3 + 1] = 0.0F;
ret[COL_NEIGHBOUR * 3 + 2] = 0.0F;
ret[COL_FLASH1 * 3 + 0] = 0.5F;
ret[COL_FLASH1 * 3 + 1] = 0.5F;
ret[COL_FLASH1 * 3 + 2] = 0.5F;
ret[COL_FLASH2 * 3 + 0] = 1.0F;
ret[COL_FLASH2 * 3 + 1] = 1.0F;
ret[COL_FLASH2 * 3 + 2] = 1.0F;
*ncolours = NCOLOURS;
return ret;
}
static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
{
struct game_drawstate *ds = snew(struct game_drawstate);
int i;
ds->tilesize = 0;
ds->x = snewn(state->params.n, long);
ds->y = snewn(state->params.n, long);
for (i = 0; i < state->params.n; i++)
ds->x[i] = ds->y[i] = -1;
ds->bg = -1;
ds->dragpoint = -1;
return ds;
}
static void game_free_drawstate(drawing *dr, game_drawstate *ds)
{
sfree(ds->y);
sfree(ds->x);
sfree(ds);
}
static point mix(point a, point b, float distance)
{
point ret;
ret.d = a.d * b.d;
ret.x = a.x * b.d + distance * (b.x * a.d - a.x * b.d);
ret.y = a.y * b.d + distance * (b.y * a.d - a.y * b.d);
return ret;
}
static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
game_state *state, int dir, game_ui *ui,
float animtime, float flashtime)
{
int w, h;
edge *e;
int i, j;
int bg, points_moved;
/*
* There's no terribly sensible way to do partial redraws of
* this game, so I'm going to have to resort to redrawing the
* whole thing every time.
*/
if (flashtime == 0)
bg = COL_BACKGROUND;
else if ((int)(flashtime * 4 / FLASH_TIME) % 2 == 0)
bg = COL_FLASH1;
else
bg = COL_FLASH2;
/*
* To prevent excessive spinning on redraw during a completion
* flash, we first check to see if _either_ the flash
* background colour has changed _or_ at least one point has
* moved _or_ a drag has begun or ended, and abandon the redraw
* if neither is the case.
*
* Also in this loop we work out the coordinates of all the
* points for this redraw.
*/
points_moved = FALSE;
for (i = 0; i < state->params.n; i++) {
point p = state->pts[i];
long x, y;
if (ui->dragpoint == i)
p = ui->newpoint;
if (oldstate)
p = mix(oldstate->pts[i], p, animtime / ui->anim_length);
x = p.x * ds->tilesize / p.d;
y = p.y * ds->tilesize / p.d;
if (ds->x[i] != x || ds->y[i] != y)
points_moved = TRUE;
ds->x[i] = x;
ds->y[i] = y;
}
if (ds->bg == bg && ds->dragpoint == ui->dragpoint && !points_moved)
return; /* nothing to do */
ds->dragpoint = ui->dragpoint;
ds->bg = bg;
game_compute_size(&state->params, ds->tilesize, &w, &h);
draw_rect(dr, 0, 0, w, h, bg);
/*
* Draw the edges.
*/
for (i = 0; (e = index234(state->graph->edges, i)) != NULL; i++) {
draw_line(dr, ds->x[e->a], ds->y[e->a], ds->x[e->b], ds->y[e->b],
#ifdef SHOW_CROSSINGS
(oldstate?oldstate:state)->crosses[i] ?
COL_CROSSEDLINE :
#endif
COL_LINE);
}
/*
* Draw the points.
*
* When dragging, we should not only vary the colours, but
* leave the point being dragged until last.
*/
for (j = 0; j < 3; j++) {
int thisc = (j == 0 ? COL_POINT :
j == 1 ? COL_NEIGHBOUR : COL_DRAGPOINT);
for (i = 0; i < state->params.n; i++) {
int c;
if (ui->dragpoint == i) {
c = COL_DRAGPOINT;
} else if (ui->dragpoint >= 0 &&
isedge(state->graph->edges, ui->dragpoint, i)) {
c = COL_NEIGHBOUR;
} else {
c = COL_POINT;
}
if (c == thisc) {
#ifdef VERTEX_NUMBERS
draw_circle(dr, ds->x[i], ds->y[i], DRAG_THRESHOLD, bg, bg);
{
char buf[80];
sprintf(buf, "%d", i);
draw_text(dr, ds->x[i], ds->y[i], FONT_VARIABLE,
DRAG_THRESHOLD*3/2,
ALIGN_VCENTRE|ALIGN_HCENTRE, c, buf);
}
#else
draw_circle(dr, ds->x[i], ds->y[i], CIRCLE_RADIUS,
c, COL_OUTLINE);
#endif
}
}
}
draw_update(dr, 0, 0, w, h);
}
static float game_anim_length(game_state *oldstate, game_state *newstate,
int dir, game_ui *ui)
{
if (ui->just_moved)
return 0.0F;
if ((dir < 0 ? oldstate : newstate)->just_solved)
ui->anim_length = SOLVEANIM_TIME;
else
ui->anim_length = ANIM_TIME;
return ui->anim_length;
}
static float game_flash_length(game_state *oldstate, game_state *newstate,
int dir, game_ui *ui)
{
if (!oldstate->completed && newstate->completed &&
!oldstate->cheated && !newstate->cheated)
return FLASH_TIME;
return 0.0F;
}
static int game_timing_state(game_state *state, game_ui *ui)
{
return TRUE;
}
static void game_print_size(game_params *params, float *x, float *y)
{
}
static void game_print(drawing *dr, game_state *state, int tilesize)
{
}
#ifdef COMBINED
#define thegame untangle
#endif
const struct game thegame = {
"Untangle", "games.untangle", "untangle",
default_params,
game_fetch_preset,
decode_params,
encode_params,
free_params,
dup_params,
TRUE, game_configure, custom_params,
validate_params,
new_game_desc,
validate_desc,
new_game,
dup_game,
free_game,
TRUE, solve_game,
FALSE, game_text_format,
new_ui,
free_ui,
encode_ui,
decode_ui,
game_changed_state,
interpret_move,
execute_move,
PREFERRED_TILESIZE, game_compute_size, game_set_size,
game_colours,
game_new_drawstate,
game_free_drawstate,
game_redraw,
game_anim_length,
game_flash_length,
FALSE, FALSE, game_print_size, game_print,
FALSE, /* wants_statusbar */
FALSE, game_timing_state,
SOLVE_ANIMATES, /* flags */
};
|