1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
|
/*
* range.c: implementation of the Nikoli game 'Kurodoko' / 'Kuromasu'.
*/
/*
* Puzzle rules: the player is given a WxH grid of white squares, some
* of which contain numbers. The goal is to paint some of the squares
* black, such that:
*
* - no cell (err, cell = square) with a number is painted black
* - no black cells have an adjacent (horz/vert) black cell
* - the white cells are all connected (through other white cells)
* - if a cell contains a number n, let h and v be the lengths of the
* maximal horizontal and vertical white sequences containing that
* cell. Then n must equal h + v - 1.
*/
/* example instance with its encoding:
*
* +--+--+--+--+--+--+--+
* | | | | | 7| | |
* +--+--+--+--+--+--+--+
* | 3| | | | | | 8|
* +--+--+--+--+--+--+--+
* | | | | | | 5| |
* +--+--+--+--+--+--+--+
* | | | 7| | 7| | |
* +--+--+--+--+--+--+--+
* | |13| | | | | |
* +--+--+--+--+--+--+--+
* | 4| | | | | | 8|
* +--+--+--+--+--+--+--+
* | | | 4| | | | |
* +--+--+--+--+--+--+--+
*
* 7x7:d7b3e8e5c7a7c13e4d8b4d
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <ctype.h>
#include <math.h>
#include "puzzles.h"
#include <stdarg.h>
#define setmember(obj, field) ( (obj) . field = field )
static char *nfmtstr(int n, char *fmt, ...) {
va_list va;
char *ret = snewn(n+1, char);
va_start(va, fmt);
vsprintf(ret, fmt, va);
va_end(va);
return ret;
}
#define SWAP(type, lvar1, lvar2) do { \
type tmp = (lvar1); \
(lvar1) = (lvar2); \
(lvar2) = tmp; \
} while (0)
/* ----------------------------------------------------------------------
* Game parameters, presets, states
*/
typedef signed char puzzle_size;
struct game_params {
puzzle_size w;
puzzle_size h;
};
struct game_state {
struct game_params params;
unsigned int has_cheated: 1;
unsigned int was_solved: 1;
puzzle_size *grid;
};
#define DEFAULT_PRESET 0
static struct game_params range_presets[] = {{9, 6}, {12, 8}, {13, 9}, {16, 11}};
/* rationale: I want all four combinations of {odd/even, odd/even}, as
* they play out differently with respect to two-way symmetry. I also
* want them to be generated relatively fast yet still be large enough
* to be entertaining for a decent amount of time, and I want them to
* make good use of monitor real estate (the typical screen resolution
* is why I do 13x9 and not 9x13).
*/
static game_params *default_params(void)
{
game_params *ret = snew(game_params);
*ret = range_presets[DEFAULT_PRESET]; /* structure copy */
return ret;
}
static game_params *dup_params(game_params *params)
{
game_params *ret = snew(game_params);
*ret = *params; /* structure copy */
return ret;
}
static int game_fetch_preset(int i, char **name, game_params **params)
{
game_params *ret;
if (i < 0 || i >= lenof(range_presets)) return FALSE;
ret = default_params();
*ret = range_presets[i]; /* struct copy */
*params = ret;
*name = nfmtstr(40, "%d x %d", range_presets[i].w, range_presets[i].h);
return TRUE;
}
static void free_params(game_params *params)
{
sfree(params);
}
static void decode_params(game_params *params, char const *string)
{
/* FIXME check for puzzle_size overflow and decoding issues */
params->w = params->h = atoi(string);
while (*string && isdigit((unsigned char) *string)) ++string;
if (*string == 'x') {
string++;
params->h = atoi(string);
while (*string && isdigit((unsigned char)*string)) string++;
}
}
static char *encode_params(game_params *params, int full)
{
char str[80];
sprintf(str, "%dx%d", params->w, params->h);
return dupstr(str);
}
static config_item *game_configure(game_params *params)
{
config_item *ret;
ret = snewn(3, config_item);
ret[0].name = "Width";
ret[0].type = C_STRING;
ret[0].sval = nfmtstr(10, "%d", params->w);
ret[0].ival = 0;
ret[1].name = "Height";
ret[1].type = C_STRING;
ret[1].sval = nfmtstr(10, "%d", params->h);
ret[1].ival = 0;
ret[2].name = NULL;
ret[2].type = C_END;
ret[2].sval = NULL;
ret[2].ival = 0;
return ret;
}
static game_params *custom_params(config_item *configuration)
{
game_params *ret = snew(game_params);
ret->w = atoi(configuration[0].sval);
ret->h = atoi(configuration[1].sval);
return ret;
}
#define memdup(dst, src, n, type) do { \
dst = snewn(n, type); \
memcpy(dst, src, n * sizeof (type)); \
} while (0)
static game_state *dup_game(game_state *state)
{
game_state *ret = snew(game_state);
int const n = state->params.w * state->params.h;
*ret = *state; /* structure copy */
/* copy the poin_tee_, set a new value of the poin_ter_ */
memdup(ret->grid, state->grid, n, puzzle_size);
return ret;
}
static void free_game(game_state *state)
{
sfree(state->grid);
sfree(state);
}
/* ----------------------------------------------------------------------
* The solver subsystem.
*
* The solver is used for two purposes:
* - To solve puzzles when the user selects `Solve'.
* - To test solubility of a grid as clues are being removed from it
* during the puzzle generation.
*
* It supports the following ways of reasoning:
*
* - A cell adjacent to a black cell must be white.
*
* - If painting a square black would bisect the white regions, that
* square is white (by finding biconnected components' cut points)
*
* - A cell with number n, covering at most k white squares in three
* directions must white-cover n-k squares in the last direction.
*
* - A cell with number n known to cover k squares, if extending the
* cover by one square in a given direction causes the cell to
* cover _more_ than n squares, that extension cell must be black.
*
* (either if the square already covers n, or if it extends into a
* chunk of size > n - k)
*
* - Recursion. Pick any cell and see if this leads to either a
* contradiction or a solution (and then act appropriately).
*
*
* TODO:
*
* (propagation upper limit)
* - If one has two numbers on the same line, the smaller limits the
* larger. Example: in |b|_|_|8|4|_|_|b|, only two _'s can be both
* white and connected to the "8" cell; so that cell will propagate
* at least four cells orthogonally to the displayed line (which is
* better than the current "at least 2").
*
* (propagation upper limit)
* - cells can't propagate into other cells if doing so exceeds that
* number. Example: in |b|4|.|.|2|b|, at most one _ can be white;
* otherwise, the |2| would have too many reaching white cells.
*
* (propagation lower and upper limit)
* - `Full Combo': in each four directions d_1 ... d_4, find a set of
* possible propagation distances S_1 ... S_4. For each i=1..4,
* for each x in S_i: if not exists (y, z, w) in the other sets
* such that (x+y+z+w+1 == clue value): then remove x from S_i.
* Repeat until this stabilizes. If any cell would contradict
*/
#define idx(i, j, w) ((i)*(w) + (j))
#define out_of_bounds(r, c, w, h) \
((r) < 0 || (r) >= h || (c) < 0 || (c) >= w)
typedef struct square {
puzzle_size r, c;
} square;
enum {BLACK = -2, WHITE, EMPTY};
/* white is for pencil marks, empty is undecided */
static int const dr[4] = {+1, 0, -1, 0};
static int const dc[4] = { 0, +1, 0, -1};
static int const cursors[4] = /* must match dr and dc */
{CURSOR_DOWN, CURSOR_RIGHT, CURSOR_UP, CURSOR_LEFT};
typedef struct move {
square square;
unsigned int colour: 1;
} move;
enum {M_BLACK = 0, M_WHITE = 1};
typedef move *(reasoning)(game_state *state,
int nclues,
const square *clues,
move *buf);
static reasoning solver_reasoning_not_too_big;
static reasoning solver_reasoning_adjacency;
static reasoning solver_reasoning_connectedness;
static reasoning solver_reasoning_recursion;
enum {
DIFF_NOT_TOO_BIG,
DIFF_ADJACENCY,
DIFF_CONNECTEDNESS,
DIFF_RECURSION
};
static move *solve_internal(game_state *state, move *base, int diff);
static char *solve_game(game_state *orig, game_state *curpos,
char *aux, char **error)
{
int const n = orig->params.w * orig->params.h;
move *const base = snewn(n, move);
move *moves = solve_internal(orig, base, DIFF_RECURSION);
char *ret = NULL;
if (moves != NULL) {
int const k = moves - base;
char *str = ret = snewn(15*k + 2, char);
char colour[2] = "BW";
move *it;
*str++ = 'S';
*str = '\0';
for (it = base; it < moves; ++it)
str += sprintf(str, "%c,%d,%d", colour[it->colour],
it->square.r, it->square.c);
} else *error = "This puzzle instance contains a contradiction";
sfree(base);
return ret;
}
static square *find_clues(game_state *state, int *ret_nclues);
static move *do_solve(game_state *state,
int nclues,
const square *clues,
move *move_buffer,
int difficulty);
/* new_game_desc entry point in the solver subsystem */
static move *solve_internal(game_state *state, move *base, int diff)
{
int nclues;
square *const clues = find_clues(state, &nclues);
game_state *dup = dup_game(state);
move *const moves = do_solve(dup, nclues, clues, base, diff);
free_game(dup);
sfree(clues);
return moves;
}
static reasoning *const reasonings[] = {
solver_reasoning_not_too_big,
solver_reasoning_adjacency,
solver_reasoning_connectedness,
solver_reasoning_recursion
};
static move *do_solve(game_state *state,
int nclues,
const square *clues,
move *move_buffer,
int difficulty)
{
struct move *buf = move_buffer, *oldbuf;
int i;
do {
oldbuf = buf;
for (i = 0; i < lenof(reasonings) && i <= difficulty; ++i) {
/* only recurse if all else fails */
if (i == DIFF_RECURSION && buf > oldbuf) continue;
buf = (*reasonings[i])(state, nclues, clues, buf);
if (buf == NULL) return NULL;
}
} while (buf > oldbuf);
return buf;
}
#define MASK(n) (1 << ((n) + 2))
static int runlength(puzzle_size r, puzzle_size c,
puzzle_size dr, puzzle_size dc,
game_state *state, int colourmask)
{
int const w = state->params.w, h = state->params.h;
int sz = 0;
while (TRUE) {
int cell = idx(r, c, w);
if (out_of_bounds(r, c, w, h)) break;
if (state->grid[cell] > 0) {
if (!(colourmask & ~(MASK(BLACK) | MASK(WHITE) | MASK(EMPTY))))
break;
} else if (!(MASK(state->grid[cell]) & colourmask)) break;
++sz;
r += dr;
c += dc;
}
return sz;
}
static void solver_makemove(puzzle_size r, puzzle_size c, int colour,
game_state *state, move **buffer_ptr)
{
int const cell = idx(r, c, state->params.w);
if (out_of_bounds(r, c, state->params.w, state->params.h)) return;
if (state->grid[cell] != EMPTY) return;
setmember((*buffer_ptr)->square, r);
setmember((*buffer_ptr)->square, c);
setmember(**buffer_ptr, colour);
++*buffer_ptr;
state->grid[cell] = (colour == M_BLACK ? BLACK : WHITE);
}
static move *solver_reasoning_adjacency(game_state *state,
int nclues,
const square *clues,
move *buf)
{
int r, c, i;
for (r = 0; r < state->params.h; ++r)
for (c = 0; c < state->params.w; ++c) {
int const cell = idx(r, c, state->params.w);
if (state->grid[cell] != BLACK) continue;
for (i = 0; i < 4; ++i)
solver_makemove(r + dr[i], c + dc[i], M_WHITE, state, &buf);
}
return buf;
}
enum {NOT_VISITED = -1};
static int dfs_biconnect_visit(puzzle_size r, puzzle_size c,
game_state *state,
square *dfs_parent, int *dfs_depth,
move **buf);
static move *solver_reasoning_connectedness(game_state *state,
int nclues,
const square *clues,
move *buf)
{
int const w = state->params.w, h = state->params.h, n = w * h;
square *const dfs_parent = snewn(n, square);
int *const dfs_depth = snewn(n, int);
int i;
for (i = 0; i < n; ++i) {
dfs_parent[i].r = NOT_VISITED;
dfs_depth[i] = -n;
}
for (i = 0; i < n && state->grid[i] == BLACK; ++i);
dfs_parent[i].r = i / w;
dfs_parent[i].c = i % w; /* `dfs root`.parent == `dfs root` */
dfs_depth[i] = 0;
dfs_biconnect_visit(i / w, i % w, state, dfs_parent, dfs_depth, &buf);
sfree(dfs_parent);
sfree(dfs_depth);
return buf;
}
/* returns the `lowpoint` of (r, c) */
static int dfs_biconnect_visit(puzzle_size r, puzzle_size c,
game_state *state,
square *dfs_parent, int *dfs_depth,
move **buf)
{
const puzzle_size w = state->params.w, h = state->params.h;
int const i = idx(r, c, w), mydepth = dfs_depth[i];
int lowpoint = mydepth, j, nchildren = 0;
for (j = 0; j < 4; ++j) {
const puzzle_size rr = r + dr[j], cc = c + dc[j];
int const cell = idx(rr, cc, w);
if (out_of_bounds(rr, cc, w, h)) continue;
if (state->grid[cell] == BLACK) continue;
if (dfs_parent[cell].r == NOT_VISITED) {
int child_lowpoint;
dfs_parent[cell].r = r;
dfs_parent[cell].c = c;
dfs_depth[cell] = mydepth + 1;
child_lowpoint = dfs_biconnect_visit(rr, cc, state, dfs_parent,
dfs_depth, buf);
if (child_lowpoint >= mydepth && mydepth > 0)
solver_makemove(r, c, M_WHITE, state, buf);
lowpoint = min(lowpoint, child_lowpoint);
++nchildren;
} else if (rr != dfs_parent[i].r || cc != dfs_parent[i].c) {
lowpoint = min(lowpoint, dfs_depth[cell]);
}
}
if (mydepth == 0 && nchildren >= 2)
solver_makemove(r, c, M_WHITE, state, buf);
return lowpoint;
}
static move *solver_reasoning_not_too_big(game_state *state,
int nclues,
const square *clues,
move *buf)
{
int const w = state->params.w, runmasks[4] = {
~(MASK(BLACK) | MASK(EMPTY)),
MASK(EMPTY),
~(MASK(BLACK) | MASK(EMPTY)),
~(MASK(BLACK))
};
enum {RUN_WHITE, RUN_EMPTY, RUN_BEYOND, RUN_SPACE};
int i, runlengths[4][4];
for (i = 0; i < nclues; ++i) {
int j, k, whites, space;
const puzzle_size row = clues[i].r, col = clues[i].c;
int const clue = state->grid[idx(row, col, w)];
for (j = 0; j < 4; ++j) {
puzzle_size r = row + dr[j], c = col + dc[j];
runlengths[RUN_SPACE][j] = 0;
for (k = 0; k <= RUN_SPACE; ++k) {
int l = runlength(r, c, dr[j], dc[j], state, runmasks[k]);
if (k < RUN_SPACE) {
runlengths[k][j] = l;
r += dr[j] * l;
c += dc[j] * l;
}
runlengths[RUN_SPACE][j] += l;
}
}
whites = 1;
for (j = 0; j < 4; ++j) whites += runlengths[RUN_WHITE][j];
for (j = 0; j < 4; ++j) {
int const delta = 1 + runlengths[RUN_WHITE][j];
const puzzle_size r = row + delta * dr[j];
const puzzle_size c = col + delta * dc[j];
if (whites == clue) {
solver_makemove(r, c, M_BLACK, state, &buf);
continue;
}
if (runlengths[RUN_EMPTY][j] == 1 &&
whites
+ runlengths[RUN_EMPTY][j]
+ runlengths[RUN_BEYOND][j]
> clue) {
solver_makemove(r, c, M_BLACK, state, &buf);
continue;
}
if (whites
+ runlengths[RUN_EMPTY][j]
+ runlengths[RUN_BEYOND][j]
> clue) {
runlengths[RUN_SPACE][j] =
runlengths[RUN_WHITE][j] +
runlengths[RUN_EMPTY][j] - 1;
if (runlengths[RUN_EMPTY][j] == 1)
solver_makemove(r, c, M_BLACK, state, &buf);
}
}
space = 1;
for (j = 0; j < 4; ++j) space += runlengths[RUN_SPACE][j];
for (j = 0; j < 4; ++j) {
puzzle_size r = row + dr[j], c = col + dc[j];
int k = space - runlengths[RUN_SPACE][j];
if (k >= clue) continue;
for (; k < clue; ++k, r += dr[j], c += dc[j])
solver_makemove(r, c, M_WHITE, state, &buf);
}
}
return buf;
}
static move *solver_reasoning_recursion(game_state *state,
int nclues,
const square *clues,
move *buf)
{
int const w = state->params.w, n = w * state->params.h;
int cell, colour;
for (cell = 0; cell < n; ++cell) {
int const r = cell / w, c = cell % w;
int i;
game_state *newstate;
move *recursive_result;
if (state->grid[cell] != EMPTY) continue;
/* FIXME: add enum alias for smallest and largest (or N) */
for (colour = M_BLACK; colour <= M_WHITE; ++colour) {
newstate = dup_game(state);
newstate->grid[cell] = colour;
recursive_result = do_solve(newstate, nclues, clues, buf,
DIFF_RECURSION);
free_game(newstate);
if (recursive_result == NULL) {
solver_makemove(r, c, M_BLACK + M_WHITE - colour, state, &buf);
return buf;
}
for (i = 0; i < n && newstate->grid[i] != EMPTY; ++i);
if (i == n) return buf;
}
}
return buf;
}
static square *find_clues(game_state *state, int *ret_nclues)
{
int r, c, i, nclues = 0;
square *ret = snewn(state->params.w * state->params.h, struct square);
for (i = r = 0; r < state->params.h; ++r)
for (c = 0; c < state->params.w; ++c, ++i)
if (state->grid[i] > 0) {
ret[nclues].r = r;
ret[nclues].c = c;
++nclues;
}
*ret_nclues = nclues;
return sresize(ret, nclues + (nclues == 0), square);
}
/* ----------------------------------------------------------------------
* Puzzle generation
*
* Generating kurodoko instances is rather straightforward:
*
* - Start with a white grid and add black squares at randomly chosen
* locations, unless colouring that square black would violate
* either the adjacency or connectedness constraints.
*
* - For each white square, compute the number it would contain if it
* were given as a clue.
*
* - From a starting point of "give _every_ white square as a clue",
* for each white square (in a random order), see if the board is
* solvable when that square is not given as a clue. If not, don't
* give it as a clue, otherwise do.
*
* This never fails, but it's only _almost_ what I do. The real final
* step is this:
*
* - From a starting point of "give _every_ white square as a clue",
* first remove all clues that are two-way rotationally symmetric
* to a black square. If this leaves the puzzle unsolvable, throw
* it out and try again. Otherwise, remove all _pairs_ of clues
* (that are rotationally symmetric) which can be removed without
* rendering the puzzle unsolvable.
*
* This can fail even if one only removes the black and symmetric
* clues; indeed it happens often (avg. once or twice per puzzle) when
* generating 1xN instances. (If you add black cells they must be in
* the end, and if you only add one, it's ambiguous where).
*/
/* forward declarations of internal calls */
static void newdesc_choose_black_squares(game_state *state,
const int *shuffle_1toN);
static void newdesc_compute_clues(game_state *state);
static int newdesc_strip_clues(game_state *state, int *shuffle_1toN);
static char *newdesc_encode_game_description(int n, puzzle_size *grid);
static char *new_game_desc(game_params *params, random_state *rs,
char **aux, int interactive)
{
int const w = params->w, h = params->h, n = w * h;
puzzle_size *const grid = snewn(n, puzzle_size);
int *const shuffle_1toN = snewn(n, int);
int i, clues_removed;
char *encoding;
game_state state;
state.params = *params;
state.grid = grid;
interactive = 0; /* I don't need it, I shouldn't use it*/
for (i = 0; i < n; ++i) shuffle_1toN[i] = i;
while (TRUE) {
shuffle(shuffle_1toN, n, sizeof (int), rs);
newdesc_choose_black_squares(&state, shuffle_1toN);
newdesc_compute_clues(&state);
shuffle(shuffle_1toN, n, sizeof (int), rs);
clues_removed = newdesc_strip_clues(&state, shuffle_1toN);
if (clues_removed < 0) continue; else break;
}
encoding = newdesc_encode_game_description(n, grid);
sfree(grid);
sfree(shuffle_1toN);
return encoding;
}
static int dfs_count_white(game_state *state, int cell);
static void newdesc_choose_black_squares(game_state *state,
const int *shuffle_1toN)
{
int const w = state->params.w, h = state->params.h, n = w * h;
int k, any_white_cell, n_black_cells;
for (k = 0; k < n; ++k) state->grid[k] = WHITE;
any_white_cell = shuffle_1toN[n - 1];
n_black_cells = 0;
/* I like the puzzles that result from n / 3, but maybe this
* could be made a (generation, i.e. non-full) parameter? */
for (k = 0; k < n / 3; ++k) {
int const i = shuffle_1toN[k], c = i % w, r = i / w;
int j;
for (j = 0; j < 4; ++j) {
int const rr = r + dr[j], cc = c + dc[j], cell = idx(rr, cc, w);
/* if you're out of bounds, we skip you */
if (out_of_bounds(rr, cc, w, h)) continue;
if (state->grid[cell] == BLACK) break; /* I can't be black */
} if (j < 4) continue; /* I have black neighbour: I'm white */
state->grid[i] = BLACK;
++n_black_cells;
j = dfs_count_white(state, any_white_cell);
if (j + n_black_cells < n) {
state->grid[i] = WHITE;
--n_black_cells;
}
}
}
static void newdesc_compute_clues(game_state *state)
{
int const w = state->params.w, h = state->params.h;
int r, c;
for (r = 0; r < h; ++r) {
int run_size = 0, c, cc;
for (c = 0; c <= w; ++c) {
if (c == w || state->grid[idx(r, c, w)] == BLACK) {
for (cc = c - run_size; cc < c; ++cc)
state->grid[idx(r, cc, w)] += run_size;
run_size = 0;
} else ++run_size;
}
}
for (c = 0; c < w; ++c) {
int run_size = 0, r, rr;
for (r = 0; r <= h; ++r) {
if (r == h || state->grid[idx(r, c, w)] == BLACK) {
for (rr = r - run_size; rr < r; ++rr)
state->grid[idx(rr, c, w)] += run_size;
run_size = 0;
} else ++run_size;
}
}
}
#define rotate(x) (n - 1 - (x))
static int newdesc_strip_clues(game_state *state, int *shuffle_1toN)
{
int const w = state->params.w, n = w * state->params.h;
move *const move_buffer = snewn(n, move);
move *buf;
game_state *dupstate;
/*
* do a partition/pivot of shuffle_1toN into three groups:
* (1) squares rotationally-symmetric to (3)
* (2) squares not in (1) or (3)
* (3) black squares
*
* They go from [0, left), [left, right) and [right, n) in
* shuffle_1toN (and from there into state->grid[ ])
*
* Then, remove clues from the grid one by one in shuffle_1toN
* order, until the solver becomes unhappy. If we didn't remove
* all of (1), return (-1). Else, we're happy.
*/
/* do the partition */
int clues_removed, k = 0, left = 0, right = n;
for (;; ++k) {
while (k < right && state->grid[shuffle_1toN[k]] == BLACK) {
--right;
SWAP(int, shuffle_1toN[right], shuffle_1toN[k]);
assert(state->grid[shuffle_1toN[right]] == BLACK);
}
if (k >= right) break;
assert (k >= left);
if (state->grid[rotate(shuffle_1toN[k])] == BLACK) {
SWAP(int, shuffle_1toN[k], shuffle_1toN[left]);
++left;
}
assert (state->grid[rotate(shuffle_1toN[k])] != BLACK
|| k == left - 1);
}
for (k = 0; k < left; ++k) {
assert (state->grid[rotate(shuffle_1toN[k])] == BLACK);
state->grid[shuffle_1toN[k]] = EMPTY;
}
for (k = left; k < right; ++k) {
assert (state->grid[rotate(shuffle_1toN[k])] != BLACK);
assert (state->grid[shuffle_1toN[k]] != BLACK);
}
for (k = right; k < n; ++k) {
assert (state->grid[shuffle_1toN[k]] == BLACK);
state->grid[shuffle_1toN[k]] = EMPTY;
}
clues_removed = (left - 0) + (n - right);
dupstate = dup_game(state);
buf = solve_internal(dupstate, move_buffer, DIFF_RECURSION - 1);
free_game(dupstate);
if (buf - move_buffer < clues_removed) {
/* branch prediction: I don't think I'll go here */
clues_removed = -1;
goto ret;
}
for (k = left; k < right; ++k) {
const int i = shuffle_1toN[k], j = rotate(i);
int const clue = state->grid[i], clue_rot = state->grid[j];
if (clue == BLACK) continue;
state->grid[i] = state->grid[j] = EMPTY;
dupstate = dup_game(state);
buf = solve_internal(dupstate, move_buffer, DIFF_RECURSION - 1);
free_game(dupstate);
clues_removed += 2 - (i == j);
/* if i is the center square, then i == (j = rotate(i))
* when i and j are one, removing i and j removes only one */
if (buf - move_buffer == clues_removed) continue;
/* if the solver is sound, refilling all removed clues means
* we have filled all squares, i.e. solved the puzzle. */
state->grid[i] = clue;
state->grid[j] = clue_rot;
clues_removed -= 2 - (i == j);
}
ret:
sfree(move_buffer);
return clues_removed;
}
static int dfs_count_rec(puzzle_size *grid, int r, int c, int w, int h)
{
int const cell = idx(r, c, w);
if (out_of_bounds(r, c, w, h)) return 0;
if (grid[cell] != WHITE) return 0;
grid[cell] = EMPTY;
return 1 +
dfs_count_rec(grid, r + 0, c + 1, w, h) +
dfs_count_rec(grid, r + 0, c - 1, w, h) +
dfs_count_rec(grid, r + 1, c + 0, w, h) +
dfs_count_rec(grid, r - 1, c + 0, w, h);
}
static int dfs_count_white(game_state *state, int cell)
{
int const w = state->params.w, h = state->params.h, n = w * h;
int const r = cell / w, c = cell % w;
int i, k = dfs_count_rec(state->grid, r, c, w, h);
for (i = 0; i < n; ++i)
if (state->grid[i] == EMPTY)
state->grid[i] = WHITE;
return k;
}
static char *validate_params(game_params *params, int full)
{
int const w = params->w, h = params->h;
if (w < 1) return "Error: width is less than 1";
if (h < 1) return "Error: height is less than 1";
if (w * h < 1) return "Error: size is less than 1";
if (w + h - 1 > SCHAR_MAX) return "Error: w + h is too big";
/* I might be unable to store clues in my puzzle_size *grid; */
if (full) {
if (w == 2 && h == 2) return "Error: can't create 2x2 puzzles";
if (w == 1 && h == 2) return "Error: can't create 1x2 puzzles";
if (w == 2 && h == 1) return "Error: can't create 2x1 puzzles";
if (w == 1 && h == 1) return "Error: can't create 1x1 puzzles";
}
return NULL;
}
/* Definition: a puzzle instance is _good_ if:
* - it has a unique solution
* - the solver can find this solution without using recursion
* - the solution contains at least one black square
* - the clues are 2-way rotationally symmetric
*
* (the idea being: the generator can not output any _bad_ puzzles)
*
* Theorem: validate_params, when full != 0, discards exactly the set
* of parameters for which there are _no_ good puzzle instances.
*
* Proof: it's an immediate consequence of the five lemmas below.
*
* Observation: not only do puzzles on non-tiny grids exist, the
* generator is pretty fast about coming up with them. On my pre-2004
* desktop box, it generates 100 puzzles on the highest preset (16x11)
* in 8.383 seconds, or <= 0.1 second per puzzle.
*
* ----------------------------------------------------------------------
*
* Lemma: On a 1x1 grid, there are no good puzzles.
*
* Proof: the one square can't be a clue because at least one square
* is black. But both a white square and a black square satisfy the
* solution criteria, so the puzzle is ambiguous (and hence bad).
*
* Lemma: On a 1x2 grid, there are no good puzzles.
*
* Proof: let's name the squares l and r. Note that there can be at
* most one black square, or adjacency is violated. By assumption at
* least one square is black, so let's call that one l. By clue
* symmetry, neither l nor r can be given as a clue, so the puzzle
* instance is blank and thus ambiguous.
*
* Corollary: On a 2x1 grid, there are no good puzzles.
* Proof: rotate the above proof 90 degrees ;-)
*
* ----------------------------------------------------------------------
*
* Lemma: On a 2x2 grid, there are no soluble puzzles with 2-way
* rotational symmetric clues and at least one black square.
*
* Proof: Let's name the squares a, b, c, and d, with a and b on the
* top row, a and c in the left column. Let's consider the case where
* a is black. Then no other square can be black: b and c would both
* violate the adjacency constraint; d would disconnect b from c.
*
* So exactly one square is black (and by 4-way rotation symmetry of
* the 2x2 square, it doesn't matter which one, so let's stick to a).
* By 2-way rotational symmetry of the clues and the rule about not
* painting numbers black, neither a nor d can be clues. A blank
* puzzle would be ambiguous, so one of {b, c} is a clue; by symmetry,
* so is the other one.
*
* It is readily seen that their clue value is 2. But "a is black"
* and "d is black" are both valid solutions in this case, so the
* puzzle is ambiguous (and hence bad).
*
* ----------------------------------------------------------------------
*
* Lemma: On a wxh grid with w, h >= 1 and (w > 2 or h > 2), there is
* at least one good puzzle.
*
* Proof: assume that w > h (otherwise rotate the proof again). Paint
* the top left and bottom right corners black, and fill a clue into
* all the other squares. Present this board to the solver code (or
* player, hypothetically), except with the two black squares as blank
* squares.
*
* For an Nx1 puzzle, observe that every clue is N - 2, and there are
* N - 2 of them in one connected sequence, so the remaining two
* squares can be deduced to be black, which solves the puzzle.
*
* For any other puzzle, let j be a cell in the same row as a black
* cell, but not in the same column (such a cell doesn't exist in 2x3
* puzzles, but we assume w > h and such cells exist in 3x2 puzzles).
*
* Note that the number of cells in axis parallel `rays' going out
* from j exceeds j's clue value by one. Only one such cell is a
* non-clue, so it must be black. Similarly for the other corner (let
* j' be a cell in the same row as the _other_ black cell, but not in
* the same column as _any_ black cell; repeat this argument at j').
*
* This fills the grid and satisfies all clues and the adjacency
* constraint and doesn't paint on top of any clues. All that is left
* to see is connectedness.
*
* Observe that the white cells in each column form a single connected
* `run', and each column contains a white cell adjacent to a white
* cell in the column to the right, if that column exists.
*
* Thus, any cell in the left-most column can reach any other cell:
* first go to the target column (by repeatedly going to the cell in
* your current column that lets you go right, then going right), then
* go up or down to the desired cell.
*
* As reachability is symmetric (in undirected graphs) and transitive,
* any cell can reach any left-column cell, and from there any other
* cell.
*/
/* ----------------------------------------------------------------------
* Game encoding and decoding
*/
#define NDIGITS_BASE '!'
static char *newdesc_encode_game_description(int area, puzzle_size *grid)
{
char *desc = NULL;
int desclen = 0, descsize = 0;
int run, i;
run = 0;
for (i = 0; i <= area; i++) {
int n = (i < area ? grid[i] : -1);
if (!n)
run++;
else {
if (descsize < desclen + 40) {
descsize = desclen * 3 / 2 + 40;
desc = sresize(desc, descsize, char);
}
if (run) {
while (run > 0) {
int c = 'a' - 1 + run;
if (run > 26)
c = 'z';
desc[desclen++] = c;
run -= c - ('a' - 1);
}
} else {
/*
* If there's a number in the very top left or
* bottom right, there's no point putting an
* unnecessary _ before or after it.
*/
if (desclen > 0 && n > 0)
desc[desclen++] = '_';
}
if (n > 0)
desclen += sprintf(desc+desclen, "%d", n);
run = 0;
}
}
desc[desclen] = '\0';
return desc;
}
static char *validate_desc(game_params *params, char *desc)
{
int const n = params->w * params->h;
int squares = 0;
int range = params->w + params->h - 1; /* maximum cell value */
while (*desc && *desc != ',') {
int c = *desc++;
if (c >= 'a' && c <= 'z') {
squares += c - 'a' + 1;
} else if (c == '_') {
/* do nothing */;
} else if (c > '0' && c <= '9') {
int val = atoi(desc-1);
if (val < 1 || val > range)
return "Out-of-range number in game description";
squares++;
while (*desc >= '0' && *desc <= '9')
desc++;
} else
return "Invalid character in game description";
}
if (squares < n)
return "Not enough data to fill grid";
if (squares > n)
return "Too much data to fit in grid";
return NULL;
}
static game_state *new_game(midend *me, game_params *params, char *desc)
{
int i;
char *p;
int const n = params->w * params->h;
game_state *state = snew(game_state);
me = NULL; /* I don't need it, I shouldn't use it */
state->params = *params; /* structure copy */
state->grid = snewn(n, puzzle_size);
p = desc;
i = 0;
while (i < n && *p) {
int c = *p++;
if (c >= 'a' && c <= 'z') {
int squares = c - 'a' + 1;
while (squares--)
state->grid[i++] = 0;
} else if (c == '_') {
/* do nothing */;
} else if (c > '0' && c <= '9') {
int val = atoi(p-1);
assert(val >= 1 && val <= params->w+params->h-1);
state->grid[i++] = val;
while (*p >= '0' && *p <= '9')
p++;
}
}
assert(i == n);
state->has_cheated = FALSE;
state->was_solved = FALSE;
return state;
}
/* ----------------------------------------------------------------------
* User interface: ascii
*/
static int game_can_format_as_text_now(game_params *params)
{
return TRUE;
}
static char *game_text_format(game_state *state)
{
int cellsize, r, c, i, w_string, h_string, n_string;
char *ret, *buf, *gridline;
int const w = state->params.w, h = state->params.h;
cellsize = 0; /* or may be used uninitialized */
for (c = 0; c < w; ++c) {
for (r = 1; r < h; ++r) {
puzzle_size k = state->grid[idx(r, c, w)];
int d;
for (d = 0; k; k /= 10, ++d);
cellsize = max(cellsize, d);
}
}
++cellsize;
w_string = w * cellsize + 2; /* "|%d|%d|...|\n" */
h_string = 2 * h + 1; /* "+--+--+...+\n%s\n+--+--+...+\n" */
n_string = w_string * h_string;
gridline = snewn(w_string + 1, char); /* +1: NUL terminator */
memset(gridline, '-', w_string);
for (c = 0; c <= w; ++c) gridline[c * cellsize] = '+';
gridline[w_string - 1] = '\n';
gridline[w_string - 0] = '\0';
buf = ret = snewn(n_string + 1, char); /* +1: NUL terminator */
for (i = r = 0; r < h; ++r) {
memcpy(buf, gridline, w_string);
buf += w_string;
for (c = 0; c < w; ++c, ++i) {
char ch;
switch (state->grid[i]) {
case BLACK: ch = '#'; break;
case WHITE: ch = '.'; break;
case EMPTY: ch = ' '; break;
default:
buf += sprintf(buf, "|%*d", cellsize - 1, state->grid[i]);
continue;
}
*buf++ = '|';
memset(buf, ch, cellsize - 1);
buf += cellsize - 1;
}
buf += sprintf(buf, "|\n");
}
memcpy(buf, gridline, w_string);
buf += w_string;
assert (buf - ret == n_string);
*buf = '\0';
sfree(gridline);
return ret;
}
/* ----------------------------------------------------------------------
* User interfaces: interactive
*/
struct game_ui {
puzzle_size r, c; /* cursor position */
unsigned int cursor_show: 1;
};
static game_ui *new_ui(game_state *state)
{
struct game_ui *ui = snew(game_ui);
ui->r = ui->c = 0;
ui->cursor_show = FALSE;
return ui;
}
static void free_ui(game_ui *ui)
{
sfree(ui);
}
static char *encode_ui(game_ui *ui)
{
return NULL;
}
static void decode_ui(game_ui *ui, char *encoding)
{
}
typedef struct drawcell {
puzzle_size value;
unsigned int error: 1;
unsigned int cursor: 1;
unsigned int flash: 1;
} drawcell;
struct game_drawstate {
int tilesize;
drawcell *grid;
unsigned int started: 1;
};
#define TILESIZE (ds->tilesize)
#define BORDER (TILESIZE / 2)
#define COORD(x) ((x) * TILESIZE + BORDER)
#define FROMCOORD(x) (((x) - BORDER) / TILESIZE)
static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
int x, int y, int button)
{
enum {none, forwards, backwards, hint};
int const w = state->params.w, h = state->params.h;
int r = ui->r, c = ui->c, action = none, cell;
if (IS_CURSOR_SELECT(button) && !ui->cursor_show) return NULL;
if (IS_MOUSE_DOWN(button)) {
r = FROMCOORD(y + TILESIZE) - 1; /* or (x, y) < TILESIZE) */
c = FROMCOORD(x + TILESIZE) - 1; /* are considered inside */
if (out_of_bounds(r, c, w, h)) return NULL;
ui->r = r;
ui->c = c;
ui->cursor_show = FALSE;
}
if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
/*
* Utterly awful hack, exactly analogous to the one in Slant,
* to configure the left and right mouse buttons the opposite
* way round.
*
* The original puzzle submitter thought it would be more
* useful to have the left button turn an empty square into a
* dotted one, on the grounds that that was what you did most
* often; I (SGT) felt instinctively that the left button
* ought to place black squares and the right button place
* dots, on the grounds that that was consistent with many
* other puzzles in which the left button fills in the data
* used by the solution checker while the right button places
* pencil marks for the user's convenience.
*
* My first beta-player wasn't sure either, so I thought I'd
* pre-emptively put in a 'configuration' mechanism just in
* case.
*/
{
static int swap_buttons = -1;
if (swap_buttons < 0) {
char *env = getenv("RANGE_SWAP_BUTTONS");
swap_buttons = (env && (env[0] == 'y' || env[0] == 'Y'));
}
if (swap_buttons) {
if (button == LEFT_BUTTON)
button = RIGHT_BUTTON;
else
button = LEFT_BUTTON;
}
}
}
switch (button) {
case CURSOR_SELECT : case LEFT_BUTTON: action = backwards; break;
case CURSOR_SELECT2: case RIGHT_BUTTON: action = forwards; break;
case 'h': case 'H' : action = hint; break;
case CURSOR_UP: case CURSOR_DOWN:
case CURSOR_LEFT: case CURSOR_RIGHT:
if (ui->cursor_show) {
int i;
for (i = 0; i < 4 && cursors[i] != button; ++i);
assert (i < 4);
if (!out_of_bounds(ui->r + dr[i], ui->c + dc[i], w, h)) {
ui->r += dr[i];
ui->c += dc[i];
}
} else ui->cursor_show = TRUE;
return "";
}
if (action == hint) {
move *end, *buf = snewn(state->params.w * state->params.h,
struct move);
char *ret = NULL;
end = solve_internal(state, buf, DIFF_RECURSION);
if (end != NULL && end > buf) {
ret = nfmtstr(40, "%c,%d,%d",
buf->colour == M_BLACK ? 'B' : 'W',
buf->square.r, buf->square.c);
/* We used to set a flag here in the game_ui indicating
* that the player had used the hint function. I (SGT)
* retired it, on grounds of consistency with other games
* (most of these games will still flash to indicate
* completion if you solved and undid it, so why not if
* you got a hint?) and because the flash is as much about
* checking you got it all right than about congratulating
* you on a job well done. */
}
sfree(buf);
return ret;
}
cell = state->grid[idx(r, c, state->params.w)];
if (cell > 0) return NULL;
if (action == forwards) switch (cell) {
case EMPTY: return nfmtstr(40, "W,%d,%d", r, c);
case WHITE: return nfmtstr(40, "B,%d,%d", r, c);
case BLACK: return nfmtstr(40, "E,%d,%d", r, c);
}
else if (action == backwards) switch (cell) {
case BLACK: return nfmtstr(40, "W,%d,%d", r, c);
case WHITE: return nfmtstr(40, "E,%d,%d", r, c);
case EMPTY: return nfmtstr(40, "B,%d,%d", r, c);
}
return NULL;
}
static int find_errors(game_state *state, int *report)
{
int const w = state->params.w, h = state->params.h, n = w * h;
int r, c, i;
int nblack = 0, any_white_cell = -1;
game_state *dup = dup_game(state);
for (i = r = 0; r < h; ++r)
for (c = 0; c < w; ++c, ++i) {
switch (state->grid[i]) {
case BLACK:
{
int j;
++nblack;
for (j = 0; j < 4; ++j) {
int const rr = r + dr[j], cc = c + dc[j];
if (out_of_bounds(rr, cc, w, h)) continue;
if (state->grid[idx(rr, cc, w)] != BLACK) continue;
if (!report) goto found_error;
report[i] = TRUE;
break;
}
}
break;
default:
{
int j, runs;
for (runs = 1, j = 0; j < 4; ++j) {
int const rr = r + dr[j], cc = c + dc[j];
runs += runlength(rr, cc, dr[j], dc[j], state,
~MASK(BLACK));
}
if (!report) {
if (runs != state->grid[i]) goto found_error;
} else if (runs < state->grid[i]) report[i] = TRUE;
else {
for (runs = 1, j = 0; j < 4; ++j) {
int const rr = r + dr[j], cc = c + dc[j];
runs += runlength(rr, cc, dr[j], dc[j], state,
~(MASK(BLACK) | MASK(EMPTY)));
}
if (runs > state->grid[i]) report[i] = TRUE;
}
}
/* note: fallthrough _into_ these cases */
case EMPTY:
case WHITE: any_white_cell = i;
}
}
for (i = 0; i < n; ++i) if (dup->grid[i] != BLACK) dup->grid[i] = WHITE;
if (nblack + dfs_count_white(dup, any_white_cell) < n) {
if (!report) {
printf("dfs fail at %d\n", any_white_cell);
goto found_error;
}
for (i = 0; i < n; ++i) if (state->grid[i] != BLACK) report[i] = TRUE;
}
free_game(dup);
return FALSE; /* if report != NULL, this is ignored */
found_error:
free_game(dup);
return TRUE;
}
static game_state *execute_move(game_state *state, char *move)
{
signed int r, c, value, nchars, ntok;
signed char what_to_do;
game_state *ret;
assert (move);
ret = dup_game(state);
if (*move == 'S') {
++move;
ret->has_cheated = ret->was_solved = TRUE;
}
for (; *move; move += nchars) {
ntok = sscanf(move, "%c,%d,%d%n", &what_to_do, &r, &c, &nchars);
if (ntok < 3) goto failure;
switch (what_to_do) {
case 'W': value = WHITE; break;
case 'E': value = EMPTY; break;
case 'B': value = BLACK; break;
default: goto failure;
}
if (out_of_bounds(r, c, ret->params.w, ret->params.h)) goto failure;
ret->grid[idx(r, c, ret->params.w)] = value;
}
if (ret->was_solved == FALSE)
ret->was_solved = !find_errors(ret, NULL);
return ret;
failure:
free_game(ret);
return NULL;
}
static void game_changed_state(game_ui *ui, game_state *oldstate,
game_state *newstate)
{
}
static float game_anim_length(game_state *oldstate, game_state *newstate,
int dir, game_ui *ui)
{
return 0.0F;
}
#define FLASH_TIME 0.7F
static float game_flash_length(game_state *from, game_state *to,
int dir, game_ui *ui)
{
if (!from->was_solved && to->was_solved && !to->has_cheated)
return FLASH_TIME;
return 0.0F;
}
static int game_status(game_state *state)
{
return state->was_solved ? +1 : 0;
}
/* ----------------------------------------------------------------------
* Drawing routines.
*/
#define PREFERRED_TILE_SIZE 32
enum {
COL_BACKGROUND = 0,
COL_GRID,
COL_BLACK = COL_GRID,
COL_TEXT = COL_GRID,
COL_USER = COL_GRID,
COL_ERROR,
COL_LOWLIGHT,
COL_HIGHLIGHT = COL_ERROR, /* mkhighlight needs it, I don't */
COL_CURSOR = COL_LOWLIGHT,
NCOLOURS
};
static void game_compute_size(game_params *params, int tilesize,
int *x, int *y)
{
*x = (1 + params->w) * tilesize;
*y = (1 + params->h) * tilesize;
}
static void game_set_size(drawing *dr, game_drawstate *ds,
game_params *params, int tilesize)
{
ds->tilesize = tilesize;
}
#define COLOUR(ret, i, r, g, b) \
((ret[3*(i)+0] = (r)), (ret[3*(i)+1] = (g)), (ret[3*(i)+2] = (b)))
static float *game_colours(frontend *fe, int *ncolours)
{
float *ret = snewn(3 * NCOLOURS, float);
game_mkhighlight(fe, ret, COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT);
COLOUR(ret, COL_GRID, 0.0F, 0.0F, 0.0F);
COLOUR(ret, COL_ERROR, 1.0F, 0.0F, 0.0F);
*ncolours = NCOLOURS;
return ret;
}
static drawcell makecell(puzzle_size value, int error, int cursor, int flash)
{
drawcell ret;
setmember(ret, value);
setmember(ret, error);
setmember(ret, cursor);
setmember(ret, flash);
return ret;
}
static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
{
int const w = state->params.w, h = state->params.h, n = w * h;
struct game_drawstate *ds = snew(struct game_drawstate);
int i;
ds->tilesize = 0;
ds->started = FALSE;
ds->grid = snewn(n, drawcell);
for (i = 0; i < n; ++i)
ds->grid[i] = makecell(w + h, FALSE, FALSE, FALSE);
return ds;
}
static void game_free_drawstate(drawing *dr, game_drawstate *ds)
{
sfree(ds->grid);
sfree(ds);
}
#define cmpmember(a, b, field) ((a) . field == (b) . field)
static int cell_eq(drawcell a, drawcell b)
{
return
cmpmember(a, b, value) &&
cmpmember(a, b, error) &&
cmpmember(a, b, cursor) &&
cmpmember(a, b, flash);
}
static void draw_cell(drawing *dr, game_drawstate *ds, int r, int c,
drawcell cell);
static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
game_state *state, int dir, game_ui *ui,
float animtime, float flashtime)
{
int const w = state->params.w, h = state->params.h, n = w * h;
int const wpx = (w+1) * ds->tilesize, hpx = (h+1) * ds->tilesize;
int const flash = ((int) (flashtime * 5 / FLASH_TIME)) % 2;
int r, c, i;
int *errors = snewn(n, int);
memset(errors, FALSE, n * sizeof (int));
find_errors(state, errors);
assert (oldstate == NULL); /* only happens if animating moves */
if (!ds->started) {
ds->started = TRUE;
draw_rect(dr, 0, 0, wpx, hpx, COL_BACKGROUND);
draw_rect(dr, BORDER-1, BORDER-1,
ds->tilesize*w+2, ds->tilesize*h+2, COL_GRID);
draw_update(dr, 0, 0, wpx, hpx);
}
for (i = r = 0; r < h; ++r) {
for (c = 0; c < w; ++c, ++i) {
drawcell cell = makecell(state->grid[i], errors[i], FALSE, flash);
if (r == ui->r && c == ui->c && ui->cursor_show)
cell.cursor = TRUE;
if (!cell_eq(cell, ds->grid[i])) {
draw_cell(dr, ds, r, c, cell);
ds->grid[i] = cell;
}
}
}
sfree(errors);
}
static void draw_cell(drawing *draw, game_drawstate *ds, int r, int c,
drawcell cell)
{
int const ts = ds->tilesize;
int const y = BORDER + ts * r, x = BORDER + ts * c;
int const tx = x + (ts / 2), ty = y + (ts / 2);
int const dotsz = (ds->tilesize + 9) / 10;
int const colour = (cell.value == BLACK ?
cell.error ? COL_ERROR : COL_BLACK :
cell.flash || cell.cursor ?
COL_LOWLIGHT : COL_BACKGROUND);
draw_rect (draw, x, y, ts, ts, colour);
draw_rect_outline(draw, x, y, ts, ts, COL_GRID);
switch (cell.value) {
case WHITE: draw_rect(draw, tx - dotsz / 2, ty - dotsz / 2, dotsz, dotsz,
cell.error ? COL_ERROR : COL_USER);
case BLACK: break;
case EMPTY:
if (cell.error)
draw_circle(draw, tx, ty, dotsz / 2, COL_ERROR, COL_GRID);
break;
default:
{
int const colour = (cell.error ? COL_ERROR : COL_GRID);
char *msg = nfmtstr(10, "%d", cell.value);
draw_text(draw, tx, ty, FONT_VARIABLE, ts * 3 / 5,
ALIGN_VCENTRE | ALIGN_HCENTRE, colour, msg);
sfree(msg);
}
}
draw_update(draw, x, y, ts, ts);
}
static int game_timing_state(game_state *state, game_ui *ui)
{
puts("warning: game_timing_state was called (this shouldn't happen)");
return FALSE; /* the (non-existing) timer should not be running */
}
/* ----------------------------------------------------------------------
* User interface: print
*/
static void game_print_size(game_params *params, float *x, float *y)
{
int print_width, print_height;
game_compute_size(params, 800, &print_width, &print_height);
*x = print_width / 100.0F;
*y = print_height / 100.0F;
}
static void game_print(drawing *dr, game_state *state, int tilesize)
{
int const w = state->params.w, h = state->params.h;
game_drawstate ds_obj, *ds = &ds_obj;
int r, c, i, colour;
ds->tilesize = tilesize;
colour = print_mono_colour(dr, 1); assert(colour == COL_BACKGROUND);
colour = print_mono_colour(dr, 0); assert(colour == COL_GRID);
colour = print_mono_colour(dr, 1); assert(colour == COL_ERROR);
colour = print_mono_colour(dr, 0); assert(colour == COL_LOWLIGHT);
colour = print_mono_colour(dr, 0); assert(colour == NCOLOURS);
for (i = r = 0; r < h; ++r)
for (c = 0; c < w; ++c, ++i)
draw_cell(dr, ds, r, c,
makecell(state->grid[i], FALSE, FALSE, FALSE));
print_line_width(dr, 3 * tilesize / 40);
draw_rect_outline(dr, BORDER, BORDER, w*TILESIZE, h*TILESIZE, COL_GRID);
}
/* And that's about it ;-) **************************************************/
#ifdef COMBINED
#define thegame range
#endif
struct game const thegame = {
"Range", "games.range", "range",
default_params,
game_fetch_preset,
decode_params,
encode_params,
free_params,
dup_params,
TRUE, game_configure, custom_params,
validate_params,
new_game_desc,
validate_desc,
new_game,
dup_game,
free_game,
TRUE, solve_game,
TRUE, game_can_format_as_text_now, game_text_format,
new_ui,
free_ui,
encode_ui,
decode_ui,
game_changed_state,
interpret_move,
execute_move,
PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
game_colours,
game_new_drawstate,
game_free_drawstate,
game_redraw,
game_anim_length,
game_flash_length,
game_status,
TRUE, FALSE, game_print_size, game_print,
FALSE, /* wants_statusbar */
FALSE, game_timing_state,
0, /* flags */
};
|