File: bitops.h

package info (click to toggle)
sheepdog 0.8.3-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 3,364 kB
  • ctags: 3,951
  • sloc: ansic: 30,552; sh: 3,573; perl: 2,924; asm: 453; makefile: 391; python: 192
file content (194 lines) | stat: -rw-r--r-- 4,708 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
#ifndef __BITOPS_H__
#define __BITOPS_H__

#include <stdint.h>

#include "util.h"

#define DIV_ROUND_UP(n, d) (((n) + (d) - 1) / (d))
#define BITS_PER_BYTE		8
#define BITS_TO_LONGS(nr)	DIV_ROUND_UP(nr, BITS_PER_BYTE * sizeof(long))
#define DECLARE_BITMAP(name, bits) \
	unsigned long name[BITS_TO_LONGS(bits)]
#define BITS_PER_LONG (BITS_PER_BYTE * sizeof(long))
#define BITS_PER_UINT64 (BITS_PER_BYTE * sizeof(uint64_t))

#define __ffs(x)  (x ? __builtin_ffsl(x) - 1 : 0)
#define ffz(x)  __ffs(~(x))

#define BITOP_WORD(nr)		((nr) / BITS_PER_LONG)

/*
 * Iterate over a bitmap
 *
 * @nr: the bit number to use as a loop cursor
 * @addr: the bitmap you iterate over
 * @bits: the number of bits this bitmap contains
 */
#define FOR_EACH_BIT(nr, addr, bits)					\
	for (nr = find_next_bit((addr), (bits), 0);			\
	     nr < (bits);						\
	     nr = find_next_bit((addr), (bits), nr + 1))

/*
 * Change the size of allocated bitmap
 *
 * This doesn't change the contents of the old bitmap pointed to by `ptr`, and
 * initializes the newly allocated area with zeros.
 */
static inline unsigned long *alloc_bitmap(unsigned long *old_bmap,
					  size_t old_bits, size_t new_bits)
{
	size_t old_size = BITS_TO_LONGS(old_bits) * sizeof(long);
	size_t new_size = BITS_TO_LONGS(new_bits) * sizeof(long);
	unsigned long *new_bmap =  xrealloc(old_bmap, new_size);

	if (old_bits < new_bits)
		memset((char *)new_bmap + old_size, 0, new_size - old_size);

	return new_bmap;
}

static inline unsigned long find_next_zero_bit(const unsigned long *addr,
					       unsigned long size,
					       unsigned long offset)
{
	const unsigned long *p = addr + BITOP_WORD(offset);
	unsigned long result = offset & ~(BITS_PER_LONG-1);
	unsigned long tmp;

	if (offset >= size)
		return size;
	size -= result;
	offset %= BITS_PER_LONG;
	if (offset) {
		tmp = *(p++);
		tmp |= ~0UL >> (BITS_PER_LONG - offset);
		if (size < BITS_PER_LONG)
			goto found_first;
		if (~tmp)
			goto found_middle;
		size -= BITS_PER_LONG;
		result += BITS_PER_LONG;
	}
	while (size & ~(BITS_PER_LONG-1)) {
		tmp = *(p++);
		if (~tmp)
			goto found_middle;
		result += BITS_PER_LONG;
		size -= BITS_PER_LONG;
	}
	if (!size)
		return result;
	tmp = *p;

found_first:
	tmp |= ~0UL << size;
	if (tmp == ~0UL)	/* Are any bits zero? */
		return result + size;	/* Nope. */
found_middle:
	return result + ffz(tmp);
}

static inline unsigned long find_next_bit(const unsigned long *addr,
					  unsigned long size,
					  unsigned long offset)
{
	const unsigned long *p = addr + BITOP_WORD(offset);
	unsigned long result = offset & ~(BITS_PER_LONG-1);
	unsigned long tmp;

	if (offset >= size)
		return size;
	size -= result;
	offset %= BITS_PER_LONG;
	if (offset) {
		tmp = *(p++);
		tmp &= (~0UL << offset);
		if (size < BITS_PER_LONG)
			goto found_first;
		if (tmp)
			goto found_middle;
		size -= BITS_PER_LONG;
		result += BITS_PER_LONG;
	}
	while (size & ~(BITS_PER_LONG-1)) {
		tmp = *(p++);
		if (tmp)
			goto found_middle;
		result += BITS_PER_LONG;
		size -= BITS_PER_LONG;
	}
	if (!size)
		return result;
	tmp = *p;

found_first:
	tmp &= (~0UL >> (BITS_PER_LONG - size));
	if (tmp == 0UL)		/* Are any bits set? */
		return result + size;	/* Nope. */
found_middle:
	return result + __ffs(tmp);
}

static inline void set_bit(int nr, unsigned long *addr)
{
	addr[nr / BITS_PER_LONG] |= 1UL << (nr % BITS_PER_LONG);
}

static inline void set_bit_64(int nr, uint64_t *addr)
{
	addr[nr / BITS_PER_UINT64] |= 1ULL << (nr % BITS_PER_UINT64);
}

static inline void atomic_set_bit(int nr, unsigned long *addr)
{
	uatomic_or(addr + nr / BITS_PER_LONG, 1UL << (nr % BITS_PER_LONG));
}

static inline int test_bit(unsigned int nr, const unsigned long *addr)
{
	return ((1UL << (nr % BITS_PER_LONG)) &
		(((unsigned long *)addr)[nr / BITS_PER_LONG])) != 0;
}

static inline void clear_bit(unsigned int nr, unsigned long *addr)
{
	addr[nr / BITS_PER_LONG] &= ~(1UL << (nr % BITS_PER_LONG));
}

/*
 * fls64 - find last set bit in a 64-bit word
 * @x: the word to search
 *
 * This is defined in a similar way as the libc and compiler builtin
 * ffsll, but returns the position of the most significant set bit.
 *
 * fls64(value) returns 0 if value is 0 or the position of the last
 * set bit if value is nonzero. The last (most significant) bit is
 * at position 64.
 */
#if SIZEOF_LONG == 4
static __always_inline int fls64(uint64_t x)
{
	uint32_t h = x >> 32;

	if (x == 0)
		return 0;

	if (h)
		return 64 - __builtin_clzl(h);
	return 32 - __builtin_clzl(x);
}
#elif SIZEOF_LONG == 8
static __always_inline int fls64(uint64_t x)
{
	if (x == 0)
		return 0;
	return 64 - __builtin_clzl(x);
}
#else
#error SIZEOF_LONG not 4 or 8
#endif

#endif /* __BITOPS_H__ */